LOGARITHMIC CONVEXITY OF THE ONE-PARAMETER MEAN VALUES

WING-SUM CHEUNG AND FENG QI

Abstract

In this article, the logarithmic convexity of the one-parameter mean values $J(r)$ and the monotonicity of the product $J(r) J(-r)$ with $r \in \mathbb{R}$ are presented. Some more general results are established. Three open problems are posed.

Contents

1. Introduction 1
2. Proofs of theorems 3
3. Some related results 5
4. Open problems 7

Acknowledgements 7
References 7

1. Introduction

Define a function $g(r ; x, y)$ for $x \neq y$ by

$$
g(t) \triangleq g(t ; x, y)= \begin{cases}\frac{y^{t}-x^{t}}{t}, & t \neq 0 \tag{1}\\ \ln y-\ln x, & t=0\end{cases}
$$

The following integral form of g is presented and applied in $[11,13,16,17]$:

$$
\begin{align*}
g(t) & =\int_{x}^{y} u^{t-1} \mathrm{~d} u, \quad t \in \mathbb{R} \tag{2}\\
g^{(n)}(t) & =\int_{x}^{y}(\ln u)^{n} u^{t-1} \mathrm{~d} u, \quad t \in \mathbb{R} \tag{3}
\end{align*}
$$

Straightforward computation results in

$$
\begin{equation*}
\left(\frac{g^{\prime}(t)}{g(t)}\right)^{\prime}=\frac{g^{\prime \prime}(t) g(t)-\left[g^{\prime}(t)\right]^{2}}{g^{2}(t)} \tag{4}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\left(\frac{g^{\prime}(t)}{g(t)}\right)^{\prime \prime}=\frac{g^{2}(t) g^{\prime \prime \prime}(t)-3 g(t) g^{\prime}(t) g^{\prime \prime}(t)+2\left[g^{\prime}(t)\right]^{3}}{g^{3}(t)} . \tag{5}
\end{equation*}
$$

\]

In [11], Corollary 3 states that, for $y>x>0$, if $t>0$, then

$$
\begin{equation*}
g^{2}(t) g^{\prime \prime \prime}(t)-3 g(t) g^{\prime}(t) g^{\prime \prime}(t)+2\left[g^{\prime}(t)\right]^{3}<0 ; \tag{6}
\end{equation*}
$$

if $t<0$, inequality (6) reverses.
The function $g(t ; x, y)$ and its integral expressions (2) and (3) are very important in the proofs of the logarithmic convexity $[11,13]$ and Schur-convexity $[12,13,15]$ of the extended mean values $E(r, s ; x, y)$, which is a generalization of the oneparameter mean values $J(r)$ with $E(r, r+1 ; x, y)=J(r ; x, y)$. The monotonicity and comparison of $E(r, s ; x, y)$ were studied in $[6,7,8,13]$. The concepts of mean values are generalized in $[9,10,13,19]$. For more information about the extended mean values $E(r, s ; x, y)$, please refer to the expository article [13] and the references therein.

The one-parameter mean values $J(r ; x, y)$ for $x \neq y$ are defined in $[1,20]$ and introduced in [5, p. 44] by

$$
J(r) \triangleq J(r ; x, y)= \begin{cases}\frac{r\left(x^{r+1}-y^{r+1}\right)}{(r+1)\left(x^{r}-y^{r}\right)}, & r \neq 0,-1 \tag{7}\\ \frac{x-y}{\ln x-\ln y}, & r=0 ; \\ \frac{x y(\ln x-\ln y)}{x-y}, & r=-1 .\end{cases}
$$

In [4, p. 49], the following results in [2, 3] by Alzer are mentioned:
(1) When $r \neq 0$, we have

$$
\begin{equation*}
G(x, y)<\sqrt{J(r ; x, y) J(-r ; x, y)}<L<\frac{J(r ; x, y)+J(-r ; x, y)}{2}<A(x, y) \tag{8}
\end{equation*}
$$

(2) For $x_{1}>0, x_{2}>0, y_{1}>0$ and $y_{2}>0$, if $r \geq 1$, then

$$
\begin{equation*}
J\left(r ; x_{1}+y_{1}, x_{2}+y_{2}\right) \leq J\left(r ; x_{1}, x_{2}\right)+J\left(r ; y_{1}, y_{2}\right) \tag{9}
\end{equation*}
$$

if $r \leq 1$, inequality (9) is reversed.
(3) If $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ are similarly or oppositely ordered, then, if $r<-\frac{1}{2}$, we have

$$
\begin{equation*}
J\left(r ; x_{1} y_{1}+x_{2} y_{2}\right) \geq J\left(r ; x_{1}, x_{2}\right) J\left(r ; y_{1}, y_{2}\right) \tag{10}
\end{equation*}
$$

if $r \geq-\frac{1}{2}$, then inequality (10) is reversed.
(4) For $x>0$ and $y>0$, if $r<s<t \leq-\frac{1}{2}$, then

$$
\begin{equation*}
[J(s ; x, y)]^{t-r} \leq[J(r ; x, y)]^{t-s}[J(t ; x, y)]^{s-r} \tag{11}
\end{equation*}
$$

if $-\frac{1}{2} \leq r<s<t$, inequality (11) is reversed.
Moreover, H. Alzer in [3] raised a question about the convexity of $r \ln J(r ; x, y)$ and proved that $(r+1) J(r ; x, y)$ is convex.

In April of 2004, Witkowski looked for the reference to the inequality

$$
\begin{equation*}
J(r ; x, y) J(-r ; x, y) \leq[J(0 ; x, y)]^{2}=L^{2}(x, y) \tag{12}
\end{equation*}
$$

which is contained in (8), through S. S. Dragomir by an e-mail which was forwarded to all members of the Research Group in Mathematical Inequalities and Applications at http://rgmia.vu.edu.au.

The main purpose of this paper is to prove the logarithmic convexity of the one-parameter mean values $J(r ; x, y)$ and the monotonicity of $J(-r) J(r)$ for $r \in \mathbb{R}$.

Our main results are as follows.
Theorem 1. For fixed positive numbers x and y with $x \neq y$, we have
(i) The one-parameter mean values $J(r)$ defined by (7) are strictly increasing in $r \in \mathbb{R}$;
(ii) The one-parameter mean values $J(r)$ defined by (7) are strictly logarithmically convex in $\left(-\infty,-\frac{1}{2}\right)$ and strictly logarithmically concave in $\left(-\frac{1}{2}, \infty\right)$.

Remark 1. Though the monotonicity property of $J(r ; x, y)$ with $r \in \mathbb{R}$ is well known, as a by-product of Theorem 1 and for completeness, we give it other two proofs below. However, we cannot affirm whether they are new proofs or not.

Theorem 2. Let $\mathcal{J}(r)=J(r) J(-r)$ with $r \in \mathbb{R}$ for fixed positive numbers x and y with $x \neq y$. Then the function $\mathcal{J}(r)$ is strictly increasing in $(-\infty, 0)$ and strictly decreasing in $(0, \infty)$.

Remark 2. Inequality (12) is clearly a direct consequence of Theorem 2.

2. Proofs of theorems

Proof of Theorem 1. (i) Formula (6) implies that, for $y>x>0$,

$$
\left(\frac{g^{\prime}(t)}{g(t)}\right)^{\prime \prime} \begin{cases}>0, & t<0 \tag{13}\\ =0, & t=0 \\ <0, & t>0\end{cases}
$$

From this, we obtain that the function $\left(\frac{g^{\prime}(t)}{g(t)}\right)^{\prime}$ is strictly increasing in $(-\infty, 0)$ and strictly decreasing in $(0, \infty)$.

In $[14,18]$, by using the Cauchy-Schwartz integral inequality or the Tchebycheff integral inequality, it is obtained that

$$
\begin{equation*}
\left(\frac{g^{\prime}(t)}{g(t)}\right)^{\prime}>0 \tag{14}
\end{equation*}
$$

for $t \in \mathbb{R}$. Then the function $\frac{g^{\prime}(t)}{g(t)}$ is strictly increasing in $(-\infty, \infty)$.
The one-parameter mean values $J(r)$ can be rewritten in terms of g as

$$
\begin{equation*}
J(r)=\frac{g(r+1)}{g(r)} \tag{15}
\end{equation*}
$$

with $r \in \mathbb{R}$ for $y>x>0$. Taking the logarithm of $J(r)$ yields

$$
\begin{equation*}
\ln J(r)=\ln g(r+1)-\ln g(r)=\int_{r}^{r+1} \frac{g^{\prime}(u)}{g(u)} \mathrm{d} u=\int_{0}^{1} \frac{g^{\prime}(u+r)}{g(u+r)} \mathrm{d} u \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
[\ln J(r)]^{\prime}=\frac{g^{\prime}(r+1)}{g(r+1)}-\frac{g^{\prime}(r)}{g(r)}>0 \tag{17}
\end{equation*}
$$

Hence the functions $\ln J(r)$ and $J(r)$ are strictly increasing in $r \in(-\infty, \infty)$. This proves (i).
(ii) If $r<-1$, then $r<r+1<0$ and

$$
\begin{equation*}
[\ln J(r)]^{\prime \prime}=\left(\frac{g^{\prime}(r+1)}{g(r+1)}\right)^{\prime}-\left(\frac{g^{\prime}(r)}{g(r)}\right)^{\prime}>0 \tag{18}
\end{equation*}
$$

which follows from the strictly increasing property of $\left(\frac{g^{\prime}(r)}{g(r)}\right)^{\prime}$ in $(-\infty, 0)$.
If $r>0$, then from the strictly decreasing property of $\left(\frac{g^{\prime}(r)}{g(r)}\right)^{\prime}$ in $(0, \infty)$, we have $[\ln J(r)]^{\prime \prime}<0$.

If $-1<r<0$, then $r<0<r+1$, and we have

$$
\begin{align*}
{[\ln J(r)]^{\prime \prime} } & =\left(\frac{g^{\prime}(r+1)}{g(r+1)}\right)^{\prime}-\left(\frac{g^{\prime}(r)}{g(r)}\right)^{\prime} \\
& =\frac{g^{\prime \prime}(r+1) g(r+1)-\left[g^{\prime}(r+1)\right]^{2}}{g^{2}(r+1)}-\frac{g^{\prime \prime}(r) g(r)-\left[g^{\prime}(r)\right]^{2}}{g^{2}(r)} \\
& =\frac{g^{\prime \prime}(u) g(u)-\left[g^{\prime}(u)\right]^{2}}{g^{2}(u)}-\frac{g^{\prime \prime}(-r) g(-r)-\left[g^{\prime}(-r)\right]^{2}}{g^{2}(-r)} \tag{19}\\
& =\frac{g^{\prime \prime}(u) g(u)-\left[g^{\prime}(u)\right]^{2}}{g^{2}(u)}-\frac{g^{\prime \prime}(v) g(v)-\left[g^{\prime}(v)\right]^{2}}{g^{2}(v)} \\
& =\left(\frac{g^{\prime}(u)}{g(u)}\right)^{\prime}-\left(\frac{g^{\prime}(v)}{g(v)}\right)^{\prime}
\end{align*}
$$

where $u=r+1>0$ and $v=-r>0$. Thus, $[\ln J(r)]^{\prime \prime}<0$ for $-1<r<0$ and $r+1>-r$. This means that $[\ln J(r)]^{\prime \prime}<0$ for $r \in\left(-\frac{1}{2}, 0\right)$.

Similarly as above, $[\ln J(r)]^{\prime \prime}>0$ for $-1<r<0$ and $-r>r+1$. This means that $[\ln J(r)]^{\prime \prime}>0$ for $r \in\left(-1,-\frac{1}{2}\right)$. This proves (ii).

The proof of Theorem 1 is completed.
Remark 3. From (16), (13) and by direct calculation, we have

$$
\begin{equation*}
[\ln J(r)]^{\prime \prime}=\int_{0}^{1} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}\left(\frac{g^{\prime}(u+r)}{g(u+r)}\right) \mathrm{d} u<0 \tag{20}
\end{equation*}
$$

for $r \in(0, \infty)$. This means that $J(r ; x, y)$ is strictly logarithmically concave in $r \in(0, \infty)$, whether $x>y$ or $x<y$, since $J(r ; x, y)=J(r ; y, x)$ holds.

By straightforward computation, we have

$$
\begin{equation*}
J(r)=\frac{x y}{J(-r-1)} \tag{21}
\end{equation*}
$$

for $r \in \mathbb{R}$. Hence, if $r \in(-\infty,-1)$, from (6), (20) and (13), it follows that

$$
\begin{equation*}
[\ln J(r)]^{\prime \prime}=-[\ln J(-r-1)]^{\prime \prime}=-\int_{0}^{1} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}\left(\frac{g^{\prime}(u-r-1)}{g(u-r-1)}\right) \mathrm{d} u>0 \tag{22}
\end{equation*}
$$

This tells us that the one-parameter mean values $J(r ; x, y)$ are strictly logarithmically convex in $r \in(-\infty,-1)$, whether $x>y$ or $x<y$, since $J(r ; x, y)=J(r ; y, x)$.

Proof of Theorem 2. By standard argument, we obtain

$$
\begin{equation*}
\mathcal{J}(r)=\frac{x y J(r)}{J(r-1)} \tag{23}
\end{equation*}
$$

for $r \in \mathbb{R}$. Then

$$
\begin{align*}
\ln \mathcal{J}(r) & =\ln (x y)+\ln J(r)-\ln J(r-1) \tag{24}\\
{[\ln \mathcal{J}(r)]^{\prime} } & =\frac{J^{\prime}(r)}{J(r)}-\frac{J^{\prime}(r-1)}{J(r-1)} \tag{25}
\end{align*}
$$

Theorem 1 states that the function $J(r)$ is strictly logarithmically convex in $\left(-\infty,-\frac{1}{2}\right)$. Thus, being the derivative of $\ln J(r), \frac{J^{\prime}(r)}{J(r)}$ is strictly increasing in $\left(-\infty,-\frac{1}{2}\right)$, that is

$$
\begin{equation*}
\frac{J^{\prime}(r)}{J(r)}>\frac{J^{\prime}(r-1)}{J(r-1)} \tag{26}
\end{equation*}
$$

or, equivalently, $[\ln \mathcal{J}(r)]^{\prime}>0$ for $r \in\left(-\infty,-\frac{1}{2}\right)$, thus $\ln \mathcal{J}(r)$ and $\mathcal{J}(r)$ are strictly increasing in $\left(-\infty,-\frac{1}{2}\right)$.

From (21), it follows that

$$
\begin{align*}
\ln J(r) & =\ln (x y)-\ln J(-r-1) \tag{27}\\
\frac{J^{\prime}(r)}{J(r)} & =\frac{J^{\prime}(-r-1)}{J(-r-1)} \tag{28}
\end{align*}
$$

Then, from (25), we have

$$
\begin{equation*}
[\ln \mathcal{J}(r)]^{\prime}=\frac{J^{\prime}(-r-1)}{J(-r-1)}-\frac{J^{\prime}(r-1)}{J(r-1)} \tag{29}
\end{equation*}
$$

For $r \in\left(-\frac{1}{2}, 0\right)$, we have $-\frac{3}{2}<r-1<-1$ and $-1<-r-1<-\frac{1}{2}$. Since $\frac{J^{\prime}(r)}{J(r)}$ is strictly increasing in $\left(-\infty,-\frac{1}{2}\right),[\ln \mathcal{J}(r)]^{\prime}>0$ for $r \in\left(-\frac{1}{2}, 0\right)$, therefore $\ln \mathcal{J}(r)$ and $\mathcal{J}(r)$ are also strictly increasing in $\left(-\frac{1}{2}, 0\right)$.

It is clear that the function $\mathcal{J}(r)$ is even in $(-\infty, \infty)$. So, it is easy to see that $\mathcal{J}(r)$ is strictly decreasing in $(0, \infty)$. The proof of Theorem 2 is completed.

3. Some related results

For $x \neq y$ and $\alpha>0$, define

$$
J_{\alpha}(r) \triangleq J_{\alpha}(r ; x, y)= \begin{cases}\frac{r\left(x^{r+\alpha}-y^{r+\alpha}\right)}{(r+\alpha)\left(x^{r}-y^{r}\right)}, & r \neq 0,-\alpha \tag{30}\\ \frac{x^{\alpha}-y^{\alpha}}{\alpha(\ln x-\ln y)}, & r=0 \\ \frac{\alpha x^{\alpha} y^{\alpha}(\ln x-\ln y)}{x^{\alpha}-y^{\alpha}}, & r=-\alpha .\end{cases}
$$

We call $J_{\alpha}(r ; x, y)$ the generalized one-parameter mean values for two positive numbers x and y in the interval $(-\infty, \infty)$.

It is clear that $J_{1}(r ; x, y)=J(r ; x, y)$ and $J_{\alpha}(r ; x, y)=\frac{g(r+\alpha)}{g(r)}$.
By the same arguments as in the proofs of Theorems 1 and 2, we can obtain the following

Theorem 3. For positive numbers x and y with $x \neq y$, we have
(1) The generalized one-parameter mean values $J_{\alpha}(r)$ defined by (30) are strictly increasing in $r \in \mathbb{R}$;
(2) The generalized one-parameter mean values $J_{\alpha}(r)$ defined by (30) are strictly logarithmically convex in $\left(-\infty,-\frac{\alpha}{2}\right)$ and strictly logarithmically concave in $\left(-\frac{\alpha}{2}, \infty\right)$.
(3) Let $\mathcal{J}_{\alpha}(r)=J_{\alpha}(r) J_{\alpha}(-r)$ with $r \in \mathbb{R}$ for positive numbers x and y with $x \neq y$. Then the function $\mathcal{J}_{\alpha}(r)$ is strictly increasing in $(-\infty, 0)$ and strictly decreasing in $(0, \infty)$.
Proof. These follow from combining the identity

$$
\begin{equation*}
J_{\alpha}(r ; x, y)=J\left(\frac{r}{\alpha} ; x^{\alpha}, y^{\alpha}\right) \tag{31}
\end{equation*}
$$

with Theorems 1 and 2.
Theorem 4. The function $(r+\alpha) J_{\alpha}(r)$ is strictly increasing and strictly convex in $(-\infty, \infty)$, and is strictly logarithmically concave for $r>-\frac{\alpha}{2}$.
Proof. Direct computation gives

$$
\begin{align*}
(r+\alpha) J_{\alpha}(r ; x, y) & =\alpha\left(\frac{r}{\alpha}+1\right) J\left(\frac{r}{\alpha} ; x^{\alpha}, y^{\alpha}\right), \tag{32}\\
\left\{\ln \left[(r+\alpha) J_{\alpha}(r)\right]\right\}^{\prime \prime} & =-\frac{1}{(r+\alpha)^{2}}+\left[\ln J_{\alpha}(r)\right]^{\prime \prime} \tag{33}
\end{align*}
$$

From the result by Alzer in [3] that the function $(r+1) J(r ; x, y)$ is strictly convex, it is not difficult to obtain that the function $(r+\alpha) J_{\alpha}(r ; x, y)$ is also strictly convex in $(-\infty, \infty)$ by using (32).

By standard argument, we have

$$
\begin{equation*}
\lim _{r \rightarrow-\infty}\left[(r+\alpha) J_{\alpha}^{\prime}(r)\right]=\lim _{r \rightarrow-\infty} \frac{\alpha\left(z^{r+\alpha}-1\right)}{(r+\alpha)\left(z^{r}-1\right)}-\lim _{r \rightarrow-\infty} \frac{r z^{r}\left(z^{\alpha}-1\right) \ln z}{\left(z^{r}-1\right)^{2}}=0 \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow-\infty} J_{\alpha}(r)=\min \left\{x^{\alpha}, y^{\alpha}\right\} \tag{35}
\end{equation*}
$$

where $z=\frac{y}{x} \neq 1$. This leads to

$$
\begin{equation*}
\lim _{r \rightarrow-\infty}\left[(r+\alpha) J_{\alpha}(r)\right]^{\prime}=\lim _{r \rightarrow-\infty} J_{\alpha}(r)+\lim _{r \rightarrow-\infty}\left[(r+\alpha) J_{\alpha}^{\prime}(r)\right]=\min \left\{x^{\alpha}, y^{\alpha}\right\}>0 \tag{36}
\end{equation*}
$$

The convexity of $(r+\alpha) J_{\alpha}(r)$ means that $\left[(r+\alpha) J_{\alpha}(r)\right]^{\prime}$ is strictly increasing, in view of (36), $\left[(r+\alpha) J_{\alpha}(r)\right]^{\prime}>0$, and so $(r+\alpha) J_{\alpha}(r)$ is strictly increasing in $(-\infty, \infty)$.

Since $J_{\alpha}(r)$ is strictly logarithmically concave in $\left(-\frac{\alpha}{2}, \infty\right)$, we have $\left[\ln J_{\alpha}(r)\right]^{\prime \prime}<$ 0 , then $\left\{\ln \left[(r+\alpha) J_{\alpha}(r)\right]\right\}^{\prime \prime}<0$ by (33). This means that the function $(r+\alpha) J_{\alpha}(r)$ is strictly logarithmically concave in $\left(-\frac{\alpha}{2}, \infty\right)$.

Corollary 1. If $r<-\alpha$, then

$$
\begin{gather*}
0<\frac{J_{\alpha}^{\prime}(r)}{J_{\alpha}(r)}=\frac{J_{\alpha}^{\prime}(-r-\alpha)}{J_{\alpha}(-r-\alpha)}<-\frac{1}{r+\alpha} \tag{37}\\
0<\frac{J_{\alpha}^{\prime \prime}(r)}{J_{\alpha}^{\prime}(r)}<-\frac{2}{r+\alpha} \tag{38}
\end{gather*}
$$

Proof. From the monotonicity and convexity of $(r+\alpha) J_{\alpha}(r)$, we have

$$
\begin{align*}
{\left[(r+\alpha) J_{\alpha}(r)\right]^{\prime} } & =J_{\alpha}(r)+(r+\alpha) J_{\alpha}^{\prime}(r)>0 \tag{39}\\
{\left[(r+\alpha) J_{\alpha}(r)\right]^{\prime \prime} } & =2 J_{\alpha}^{\prime}(r)+(r+\alpha) J_{\alpha}^{\prime \prime}(r)>0 \tag{40}
\end{align*}
$$

Inequality (37) follows from the combination of (39) and

$$
\begin{equation*}
J_{\alpha}(r)=\frac{x y}{J_{\alpha}(-r-\alpha)} \tag{41}
\end{equation*}
$$

Inequality (38) is a direct consequence of (40).
Theorem 5. The function $r \ln J_{\alpha}(r)$ is strictly convex in $\left(-\frac{\alpha}{2}, 0\right)$.
Proof. Direct calculation yields

$$
\begin{equation*}
\left[r \ln J_{\alpha}(r)\right]^{\prime \prime}=2\left[\ln J_{\alpha}(r)\right]^{\prime}+r\left[\ln J_{\alpha}(r)\right]^{\prime \prime} \tag{42}
\end{equation*}
$$

Since $J_{\alpha}(r)$ is strictly increasing in $(-\infty, \infty)$ and strictly logarithmically concave in $\left(-\frac{\alpha}{2}, \infty\right)$, it follows that $\left[\ln J_{\alpha}(r)\right]^{\prime}>0$ and $\left[\ln J_{\alpha}(r)\right]^{\prime \prime}<0$ in $\left(-\frac{\alpha}{2}, \infty\right)$. Therefore, $\left[r \ln J_{\alpha}(r)\right]^{\prime \prime}>0$ and $r \ln J_{\alpha}(r)$ is strictly convex in $\left(-\frac{\alpha}{2}, 0\right)$.
Remark 4. If $\alpha=1$ and $\beta=0$, then $r \ln J(r)$ is strictly convex in $\left(-\frac{1}{2}, 0\right)$. This partially answers the question raised by Alzer in [3].

4. Open problems

Finally, we pose the following
Open Problem 1. The generalized one-parameter mean values $J_{\alpha}(r)$ defined by (30) are strictly concave in $\left(-\frac{\alpha}{2}, \infty\right)$.

Open Problem 2. The function $\mathcal{J}_{\alpha}(t)=J_{\alpha}(t) J_{\alpha}(-t)$ is strictly logarithmically convex for $t \notin\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]$ and strictly concave and strictly logarithmically concave for $t \in\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)$.
Open Problem 3. The function $J_{\alpha}(r)+J_{\alpha}(-r)$ is strictly decreasing in $(-\infty, 0)$, strictly increasing in $(0, \infty)$, strictly convex in $\left(-r_{\alpha}, r_{\alpha}\right)$, and strictly concave for $r \notin\left[-r_{\alpha}, r_{\alpha}\right]$, where $r_{\alpha}>0$ is a constant dependent on α.

Remark 5. The following conclusions are well known.
(1) Although a logarithmically convex function is also convex, a convex function may be not logarithmically convex.
(2) A logarithmically concave function may be not concave.
(3) A concave function may be not logarithmically concave.

Acknowledgements. This paper was drafted during the second author's visit to the Department of Mathematics, The University of Hong Kong, between April 6 and May 5 in 2004, supported by grants from the Research Grants Council of the Hong Kong SAR, China.

References

[1] H. Alzer, On Stolarsky's mean value family, Internat. J. Math. Ed. Sci. Tech. 20 (1987), no. 1, 186-189.
[2] H. Alzer, Üer eine einparametrige familie von Mitlewerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1987 (1988), 23-29. (German)
[3] H. Alzer, Üer eine einparametrige familie von Mitlewerten, II, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1988 (1989), 23-29. (German)
[4] J.-Ch. Kuang, Applied Inequalities, 2nd ed., Hunan Education Press, Changsha City, Hunan Province, China, 1993. (Chinese)
[5] J.-Ch. Kuang, Applied Inequalities, 3rd ed., Shangdong Science and Technology Press, Jinan City, Shangdong Province, China, 2004. (Chinese)
[6] E. Leach and M. Sholander, Extended mean values, Amer. Math. Monthly 85 (1978), 84-90.
[7] E. Leach and M. Sholander, Extended mean values II, J. Math. Anal. Appl. 92 (1983), 207-223.
[8] Z. Páles, Inequalities for differences of powers, J. Math. Anal. Appl. 131 (1988), 271-281.
[9] F. Qi, Generalized abstracted mean values, J. Inequal. Pure Appl. Math. 1 (2000), no. 1, Art. 4. http://jipam.vu.edu.au/article.php?sid=97. RGMIA Res. Rep. Coll. 2 (1999), no. 5, Art. 4, 633-642. http://rgmia.vu.edu.au/v2n5.html.
[10] F. Qi, Generalized weighted mean values with two parameters, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998), no. 1978, 2723-2732.
[11] F. Qi, Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1787-1796. RGMIA Res. Rep. Coll. 2 (1999), no. 5, Art. 5, 643-652. Available online at http://rgmia.vu.edu.au/v2n5.html.
[12] F. Qi, Schur-convexity of the extended mean values, Rocky Mountain J. Math. (2004), in press. RGMIA Res. Rep. Coll. 4 (2001), no. 4, Art. 4, 529-533. Available online at http: //rgmia.vu.edu.au/v4n4.html.
[13] F. Qi, The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Matemática Educacional 5 (2003), no. 3, 63-90. RGMIA Res. Rep. Coll. 5 (2002), no. 1, Art. 5, 57-80. Available online at http: //rgmia.vu.edu.au/v5n1.html.
[14] F. Qi and Q.-M. Luo, A simple proof of monotonicity for extended mean values, J. Math. Anal. Appl. 224 (1998), no. 2, 356-359.
[15] F. Qi, J. Sándor, S. S. Dragomir, and A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math. 9 (2005), in press. RGMIA Res. Rep. Coll. 5 (2002), no. 1, Art. 3, 19-27. Available online at http://rgmia.vu.edu.au/v5n1.html.
[16] F. Qi and S.-L. Xu, Refinements and extensions of an inequality, II, J. Math. Anal. Appl. 211 (1997), no. 2, 616-620.
[17] F. Qi and S.-L. Xu, The function $\left(b^{x}-a^{x}\right) / x$: Inequalities and properties, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3355-3359.
[18] F. Qi, S.-L. Xu, and L. Debnath, A new proof of monotonicity for extended mean values, Internat. J. Math. Math. Sci. 22 (1999), no. 2, 415-420.
[19] F. Qi and Sh.-Q. Zhang, Note on monotonicity of generalized weighted mean values, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1989, 3259-3260.
[20] R. Yang and D. Cao, Generalizations of the logarithmic mean, J. Ningbo Univ. 2 (1989), no. 2, 105-108.
(W.-S. Cheung) Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, CHINA

E-mail address: wscheung@hkucc.hku.hk
(F. Qi) Department of Applied Mathematics and Informatics, Research Institute of Applied Mathematics, Henan University of Technology, Jiaozuo City, Henan 454000, CHINA

E-mail address: qifeng@jzit.edu.cn, fengqi618@member.ams.org
URL: http://rgmia.vu.edu.au/qi.html, http://dami.jzit.edu.cn/staff/qifeng.html

[^0]: 2000 Mathematics Subject Classification. Primary 26A48, 26A51; Secondary 26B25, 26D07.
 Key words and phrases. Logarithmic convexity, monotonicity, one-parameter mean values.
 The first author was supported in part by the Research Grants Council of the Hong Kong SAR (Project No. HKU7040/03P), CHINA. The second author was supported in part by SF for the Prominent Youth of Henan Province (\#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Henan University of Technology, CHINA.

 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-L A T} \mathrm{E}_{\mathrm{E}} \mathrm{X}$.

