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Abstract. The function
[Γ(x+1)]1/x

x

(
1 + 1

x

)x
is strictly logarithmically com-

pletely monotonic in (0,∞). The function ψ′′(x + 2) + 1+x2

x2(1+x)2
is strictly

completely monotonic in (0,∞).

1. Introduction

It is well known that the gamma function Γ(z) is defined for Re z > 0 as

Γ(z) =
∫ ∞

0

tz−1e−t dt. (1)

The psi or digamma function ψ(x) = Γ′(x)
Γ(x) , the logarithmic derivative of the gamma

function, and the polygamma functions can be expressed for x > 0 and k ∈ N as

ψ(x) = −γ +
∞∑

n=0

(
1

1 + n
− 1
x+ n

)
, (2)

ψ(k)(x) = (−1)k+1k!
∞∑

i=0

1
(x+ i)k+1

, (3)

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt, (4)

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
dt, (5)

where γ = 0.57721566490153286 · · · is the Euler-Mascheroni constant.
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A function f is said to be completely monotonic on an interval I if f has deriva-

tives of all orders on I which alternate successively in sign, that is

(−1)nf (n)(x) ≥ 0 (6)

for x ∈ I and n ≥ 0. If inequality (6) is strict for all x ∈ I and for all n ≥ 0, then

f is said to be strictly completely monotonic.

For x > 0 and s ≥ 0, we have

1
(x+ s)n

=
1

(n− 1)!

∫ ∞

0

tn−1e−(x+s)t dt, n ∈ N. (7)

A function f is said to be logarithmically completely monotonic on an interval

I if its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 (8)

for k ∈ N on I. If inequality (8) is strict for all x ∈ I and for all k ∈ N, then f is

said to be strictly logarithmically completely monotonic.

In [4] it is proved that a (strictly) logarithmically completely monotonic function

is also (strictly) completely monotonic. But not conversely, since a convex function

may not be logarithmically convex (see Remark. 1.16 at page 7 in [3]).

Completely monotonic functions have applications in many branches. For exam-

ple, they play a role in potential theory, probability theory, physics, numerical and

asymptotic analysis, and combinatorics. Some related references are listed in [1].

It is well known that the function
(
1 + 1

x

)−x is strictly completely monotonic in

(0,∞). In [1], it is proved that the function
(
1+ a

x

)x+b−ea is completely monotonic

with x ∈ (0,∞) if and only if a ≤ 2b, where a > 0 and b are real numbers.

Among other things, the following completely monotonic properties are obtained

in [4]: For α ≤ 0, the function xα

[Γ(x+1)]1/x is strictly completely monotonic in (0,∞).

For α ≥ 1, the function [Γ(x+1)]1/x

xα is strictly completely monotonic in (0,∞).

In [2] the following two inequalities are presented: For x ∈ (0, 1), we have

x

[Γ(x+ 1)]1/x
<

(
1 +

1
x

)x

<
x+ 1

[Γ(x+ 1)]1/x
. (9)
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For x ≥ 1, (
1 +

1
x

)x

≥ x+ 1
[Γ(x+ 1)]1/x

. (10)

Equality in (10) occurs for x = 1.

It is easy to see that

lim
x→∞

[Γ(x+ 1)]1/x

x

(
1 +

1
x

)x

= 1. (11)

The main purpose of this paper is to give a strictly logarithmically completely

monotonic property of the function [Γ(x+1)]1/x

x

(
1 + 1

x

)x in (0,∞) as follows.

Theorem 1. The function [Γ(x+1)]1/x

x

(
1+ 1

x

)x is strictly logarithmically completely

monotonic in (0,∞).

As a direct consequence of the proof of Theorem 1, we have the following

Corollary 1. The function

ψ′′(x) +
x4 + 5x3 + 7x2 + 7x+ 2

x3(x+ 1)3
= ψ′′(x+ 2) +

1 + x2

x2(1 + x)2
(12)

is strictly completely monotonic in (0,∞).

2. Proof of Theorem 1

Define

F (x) =
[Γ(x+ 1)]1/x

xc

(
1 +

a

x

)x+b

(13)

for x > 0 and some fixed real numbers a, b and c.

Taking the logarithm of F (x) defined by (13) and differentiating yields

lnF (x) = (x+ b) ln
(
1 +

a

x

)
+

lnΓ(x+ 1)
x

− c lnx, (14)

[lnF (x)]′ = ln
(
1 +

a

x

)
− a(x+ b)
x(x+ a)

+
xψ(x+ 1)− ln Γ(x+ 1)

x2
− c

x
, (15)

and

[lnF (x)](n) = (−1)n−1(n− 1)!(x+ b)
[

1
(x+ a)n

− 1
xn

]
+ (−1)n(n− 2)!n

[
1

(x+ a)n−1
− 1
xn−1

]
+
hn(x)
xn+1

+ (−1)n(n− 1)!
c

xn
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= (−1)n(n− 2)!
[
(n− 1)(b+ c)− x

xn
+
x+ na− (n− 1)b

(x+ a)n

]
+
hn(x)
xn+1

, (16)

where n ≥ 2, ψ(−1)(x+ 1) = lnΓ(x+ 1), ψ(0)(x+ 1) = ψ(x+ 1), and

hn(x) =
n∑

k=0

(−1)n−kn!xkψ(k−1)(x+ 1)
k!

, (17)

h′n(x) = xnψ(n)(x+ 1)


> 0, if n is odd,

< 0, if n is even.
(18)

Therefore, we have

(−1)nxn+1[lnF (x)](n)

= (n− 2)!
{

(n− 1)(b+ c)− x+
xn[x+ na− (n− 1)b]

(x+ a)n

}
x+ (−1)nhn(x) (19)

and

d
{
(−1)nxn+1[lnF (x)](n)

}
dx

= (−1)nxnψ(n)(x+ 1) + (n− 2)!
{

(n− 1)(b+ c)− 2x

+
xn[a(b+ an+ an2 − bn2) + (2a+ b+ 2an− bn)x+ 2x2]

(x+ a)n+1

}
= xn

{
(−1)nψ(n)(x+ 1) + (n− 2)!

[
(n− 1)(b+ c)− 2x

xn

+
a(b+ an+ an2 − bn2) + (2a+ b+ 2an− bn)x+ 2x2

(x+ a)n+1

]}
= xn

{
(−1)nψ(n)(x) +

n!
xn+1

+ (n− 2)!
[
(n− 1)(b+ c)− 2x

xn

+
a(b+ an+ an2 − bn2) + (2a+ b+ 2an− bn)x+ 2x2

(x+ a)n+1

]}
.

By letting a = c = 1 and b = 0, we have

d
{
(−1)nxn+1[lnF (x)](n)

}
dx

= xn

{
(−1)nψ(n)(x) +

n!
xn+1

+ (n− 2)!
[
n− 1− 2x

xn
+
n(n+ 1) + 2(n+ 1)x+ 2x2

(x+ 1)n+1

]}
= xn

{
(−1)nψ(n)(x) + (n− 2)!

[
n(n− 1) + (n− 1)x− 2x2

xn+1

+
n(n+ 1) + 2(n+ 1)x+ 2x2

(x+ 1)n+1

]}
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, xn
{
(−1)nψ(n)(x) + (n− 2)!gn(x) + (n− 2)!hn(x)

}
.

By induction, it follows that

g′n(x) = −(n− 1)gn+1(x) and h′n(x) = −(n− 1)hn+1(x), (20)

this implies

g
(n−2)
2 (x) = (−1)n(n− 2)!gn(x) and h

(n−2)
2 (x) = (−1)n(n− 2)!hn(x), (21)

therefore

d
{
(−1)nxn+1[lnF (x)](n)

}
dx

= (−1)nxn
[
ψ′′(x) + g2(x) + h2(x)

](n−2)
. (22)

From formulas (3), (5) and (7), for x ∈ (0,∞) and any nonnegative integer i, we

have

φ(x) , ψ′′(x) + g2(x) + h2(x)

= ψ′′(x) +
2 + x− 2x2

x3
+

2(3 + 3x+ x2)
(x+ 1)3

= ψ′′(x) +
x4 + 5x3 + 7x2 + 7x+ 2

x3(x+ 1)3

= ψ′′(x) +
2
x3

+
1
x2
− 2
x

+
2

(1 + x)3
+

2
(1 + x)2

+
2

1 + x

=
1
x2
− 2
x

+
2

(1 + x)2
+

2
1 + x

− 2
∞∑

i=2

1
(x+ i)3

= ψ′′(x+ 2) +
1
x2
− 2
x

+
2

(1 + x)2
+

2
1 + x

= ψ′′(x+ 2) +
1 + x2

x2(1 + x)2

=
∫ ∞

0

te−xt dt− 2
∫ ∞

0

e−xt dt+ 2
∫ ∞

0

te−(x+1)t dt

+ 2
∫ ∞

0

e−(x+1)t dt−
∫ ∞

0

t2e−(x+2)t

1− e−t
dt

=
∫ ∞

0

[
t− 2 + (t+ 4)e−t − (t2 + 2t+ 2)e−2t

]
e−xt dt

,
∫ ∞

0

q(t)e−xt dt,

φ(i)(x) = (−1)i

∫ ∞

0

q(t)tie−xt dt,
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and

q′(t) =
(
2 + 2t+ 2t2 − 3et + e2t − tet

)
e−2t

, p(t)e−2t,

p′(t) = 2 + 4t− 4et + 2e2t − tet,

p′′(t) = 4− 5et + 4e2t − tet,

p′′′(t) =
(
8et − t− 6

)
et

> 0.

Hence, p′′(t) increases in (0,∞). Since p′′(0) = 3 > 0, we have p′′(t) > 0 and p′(t)

is increasing. Because of p′(0) = 0, it follows that p′(t) > 0 in (0,∞), and then

p(t) is increasing. From p(0) = 0, it is deduced that p(t) > 0 and q′(t) > 0 in

(0,∞), then q(t) increases. As a result of q(0) = 0, we obtain q(t) > 0 in (0,∞).

Therefore, we have φ(x) > 0 in (0,∞), and then for all nonnegative integer i, we

have (−1)iφ(i)(x) > 0 in (0,∞). This means that the function ψ′′(x)+g2(x)+h2(x)

is strictly completely monotonic on (0,∞).

Thus the function (−1)nxn+1[lnF (x)](n) is increasing in x ∈ (0,∞). Since

lim
x→0

{
(−1)nxn+1[lnF (x)](n)

}
= 0,

we have (−1)nxn+1[lnF (x)](n) > 0, then (−1)n[lnF (x)](n) > 0 for n ≥ 2 in (0,∞).

Since [lnF (x)]′′ > 0, the function [lnF (x)]′ is increasing. It is not difficult to

obtain limx→∞[lnF (x)]′ = 0, so [lnF (x)]′ < 0 and lnF (x) is decreasing in (0,∞).

In conclusion, the function lnF (x) is strictly completely monotonic in (0,∞). The

proof is complete.

3. An open problem

Open Problem. Under what conditions on a, b and c the function F (x) defined

by (13) is strictly logarithmically completely monotonic in (0,∞)?
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