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APPLICATIONS

KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR

Abstract. In this paper we establish some weighted Simpson type inequalities

and give several applications for the r − moments and the expectation of a
continuous random variable. An approximation for Euler’s Beta mapping is

given as well.

1. Introduction

The Simpson’s inequality, states that if f (4) exists and is bounded on (a, b), then

(1.1)

∣∣∣∣∣
∫ b

a

f(t)dt− b− a

3

[
f(a) + f(b)

2
+ 2f

(
a + b

2

)]∣∣∣∣∣ ≤ (b− a)5

2880

∥∥∥f (4)
∥∥∥
∞

,

where ∥∥∥f (4)
∥∥∥
∞

:= sup
t∈(a,b)

∣∣∣f (4)(t)
∣∣∣ < ∞.

Now if we assume that In : a = x0 < x1 < · · · < xn = b is a partition of the
interval [a, b] and f is as above, then we can approximate the integral

∫ b

a
f (t) dt by

the Simpson’s quadrature formula AS (f, In), having an error given by RS (f, In),
where

(1.2) AS (f, In) :=
n−1∑
i=0

li
3

[
f (xi) + f (xi+1)

2
+ 2f

(
xi + xi+1

2

)]
,

and the remainder RS (f, In) =
∫ b

a
f (t) dt−AS (f, In) satisfies the estimation

(1.3) |RS (f, In)| ≤ 1
2880

∥∥∥f (4)
∥∥∥
∞

n−1∑
i=0

l5i ,

with li := xi+1 − xi for i = 0, 1, . . . , n− 1.
For some recent results which generalize, improve and extend this classic inequal-

ity (1.1), see the papers [2] – [7] and [9] – [12].
Recently, Dragomir [6], (see also the survey paper authored by Dragomir, Agar-

wal and Cerone [7]) has proved the following two Simpson type inequalities for
functions of bounded variation:

Theorem 1. Let f : [a, b] → R be a mapping of bounded variation. Then

(1.4)

∣∣∣∣∣
∫ b

a

f(t)dt− b− a

3

[
f(a) + f(b)

2
+ 2f

(
a + b

2

)]∣∣∣∣∣ ≤ 1
3

(b− a)
b∨
a

(f) ,
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where
∨b

a (f) denotes the total variation of f on the interval [a, b] . The constant 1
3

is the best possible.

Let In, li (i = 0, 1, . . . , n − 1), AS (f, In) and RS (f, In) be as above. We have
the following result concerning the approximation of the integral

∫ b

a
f(t)dt in terms

of AS (f, In) .

Theorem 2. Let f be defined as in Theorem 1. Then the remainder

(1.5) RS (f, In) =
∫ b

a

f(x)dx−AS (f, In)

satisfies the estimate

(1.6) |RS (f, In)| ≤ 1
3
ν (l)

b∨
a

(f) ,

where ν (l) := max {li |i = 0, 1, . . ., n− 1} . The constant 1
3 is best posible in (1.6).

In this paper, we establish some generalizations of Theorems 1 – 2, and give
several applications for the r −moments and expectation of a continuous random
variable. Approximations for Euler’s Beta mapping are also provided.

2. Some Integral Inequalities

We may state and prove the following main result:

Theorem 3. Let g : [a, b] → R be positive and continuous and let h(x) =
∫ x

a
g(t)dt, x ∈

[a, b]. Let f be as in Theorem 3. Then

(2.1)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt− 1
3

[
f(a) + f(b)

2
+ 2f

(
h−1(x)

)] ∫ b

a

g (t) dt

∣∣∣∣∣
≤
[
1
3
h(b) +

∣∣∣∣x− h (b)
2

∣∣∣∣] · b∨
a

(f) ,

for all x ∈
[

h(b)
6 , 5h(b)

6

]
, where

∨b
a (f) denotes the total variation of f on the interval

[a, b] . The constant 1
3 is the best possible.

Proof. Fix x ∈
[

h(b)
6 , 5h(b)

6

]
. Define

s (t) :=

{
h (t)− h(b)

6 , t ∈
[
a, h−1 (x)

)
h (t)− 5h(b)

6 , t ∈
[
h−1 (x) , b

] .

By integration by parts, we have the following identity∫ b

a

s (t) df (t)(2.2)

=

[(
h (t)− h (b)

6

)
f (t) |h

−1(x)
a −

∫ h−1(x)

a

f(t)g (t) dt

]

+

[(
h (t)− 5h (b)

6

)
f (t) |bh−1(x) −

∫ b

h−1(x)

f(t)g (t) dt

]
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=
1
3
h (b)

[
f(a) + f(b)

2
+ 2f

(
h−1 (x)

)]
−
∫ b

a

f(t)g (t) dt

=
1
3

[
f(a) + f(b)

2
+ 2f

(
h−1 (x)

)] ∫ b

a

g (t) dt−
∫ b

a

f(t)g (t) dt.

It is well known (see for instance [1, p. 159]) that, if µ, ν : [a, b] → R are such that
µ is continuous on [a, b] and ν is of bounded variation on [a, b], then

∫ b

a
µ (t) dν (t)

exists and [1, p. 177]

(2.3)

∣∣∣∣∣
∫ b

a

µ (t) dν (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

|µ (t)|
b∨
a

(ν) .

Now, using (2.2) and (2.3), we have

(2.4)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt− 1
3

[
f(a) + f(b)

2
+ 2f

(
h−1 (x)

)] ∫ b

a

g (t) dt

∣∣∣∣∣
≤ sup

t∈[a,b]

|s (t)|
b∨
a

(f) .

Since h (t)−h(b)
6 is increasing on

[
a, h−1 (x)

)
, h (t)− 5h(b)

6 is increasing on
[
h−1 (x) , b

]
and the fact that max{c, d} = c+d

2 + 1
2 |c− d| for any real c and d, hence we have

sup
t∈[a,b]

|s (t)| = max
{

h (b)
6

, x− h (b)
6

,
5h (b)

6
− x

}
and

sup
t∈[a,b]

|s (t)| = max
{

h (b)
6

, x− h (b)
6

,
5h (b)

6
− x

}
(2.5)

= max
{

x− h (b)
6

,
5h (b)

6
− x

}
=

1
2

[(
x− h (b)

6

)
+
(

5h (b)
6

− x

)]
+

1
2

∣∣∣∣(x− h (b)
6

)
−
(

5h (b)
6

− x

)∣∣∣∣
=

h (b)
3

+
∣∣∣∣x− h(b)

2

∣∣∣∣
=

1
3

∫ b

a

g (t) dt +

∣∣∣∣∣x− 1
2

∫ b

a

g(t)dt

∣∣∣∣∣ .
Thus, by (2.4) and (2.5), we obtain the desired inequality (2.1).

Let us consider the particular functions:

g (t) ≡ 1, t ∈ [a, b] ,

h (t) = t− a, t ∈ [a, b] ,

f (t) =
{

1 as t ∈
[
a, a+b

2

)
∪
(

a+b
2 , b

]
−1 as t = a+b

2
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and x = b−a
2 . Since for these choices we get equality in (2.1), it is easy to see that

the constant 1
3 is the best possible constant in (2.1). This completes the proof.

Remark 1. (1) If we choose g (t) ≡ 1, h (t) = t − a on [a, b] and x = b−a
2 ,

then the inequality (2.1) reduces to (1.4).
(2) If we choose x = h(b)

2 , then we get

(2.6)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt− 1
3

[
f(a) + f(b)

2
+ 2f

(
h−1

(
h(b)
2

))]∫ b

a

g (t) dt

∣∣∣∣∣
≤ 1

3

∫ b

a

g (t) dt ·
b∨
a

(f) .

Under the conditions of Theorem 3, we have the following corollaries.

Corollary 1. Let f ∈ C(1) [a, b] . Then we have the inequality

(2.7)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt− 1
3

[
f(a) + f(b)

2
+ 2f

(
h−1(x)

)] ∫ b

a

g (t) dt

∣∣∣∣∣
≤

[
1
3

∫ b

a

g (t) dt +
∣∣∣∣x− h(b)

2

∣∣∣∣
]
‖f ′‖1 ,

for all x ∈
[

h(b)
6 , 5h(b)

6

]
, where ‖·‖1 is the L1−norm, namely

‖f ′‖1 :=
∫ b

a

|f ′ (t)| dt.

Corollary 2. Let f : [a, b] → R be a Lipschitzian mapping with the constant M > 0.
Then we have the inequality

(2.8)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt− 1
3

[
f(a) + f(b)

2
+ 2f

(
h−1(x)

)] ∫ b

a

g (t) dt

∣∣∣∣∣
≤

[
1
3

∫ b

a

g (t) dt +
∣∣∣∣x− h(b)

2

∣∣∣∣
]

(b− a) M,

for all x ∈
[

h(b)
6 , 5h(b)

6

]
.

Corollary 3. Let f : [a, b] → R be a monotonic mapping. Then we have the
inequality

(2.9)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt− 1
3

[
f(a) + f(b)

2
+ 2f

(
h−1(x)

)] ∫ b

a

g (t) dt

∣∣∣∣∣
≤

[
1
3

∫ b

a

g (t) dt +
∣∣∣∣x− h(b)

2

∣∣∣∣
]
· |f (b)− f (a)|

for all x ∈
[

h(b)
6 , 5h(b)

6

]
.
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3. Applications for Quadrature Formulae

Throughout this section, let g, h be as in Theorem 3, f : [a, b] → R, and let
In : a = x0 < x1 < · · · < xn = b be a partition of [a, b] , and hi(x) =

∫ x

xi
g(t)dt,

x ∈ [xi, xi+1], ξi ∈
[

h(xi+1)
6 , 5h(xi+1)

6

]
(i = 0, 1, . . ., n − 1) are intermediate points.

Put Li := hi(xi+1) =
∫ xi+1

xi
g (t) dt and define the sum

AS (f, g, In, ξ) :=
n−1∑
i=0

Li

3

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1 (ξi)

)]

and

RS (f, g, In, ξ) =
∫ b

a

f(t)g(t)dx−AS (f, g, In, ξ) .

We have the following approximation of the integral
∫ b

a
f(t)g (t) dt.

Theorem 4. Let f be defined as in Theorem 3 and let

(3.1)
∫ b

a

f(t)g (t) dt = AS (f, g, In, ξ) + RS (f, g, In, ξ) .

Then, the remainder term RS (f, g, h, In, ξ) satisfies the estimate

|RS (f, g, h, In, ξ)|(3.2)

≤
[
1
3
ν (L) + max

i=0,1,...,n−1

∣∣∣∣ξi −
hi(xi+1)

2

∣∣∣∣] b∨
a

(f)

≤ 2
3
ν (L)

b∨
a

(f) ,

where ν (L) := max {Li |i = 0, 1, . . ., n− 1} . The constant 1
3 in the first inequality

of (3.2) is the best possible.

Proof. Apply Theorem 3 on the intervals [xi, xi+1] (i = 0, 1, . . ., n− 1) to get

∣∣∣∣∫ xi+1

xi

f(t)g (t) dt− li
3

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1

i (ξi)
)]∣∣∣∣

≤
[
1
3
Li +

∣∣∣∣ξi −
hi(xi+1)

2

∣∣∣∣] xi+1∨
xi

(f) ,
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for all i = 0, 1, . . ., n−1. Using this and the generalized triangle inequality, we have

|RS (f, g, In, ξ)|

≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

f(t)g (t) dt− Li

3

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1

i (ξi)
)]∣∣∣∣

≤
n−1∑
i=0

[
1
3
Li +

∣∣∣∣ξi −
hi(xi+1)

2

∣∣∣∣] xi+1∨
xi

(f)

≤ max
i=0,1,...,n−1

[
1
3
Li +

∣∣∣∣ξi −
hi(xi+1)

2

∣∣∣∣] n−1∑
i=0

xi+1∨
xi

(f)

≤
[
1
3
ν (L) + max

i=0,1,...,n−1

∣∣∣∣ξi −
hi(xi+1)

2

∣∣∣∣] b∨
a

(f)

and the first inequality in (3.2) is proved.
For the second inequality in (3.2), we observe that∣∣∣∣ξi −

hi(xi+1)
2

∣∣∣∣ ≤ 1
3
Li (i = 0, 1, . . ., n− 1);

and then

max
i=0,1,...,n−1

∣∣∣∣ξi −
h(xi) + h(xi+1)

2

∣∣∣∣ ≤ 1
3
ν (L) .

Thus the theorem is proved.

Remark 2. If we choose g (t) ≡ 1, then h (t) = t − a on [a, b] , ξi = xi+1−xi

2 (i =
0, 1, . . ., n− 1), and the first inequality in (3.2) reduces to (1.6).

The following corollaries are useful in practice.

Corollary 4. Let f : [a, b] → R be a Lipschitzian mapping with the constant M > 0,
In be defined as above and choose ξi = hi(xi+1)

2 (i = 0, 1, . . ., n− 1). Then we have
the formula

(3.3)
∫ b

a

f(t)g (t) dt = AS (f, g, In, ξ) + RS (f, g, In, ξ)

=
n−1∑
i=0

Li

3

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1

i (ξi)
)]

+ RS (f, g, In, ξ)

and the remainder satisfies the estimate

(3.4) |RS (f, g, In, ξ)| ≤ ν (L) ·M · (b− a)
3

.

Corollary 5. Let f : [a, b] → R be a monotonic mapping and let ξi (i = 0, 1, . . ., n− 1)
be defined as in Corollary 4. Then we have the formula (3.3) and the remainder
satisfies the estimate

(3.5) |RS (f, g, In, ξ)| ≤ ν (L)
3

· |f (b)− f (a)| .

The case of equidistant division is embodied in the following corollary and re-
mark:
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Corollary 6. Suppose that G(x) =
∫ x

a
g(t)dt, x ∈ [a, b],

xi = G−1

(
i

n

∫ b

a

g(t)dt

)
(i = 0, 1, . . ., n),

hi(x) =
∫ x

xi

g(t)dt, x ∈ [xi, xi+1], (i = 0, 1, . . ., n− 1),

and

Li := hi(xi+1) = G(xi+1)−G(xi) =
1
n

∫ b

a

g (t) dt (i = 0, 1, . . ., n− 1) .

Let f be defined as in Theorem 4 and choose ξi = hi(xi+1)
2 (i = 0, 1, . . . , n − 1).

Then we have the formula

(3.6)
∫ b

a

f(t)g (t) dt = AS (f, g, h, In, ξ) + RS (f, g, h, In, ξ)

=
1
3n

n−1∑
i=0

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1

i

(
hi(xi+1)

2

))]∫ b

a

g (t) dt

+ RS (f, g, h, In, ξ)

and the remainder satisfies the estimate

(3.7) |RS (f, g, h, In, ξ)| ≤ 1
3n

b∨
a

(f)
∫ b

a

g (t) dt.

Remark 3. If we want to approximate the integral
∫ b

a
f (t) g (t) dt by AS (f, g, h, In, ξ)

with an error less that ε > 0, then we need at least nε ∈ N points for the partition
In, where

nε :=

[
1
3ε

∫ b

a

g (t) dt ·
b∨
a

(f)

]
+ 1

and [r] denotes the Gaussian integer of r ∈ R.

4. Some Inequalities for Random Variables

Throughout this section, let 0 < a < b , r ∈ R , and let X be a continuous random
variable having the continuous probability density function g : [a, b] → [0,∞) and
assume the r−moment , defined by

Er (X) :=
∫ b

a

trg (t) dt,

is finite.

Theorem 5. The inequality

(4.1)
∣∣∣∣Er (X)− 1

6

[
ar + 4

(
h−1

(
1
2

))r

+ br

]∣∣∣∣ ≤ 1
3
|br − ar|

holds, where h (t) =
∫ t

a
g (x) dx (t ∈ [a, b]).
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Proof. If we put f (t) = tr and x = h(b)
2 = 1

2 in Corollary 3, then we obtain the
inequality

(4.2)

∣∣∣∣∣
∫ b

a

f(t)g (t) dt− 1
3

[
f(a) + f(b)

2
+ 2f

(
h−1

(
1
2

))]∫ b

a

g (t) dt

∣∣∣∣∣
≤ 1

3
|f (b)− f (a)|

∫ b

a

g (t) dt.

Since ∫ b

a

f(t)g (t) dt = Er (X) ,

∫ b

a

g (t) dt = 1,

f (a) + f (b)
2

=
ar + br

2
, and |f (b)− f (a)| = |br − ar| ,

(4.1) follows from (4.2).

If we choose r = 1 in Theorem 5, then we have the following remark:

Remark 4. If E(X) is the expectation of random variable X, then

(4.3)
∣∣∣∣E (X)− 1

6

[
a + 4h−1

(
1
2

)
+ b

]∣∣∣∣ ≤ b− a

3
.

5. Inequality for the Beta Mapping

The following mapping is well-known in the literature as the Beta mapping :

β (p, q) :=
∫ 1

0

tp−1 (1− t)q−1
dt, p > 0, q > 0.

The following result may be stated:

Theorem 6. Let p > 0, q > 1. Then the inequality

(5.1)

∣∣∣∣∣∣β (p, q)− 1
np

n−1∑
i=0

1
6

[1− ( i

n

) 1
p

]q−1

+

[
1−

(
i + 1

n

) 1
p

]q−1


+
2
3

[
1−

(
2i + 1

2n

) 1
p

]q−1

∣∣∣∣∣∣ ≤ 1

3np

holds for any positive integer n.

Proof. If we put a = 0, b = 1, f(t) = (1− t)q−1, g(t) = tp−1 and G (t) = tp

p

(t ∈ [0, 1]) in Corollary 6, then,∫ b

a

g(t)dt =
1
p
, xi =

(
i

n

) 1
p

(i = 0, 1, . . ., n),

hi(x) =
nxp − i

np
(x ∈ [xi, xi+1], i = 0, 1, . . ., n− 1),

h−1
i

(
hi(xi+1)

2

)
=
(

2i + 1
2n

) 1
p

(i = 0, 1, . . ., n− 1)

and
∨b

a(f) = 1, so that the inequality (5.1) holds.
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