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Abstract
The author gives a new simple proof of monotonicity of the generalized
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extended mean values M (r,s) = (
Means and inequalities for them have a very long history and a rich liter-
ature. The basic inequality between the geometric and arithmetic means has
been proved in many ways. More than fifty proofs can be found in [1]. The
generalizations have gone into different directions. The power (or Holder)
mean M(r) = ((z" + y")/2)Y",r # 0,M(0) = /7y = G(x,y), has been
extended to the weighted power means

)= (X p/ Y )w —exp (Y paloga/ Y p), (1)

and further to the weighted integral means where sums are replaced by in-
tegrals. The monotonicity of M(r) has been proved in many ways (see
[1, 3, 6]).

Another family of means arises from the logarithmic mean L(z,y) =
(x —y)/(log x — logy) by putting

Sy(z,y) = (M)l/@_n, So(z,y) = L(z, y), Si(z,y) = e (l/y>
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see Galvani [2].
Stolarsky [7] extended this family to the two-parameter extended mean
values defined by
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Leach and Scholander [4, 5] have shown that E is increasing in all variables.
In 1998 Qi [8] extended these notions by defining the generalized weighted
mean values M as follows
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M(r,s) = M(r,s;z,y) =
eXp( Tl [ () dt =,

where p and f are positive, integrable functions. Obviously M(r,0) is the
weighted power mean (1) and M (r—1,s—1) = E(r,s) forp = 1 and f(t) = t.

Qi 9] proved that for continuous p and f, M is increasing in variables p
and s. He has also shown in [8] that if f is monotone then M is of the same
monotonicity in variables x and y.

In this note we extend and generalize these results by showing that the
monotonicity of M(r,s) is a straightforward consequence of the Cauchy-
Schwarz inequality and holds also in case of integrable functions. We also
show that monotonicity of f is a necessary and sufficient condition for M to
be monotone in x and y. We believe that our proofs are also simpler than
the original reasoning.

Theorem 1 Let f: X — R be a measurable, positive function on a measure
space (X, p) and
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Then M is increasing in both parameters r and s.

Proof. Let I(r) = fX fTdp. The Cauchy-Schwarz inequality applied to f5/2

and f7/? gives
i I(75%) < VI(r)V/1(s),

which shows that log I is convex in the sense of Jensen, hence being contin-
uous is convex.

Let us recall now the following property of convex functions: If h is
convex then the function g(z,y) = }L(‘Q%Z@,x # y, is increasing in both
variables. This property applied to log I shows that log M (r, s) is increasing
for s # r. As M is continuous, the monotonicity extends to the whole plane

of parameters (r,s).



Theorem 2 If p, f : [a,b] — R are continuous and positive then the follow-
g conditions are equivalent:

i) the function f is increasing (decreasing, respectively).

ii) for every r,s the function M(r,s;z,y) is increasing (decreasing, re-
spectively) in x and y.

Proof. As in the proof of Theorem 1 it is easier to consider monotonicity of
log M. For r # s we have
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where H = H(r, s;z,y) = R p2) ' (2) is positive.
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Observe that

it f(z)= min f() then MWL "5 (6)
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if f(x)= max f(t) then AV <0. (7)
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From (5), (6) and (7) we conclude that if f is increasing then log M is
increasing in z. Similar reasoning shows monotonicity in y, so the implication
i)=ii) holds.
If f is not monotone then one can choose an interval [z,y] and x1,x2 €
[2,y] such that
f(z1) = min f(t) < f(y) < max f(t) = f(z2)
te[z,y] te[z,y]
and from (6) and (7)
Olog M
oz

which completes the proof in case r # s.
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To prove the case s = 7 it is enough to replace (s —r)~* <<]]:((;))> - 1>

with (log f(t) — log f(x)) in (5), (6) and (7).
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