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Abstract
The author gives a new simple proof of monotonicity of the generalized
extended mean values M(r, s) =

( R
fsdµR
frdµ

)1/(s−r)

introduced by F. Qi.

Means and inequalities for them have a very long history and a rich liter-
ature. The basic inequality between the geometric and arithmetic means has
been proved in many ways. More than �fty proofs can be found in [1]. The
generalizations have gone into di�erent directions. The power (or Hölder)
mean M(r) = ((xr + yr)/2)1/r, r 6= 0,M(0) =

√
xy = G(x, y), has been

extended to the weighted power means

M(r) =
(∑

par/
∑

p
)1/r

,M(0) = exp
(∑

pa log a/
∑

p
)

, (1)

and further to the weighted integral means where sums are replaced by in-
tegrals. The monotonicity of M(r) has been proved in many ways (see
[1, 3, 6]).

Another family of means arises from the logarithmic mean L(x, y) =
(x− y)/(log x− log y) by putting

Sp(x, y) =
(

yp − xp

p(y − x)

)1/(p−1)

, S0(x, y) = L(x, y), S1(x, y) = e−1

(
yy

xx

)1/(y−x)

,

see Galvani [2].
Stolarsky [7] extended this family to the two-parameter extended mean

values de�ned by

E(r, s; x, y) =





(
r
s

ys−xs

yr−xr

)1/(s−r)
sr(s− r)(x− y) 6= 0,

(
1
r

yr−xr

log y−log x

)1/r
r(x− y) 6= 0, s = 0,

e−1/r
(
yyr

/xxr)1/(yr−xr)
r = s, r(x− y) 6= 0,√

xy r = s = 0, x− y 6= 0,
x x = y.

(2)
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Leach and Scholander [4, 5] have shown that E is increasing in all variables.
In 1998 Qi [8] extended these notions by de�ning the generalized weighted
mean values M as follows

M(r, s) = M(r, s; x, y) =





( R y
x p(t)fs(t)dtR y
x p(t)fr(t)dt

)1/(s−r)
r 6= s,

exp
(R y

x p(t)fr(t) log f(t)dtR y
x p(t)fr(t)dt

)
r = s,

(3)

where p and f are positive, integrable functions. Obviously M(r, 0) is the
weighted power mean (1) and M(r−1, s−1) = E(r, s) for p ≡ 1 and f(t) = t.

Qi [9] proved that for continuous p and f , M is increasing in variables p
and s. He has also shown in [8] that if f is monotone then M is of the same
monotonicity in variables x and y.

In this note we extend and generalize these results by showing that the
monotonicity of M(r, s) is a straightforward consequence of the Cauchy-
Schwarz inequality and holds also in case of integrable functions. We also
show that monotonicity of f is a necessary and su�cient condition for M to
be monotone in x and y. We believe that our proofs are also simpler than
the original reasoning.

Theorem 1 Let f : X → R be a measurable, positive function on a measure
space (X,µ) and

M(r, s) =





( R
X fsdµR
X frdµ

)1/(s−r)
r 6= s,

exp
(R

X fs log fdµR
X fsdµ

)
r = s.

(4)

Then M is increasing in both parameters r and s.

Proof. Let I(r) =
∫
X f rdµ. The Cauchy-Schwarz inequality applied to fs/2

and f r/2 gives
I( r+s

2 ) ≤
√

I(r)
√

I(s),

which shows that log I is convex in the sense of Jensen, hence being contin-
uous is convex.

Let us recall now the following property of convex functions: If h is
convex then the function g(x, y) = h(x)−h(y)

x−y , x 6= y, is increasing in both
variables. This property applied to log I shows that log M(r, s) is increasing
for s 6= r. As M is continuous, the monotonicity extends to the whole plane
of parameters (r, s).
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Theorem 2 If p, f : [a, b] → R are continuous and positive then the follow-
ing conditions are equivalent:

i) the function f is increasing (decreasing, respectively).

ii) for every r, s the function M(r, s; x, y) is increasing (decreasing, re-
spectively) in x and y.

Proof. As in the proof of Theorem 1 it is easier to consider monotonicity of
log M . For r 6= s we have

∂ log M

∂x
= (s− r)−1

( −p(x)fs(x)∫ y
x p(t)fs(t)dt

− −p(x)f r(x)∫ y
x p(t)f r(t)dt

)

= H

∫ y
x p(t)

((
f(t)
f(x)

)s
−

(
f(t)
f(x)

)r)
dt

s− r

= H

∫ y
x p(t)

(
f(t)
f(x)

)r
((

f(t)
f(x)

)s−r
− 1

)
dt

s− r
, (5)

where H = H(r, s; x, y) = p(x)fr+s(x)R y
x p(t)fr(t)dt

R y
x p(t)fr(t)dt

is positive.
Observe that

if f(x) = min
t∈[x,y]

f(t) then

(
f(t)
f(x)

)s−r
− 1

s− r
≥ 0, (6)

if f(x) = max
t∈[x,y]

f(t) then

(
f(t)
f(x)

)s−r
− 1

s− r
≤ 0. (7)

From (5), (6) and (7) we conclude that if f is increasing then log M is
increasing in x. Similar reasoning shows monotonicity in y, so the implication
i)⇒ii) holds.

If f is not monotone then one can choose an interval [z, y] and x1, x2 ∈
[z, y] such that

f(x1) = min
t∈[z,y]

f(t) < f(y) < max
t∈[z,y]

f(t) = f(x2)

and from (6) and (7)
∂ log M

∂x
(r, s; x1, y) < 0 <

∂ log M

∂x
(r, s; x2, y),

which completes the proof in case r 6= s.
To prove the case s = r it is enough to replace (s − r)−1

((
f(t)
f(x)

)s−r
− 1

)

with (log f(t)− log f(x)) in (5), (6) and (7).
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