
ON A FURTHER IMPROVEMENT OF THE EXTENDED
HARDY-HILBERT’S INEQUALITY
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Abstract. In this paper, by means of a sharpening of Hölder’s inequality, the

extended Hardy-Hilbert’s inequalities with parameters A, B, λ are improved.

1. Introduction

Let p > 1, 1
p + 1

q = 1, an > 0, bn > 0, if 0 <
∑∞

n=1 ap
n < +∞, 0 <

∑∞
n=1 bq

n <

+∞, then

(1.1)
∞∑

m=1

∞∑
n=1

ambn

m + n
<

π

sin(π/p)

{ ∞∑
n=1

ap
n

}1/p{ ∞∑
n=1

bq
n

}1/q

the inequality (1.1) is known as the famous Hardy-Hilbert’s inequality, it is impor-
tant in analysis and its applications. The corresponding integral form of (1.1) can
be stated as follows:

Suppose that p > 1,
1
p

+
1
q

= 1, f, g > 0, if 0 <

∫ ∞
0

fp(t)dt < +∞,

0 <

∫ ∞
0

gq(t)dt < +∞ then

(1.2)
∫ ∞

0

∫ ∞
0

f(x)g(x)
x + y

dxdy <
π

sin(π/p)

(∫ ∞
0

fp(t)dt

) 1
p
(∫ ∞

0

gq(t)dt

) 1
q

Where the constant π
sin(π/p) are best possible in (1.1) and (1.2). In recent years,

the inequalities (1.1) and (1.2) were studied extensively, and some improvements
and extensions of Hilbert’s inequality and Hardy-Hilbert’s inequality with numer-
ous variants have been given in many literature, see [2-4,6-8].
For example, Gao [2]proved the following Hilbert inequality:

(1.3)
[∫ ∞

0

∫ ∞
0

f(s)g(t)
s + t

dsdt

]2
< π2

∫ ∞
0

f2(t)dt

∫ ∞
0

g2(t)dt−G(ξ, η, δ)
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Yang and Debnath [3] gave a generalization of Hardy-Hilbert’s inequality as follows:
For λ > 2−min{p, q} then

(1.4)
∫ ∞

0

∫ ∞
0

f(x)g(y)
(Ax + By)λ

dxdy

<
Kλ(p)

Aϕλ(p)Bϕλ(q)

(∫ ∞
0

x(1−λ)fp(x)dx

)1/p(∫ ∞
0

x(1−λ)gq(x)dx

)1/q

For 2−min{p, q} < λ ≤ 2, then

(1.5)
∞∑

m=1

∞∑
n=1

ambn

(Am + Bn)λ
<

Kλ(p)
Aϕλ(p)Bϕλ(q)

{ ∞∑
n=1

n(1−λ)ap
n

}1/p{ ∞∑
n=1

n(1−λ)bq
n

}1/q

where ϕλ(r) = r+λ−2
r (r = p, q), kλ(p) = B(ϕλ(p), ϕλ(q)). The main pur-

pose of this paper is to establish a few new inequalities, and which are the extension
of (1.3) and the improvements of the inequalities (1.4),(1.5). Furthermore, the re-
sults of the paper include the generalizations and improvements of corresponding
ones in [2-3,6].

2. Lemmas and Their proofs

For convenience, we firstly introduce some notations:

(ar, bs) =
∞∑

n=1

ar
nbs

n, ||a||p =

( ∞∑
n=1

ap
n

)1/p

, ||a||2 = ||a||

(fr, gs) =
∫ +∞

0

fr(x)gs(x)dx ||f ||p =
(∫ +∞

0

fp(x)dx

) 1
p

||f ||2 = ||f ||

We next introduce a function defined by

Sr (H,x) =
(
Hr/2, x

)
||H||−r/2

r

where x is a parametric variable vector which is a variable unit vector, Under
general case, it is properly chosen such that the specific problems discussed are
simplified.
Clearly, Sr (H,x) = 0 when the vector x selected is orthogonal to Hp/2. Through-
out this paper, the exponent k indicates k = min

{
1
p , 1

q

}
In order to verify our assertions, we need to build the following lemmas.

Lemma 2.1. Let f(x), g(x) > 0. 1
p + 1

q = 1 and p > 1. If 0 < ||f ||p < +∞,

0 < ||g||q < +∞, then

(2.1) (f, g) < ||f ||p||g||q (1−R)k

where R = (Sp (f, h)− Sq (g, h))2 , ||h|| = 1, fp/2(x), gq/2(x) and h(x) are linearly
independent.

Lemma 2.2 Let an, bn ≥ 0. 1
p + 1

q = 1 and p > 1. If 0 < ‖a‖p < +∞, 0 <

‖b‖q < +∞, then

(2.2) (a, b) < ||a||p||b||q(1−R)k
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where R = (Sp(a, c)− Sq(b, c))2 6= 0, ||c|| = 1, ap/2, bq/2 and c are linearly indepen-
dent.
Lemma 2.1 and Lemma 2.2 are proved by [4], it is omitted here.
The choice of h and c are quite flexible, so long as condition ‖h‖ = 1 and c = 1 is
satisfied, and on which we can refer to [3,7] etc.
In the following,we define

(2.3) ϕλ(r) =
r + λ− 2

r
(r = p, q), and kλ(p) = B(ϕλ(p), ϕλ(q)),

where B(u, v) =
∫ ∞

0

t−1+u

(1 + t)u+v
dt (u, v > 0) is beta function.

(2.4) Dr(A,B) = kλ(p)A1−λ− 2−λ
r B

2−λ
r −1

Lemma 2.3 Let 1
p + 1

q = 1, p > 1,λ > 2 −min(p, q), (r = p, q),m ∈ N . Define
the weight function ωλ(A,B, r, x) and ωλ(A,B, r,m) as follows:

(2.5) ωλ(A,B, r, x) =
∫ ∞

0

1
(Ax + By)λ

(
x

y

) 2−λ
r

dy

(2.6) ωλ(A,B, r,m) =
∞∑

n=1

1
(Am + Bn)λ

(m

n

) 2−λ
r

then we have

(2.7) ωλ(A,B, r, x) = kλ(p)x1−λA1−λ− 2−λ
r B

2−λ
r −1

For 0 ≤ 2−min{p, q} < λ ≤ 2,then

(2.8) ωλ(A,B, r,m) < ωλ(A,B, r,m)

The proof of the lemma is given by [3].

Lemma 2.4 Under the same condition as Lemma 3. Define the function θr(A,B,m)
by

(2.9) θr(A,B,m) =
∫ 1

0

Hr(A,B, m, y)dy

− m(2−λ)/r

2(Am + B)λ
−
∫ ∞

1

ρ(y)H
′

r(A,B,m, y)dy

where ρ(y) = y − [y]− 1
2 , and the function Hr is defined by

(2.10) Hr(A,B,m, y) =
1

(Am + By)λ

(
m

y

)(2−λ)/r

then we have

(2.11) ωλ(A,B, r,m) = Dr(A,B)m1−λ − θr(A,B,m)
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Proof: Consider the function Hr defined by (2.10). According to the paper [5],
we have

m∑
k=n+1

Hr(k) =
∫ m

n

Hr(y)dy +
1
2
(Hr(m)−Hr(n)) +

∫ m

n

ρ(y)H
′

r(y)dy

Let m →∞ and n = 1. Then we obtain the Euler-Maclaurin summation formula
of the form:

(2.12)
∞∑

k=1

Hr(k) =
∫ ∞

1

Hr(y)dy +
1
2
Hr(1) +

∫ ∞
1

ρ(y)H
′

r(y)dy

We may apply the formula (2.12) to compute the weight function ωλ in (2.6)

ωλ(A,B, r,m)

=
∫ ∞

0

Hr(y)dy −
(∫ 1

0

Hr(y)dy − 1
2
Hr(1)−

∫ ∞
1

ρ(y)H
′

r(y)dy

)
(2.13) = ωλ(A,B, r,m)−

(∫ 1

0

Hr(y)dy − m(2−λ)/r

2(Am + B)λ
−
∫ ∞

1

ρ(y)H
′

r(y)dy

)
Substituting (2.7),(2.4) and (2.9) into (2.13), the inequality (2.11) follows.
By computation we can get θr(A,B,m) > 0. Thus the lemma is proved.

3. Main Results

For the sake of convenient statement, we need again to define the functions
and to introduce some notations

F =
f(x)

(Ax + By)λ/p

(
x

y

)(2−λ)/pq

, G =
g(y)

(Ax + By)λ/q

(y

x

)(2−λ)/pq

α =
am

(Am + Bn)λ/p

(m

n

)(2−λ)/pq

, β =
bn

(Am + Bn)λ/q

(m

n

)(2−λ)/pq

,

(αr, γs) =
∞∑

m=1

∞∑
n=1

αrγs, (F r, hs) =
∫ ∞

0

∫ ∞
0

F r hsdxdy

(3.1) E =
∫ ∞

0

x1−λe−2xdx

(3.2) Ψ(y) =
{

1
Dq(A,B)E

}1/2 ∫ ∞
0

e−x

(Ax + By)λ

(y

x

)(2−λ)(q−p)/(2pq)

dx

Sp(F, h) = E−1/2

{∫ ∞
0

x1−λe−xfp/2(x)dx

}
·
{∫ ∞

0

x1−λfp(x)dx

}−1/2

Sq(G, h) =
{∫ ∞

0

Ψ(y)gq/2(y)dy

}
·
{∫ ∞

0

Dp(B,A)x1−λgq(x)dx

}−1/2

Sp(α, γ) =
{

ap
1

(A + B)λ

}{ ∞∑
m=1

ωλ(A,B, q,m)ap
m

}−1/2

Sq(β, γ) =
{

bq
1

(A + B)λ

}{ ∞∑
m=1

ωλ(B,A, p,m)bq
m

}−1/2
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where ωλ is indicated by (2.11), and γ(m,n), h = h(x, y) are unit vector with two
variants, namely

||h|| =
{∫ ∞

0

∫ ∞
0

h2dxdy

}1/2

= 1, ||γ|| =

( ∞∑
m=1

∞∑
n=1

γ2

)1/2

= 1

and F p/2, Gq/2, h are linearly independent. αp/2, βq/2, γ are also linearly independent.

Theorem 4. Let p > 1, 1
p + 1

q = 1, λ > 2−min{p, q}, A,B > 0, f(t), g(t) ≥ 0 if

0 <

∫ ∞
0

t1−λfp(t)dt < +∞, 0 <

∫ ∞
0

t1−λgq(t)dt < +∞ then

(3.3)
∫ ∞

0

∫ ∞
0

f(x)g(y)
(Ax + By)λ

<
kλ(p)

Aϕλ(p)Bϕλ(q)

(∫ ∞
0

x(1−λ)fp(x)dx

)1/p(∫ ∞
0

x(1−λ)gq(x)dx

)1/q

[1−R(A,B, λ)]k

where R(A,B, λ) = (Sp(F, h)− Sq(G, h))2

(3.4) h(x, y) =
1

(Dq(A,B)E)1/2
· e−x

(Ax + By)λ/2

(
x

y

)(2−λ)/(2q)

In particular. (i) for λ = 1 we have

(3.5)
∫ ∞

0

∫ ∞
0

f(x)g(y)
(Ax + By)

dxdy

<
π

A1/qB1/psin(π/p)

(∫ ∞
0

fp(x)dx

)1/p(∫ ∞
0

gq(x)dx

)1/q

[1−R(A,B, 1)]k

(ii) for λ = 2, we have

(3.6)
∫ ∞

0

∫ ∞
0

f(x)g(y)
(Ax + By)2

dxdy

<
1

AB

(∫ ∞
0

1
x

fp(x)dx

)1/p(∫ ∞
0

1
x

gq(x)dx

)1/q

[1−R(A,B, 2)]k

Proof: By Lemma 2.1, we get∫ ∞
0

∫ ∞
0

f(x)g(y)
(Ax + By)λ

dxdy =
∫ ∞

0

∫ ∞
0

FGdxdy

(3.7) ≤
{∫ ∞

0

∫ ∞
0

F pdxdy

}1/p{∫ ∞
0

∫ ∞
0

Gqdxdy

}1/q

(1−R(A,B, λ))k

=
{∫ ∞

0

ωλ(A,B, q, x)fp(x)dx

}1/p{∫ ∞
0

ωλ(B,A, p, y)gq(y)dy

}1/q

(1−R(A,B, λ))k
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(3.8) =
(∫ ∞

0

ωλ(A,B, q, x)fp(x)dx

)1/p

×
(∫ ∞

0

ωλ(B,A, p, x)gq(x)dx

)1/q

(1−R(A,B, λ))k

In view of (2.7), we still have

(3.9) ωλ(B,A, p, x) = kλ(p)x1−λB1−λ−(2−λ)/pA(2−λ)/p−1

whence by (2.7), (3.8) and (3.9) we obtain (3.3).
It remains to discuss the expression of R(A,B, λ). we may choose the function h
indicated by (3.4).

||h|| =
(∫ ∞

0

∫ ∞
0

h2(x, y)dxdy

)1/2

=

{
1

Dq(A,B)E

∫ ∞
0

e−2xdx

∫ ∞
0

1
(Ax + By)λ

(
x

y

)(2−λ)/q

dy

}1/2

=
{

1
Dq(A,B)E

∫ ∞
0

e−2xωλ(A,B, q, x)dx

}1/2

= 1

According to Lemma 2.1 and the given h , we have

(3.10) R(A,B, λ) =

{(∫ ∞
0

∫ ∞
0

F p/2hdxdy

)(∫ ∞
0

∫ ∞
0

F pdxdy

)−1/2

−
(∫ ∞

0

∫ ∞
0

Gq/2hdxdy

)(∫ ∞
0

∫ ∞
0

Gqdxdy

)−1/2
}2

Substituting (2.7),(3.1), (3.2), (3.4) and (3.9) into (3.10), we get

R(A,B, λ) = (Sp(F, h)− Sq(G, h))2

In particular, for A = B = λ = 1, and p = q = 2, then Ψ(y) =
(

2
π

)1/2
∞∫
0

e−x

(x+y)dx

For 0 ≤ 2−min{p, q} < λ < 2, E = 2(λ−2)Γ(2− λ)
It is obvious that F p/2, Gq/2, h are linearly independent, so it is impossible for
equality to hold in(3.7). Thus the proof of theorem is completed.

Remark 3.2 Clearly, the inequalities (3.3) (3.5) and (3.6) are the improvements
of (2.1),(2.2) and (2.3) in [3] respectively.
Especially for A = B = λ = 1, by Theorem 4 we have.

(3.11)
∫ ∞

0

∫ ∞
0

f(x)g(y)
x + y

dxdy <
π

sin(π/p)

(∫ ∞
0

fp(x)dx

)1/p

×
(∫ ∞

0

gq(x)dx

)1/q

[1−R(1, 1, 1)]k

when p = q = 2, the inequality (3.11) reduces to the inequality which is equivalent
to the inequality (1.3) after simple computations. As a result, the inequalities (3.3),
(3.5) and (3.11) are all the extensions of the inequality (1.3).
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Theorem 5. Let p > 1, 1
p + 1

q = 1, a1, b1 > 0, an, bn ≥ 0(n ∈ N)

2−min{p, q} < λ ≤ 2, A, B > 0. If 0 <
∞∑

n=1

n(1−λ)ap
n < ∞, 0 <

∞∑
n=1

n(1−λ)bq
n < ∞ then

(3.12)
∞∑

m=1

∞∑
n=1

ambn

(Am + Bn)λ
<

kλ(p)
Aϕλ(p)Bϕλ(q)

{ ∞∑
n=1

n(1−λ)ap
n

}1/p

×

{ ∞∑
n=1

n(1−λ)bq
n

}1/q [
1−R(A,B, λ)

]k
In particular. (i) for λ = 1 we have

(3.13)
∞∑

m=1

∞∑
n=1

ambn

(Am + Bn)

<
π

A1/qB1/p sin(π/p)

( ∞∑
n=1

ap
n

)1/p( ∞∑
n=1

bq
n

)1/q [
1−R(A,B, 1)

]k
(ii) for λ = 2, we have

(3.14)
∞∑

m=1

∞∑
n=1

ambn

(Am + Bn)2
<

1
AB

( ∞∑
n=1

1
n

ap
n

)1/p( ∞∑
n=1

1
n

bq
n

)1/q [
1−R(A,B, 2)

]k
(iii) for 2−min{p, q} < λ ≤ 2, A = B = 1, we have

(3.15)
∞∑

m=1

∞∑
n=1

ambn

(m + n)λ

< kλ(p)

( ∞∑
n=1

n(1−λ)ap
n

)1/p( ∞∑
n=1

n(1−λ)bq
n

)1/q [
1−R(1, 1, λ)

]k
where R(A,B, λ) = (Sp(α, γ)−Sq(β, γ))2, moreover the function γ is defined by

(3.16) γ =
{

1 m = n = 1
0 m,n ∈ N but m,n is not simultaneously equal to one

Proof: By Lemma 2.2, we get
∞∑

m=1

∞∑
n=1

ambn

(Am + Bn)λ
=

∞∑
m=1

∞∑
n=1

α · β

≤

{ ∞∑
m=1

∞∑
n=1

αp

}1/p{ ∞∑
m=1

∞∑
n=1

βq

}1/q [
1−R(A,B, λ)

]k
=

{ ∞∑
m=1

ωλ(A,B, q,m)ap
m

}1/p{ ∞∑
n=1

ωλ(B,A, p, n)bq
n

}1/q

(1−R(A,B, λ))k

(3.17) <

{ ∞∑
n=1

ωλ(A,B, q, n)ap
n

}1/p{ ∞∑
n=1

ωλ(B,A, p, n)bq
n

}1/q

(1−R(A,B, λ))k

Substituting (2.7) and (3.9)into the inequality(3.17), it follows that the inequality
(3.12) is valid.
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Let us choose the function γ(m,n) indicated by (3.16).

Obviously, ‖γ‖2 =
∞∑

m=1

∞∑
n=1

γ2 = 1. It is easy to deduce that

∞∑
m=1

∞∑
n=1

αp/2 γ =
ap
1

(A + B)λ
and

∞∑
m=1

∞∑
n=1

βq/2 γ =
bq
1

(A + B)λ
.

According to Lemma 2.2 and γ(m,n) selected, we have

R(A,B, λ) =


( ∞∑

m=1

∞∑
n=1

αp/2 γ

)( ∞∑
m=1

∞∑
n=1

αp

)−1/2

−

( ∞∑
m=1

∞∑
n=1

βq/2 γ

)( ∞∑
m=1

∞∑
n=1

βq

)−1/2


2

= (Sp(α, γ)− Sq(β, γ))2

Thus the theorem is proved.
Remark 3.4 Obviously, the inequality (3.12),(3.13) and (3.14) are the improve-
ments of the inequalities (3.5),(3.6) and (3.7) in [3] respectively.

Corollary 3.5 Let f and g be real functions, λ > 0, A, B > 0. if

0 <

∫ ∞
0

t1−λf2(t)dt < ∞, 0 <

∫ ∞
0

t1−λg2(t)dt < ∞ then

(3.18)
∫ ∞

0

∫ ∞
0

f(x)g(y)
(Ax + By)λ

dxdy

<
1

(AB)λ/2
B(

λ

2
,
λ

2
)
(∫ ∞

0

t(1−λ)f2(t)dt

∫ ∞
0

t(1−λ)g2(t)dt

)1/2

[1− r(A,B, λ)]1/2

Corollary 3.6 Let 0 < λ ≤ 2, a1, b1 > 0, and {an} , {bn}be sequences of real numbers. if

A > 0, B > 0, 0 <
∞∑

n=1

n(1−λ)a2
n < ∞,

∞∑
n=1

n(1−λ)b2
n < ∞ then

(3.19)
∞∑

m=1

∞∑
n=1

ambn

(Am + Bn)λ

<
1

(AB)λ/2
B(

λ

2
,
λ

2
)

{ ∞∑
n=1

n(1−λ)a2
n

∞∑
n=1

n(1−λ)b2
n

}1/2

[1− r(A,B, λ)]1/2

Remark 3.7 Clearly, the inequality (3.18) and (3.19) are improvements of the
inequalities (2.6) and (3.1) respectively in [6]. Therefore, the inequalities (3.3) and
(3.12) are the extensions of the inequalities (2.6) and (3.1) in [6] respectively.
Remark 3.8 Concerning the best coefficients, the results in the paper are not
too conflict to ones in [3]. Since the best coefficients in [3] are constant, but the
coefficients in this paper are dependent on f(x), g(y) or am, bn. The authors show
respect for [3].
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