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FOURIER TRANSFORM OF COMPLEX-VALUED FUNCTIONS

VIA A PRE-GRÜSS INEQUALITY
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Abstract. Some estimates for the error in approximating the Finite Fourier
Transform in terms of exponential means via a pre-Grüss inequality for complex-

valued functions are given.

1. Introduction

Let (Ω,Σ, µ) be a measure space consisting of a set Ω, Σ and σ−algebra of subsets
of Ω and µ a countable additive and positive measure with values in R ∪ {∞} .
Denote by L2

ρ (Ω, K) the Hilbert space of all measurable functions f : Ω → K that
are 2− ρ−integrable on Ω, i.e.,

∫
Ω

ρ (s) |f (s)|2 dµ (s) < ∞, where ρ : Ω → [0,∞) is
a given measurable function on Ω.

Using the fact that (·, ·)ρ : L2
ρ (Ω, K)× L2

ρ (Ω, K) → K,

(f, g)ρ :=
∫

Ω

ρ (s) f (s) g (s)dµ (s)

is an inner product on L2
ρ (Ω, K) that generates the norm ‖·‖ρ ,

‖f‖ρ :=
∫

Ω

ρ (s) |f (s)|2 dµ (s) ,

and an earlier result due to Dragomir from [4], Dragomir and Gomm pointed out
in [6] the following weighted Grüss type inequality for complex-valued functions

(1.1)
∣∣∣∣ 1∫

Ω
ρ (s) dµ (s)

∫
Ω

ρ (s) f (s) g (s)dµ (s)

− 1∫
Ω

ρ (s) dµ (s)

∫
Ω

ρ (s) f (s) dµ (s) · 1∫
Ω

ρ (s) dµ (s)

∫
Ω

ρ (s) g (s)dµ (s)
∣∣∣∣

≤ 1
4
|Z − z| |T − t| ,

provided
∫
Ω

ρ (s) dµ (s) > 0, f, g ∈ L2
ρ (Ω, K) , and

Re
[
(Z − f (s))

(
f (s)− z

)]
≥ 0,(1.2)

Re
[
(T − g (s))

(
g (s)− t

)]
≥ 0,

for µ−a.e. s ∈ Ω. The constant 1
4 is best possible in (1.1).
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Since for any a, b, c ∈ C, the following two statements are clearly equivalent

(i)
∣∣b− a+c

2

∣∣ ≤ 1
2 |c− a| ;

(ii) Re
[
(a− b)

(
b̄− c̄

)]
≥ 0,

it follows that (1.2) is equivalent with the more intuitive formula∣∣∣∣f (s)− Z + z

2

∣∣∣∣ ≤ 1
2
|Z − z| ,(1.3) ∣∣∣∣g (s)− T + t

2

∣∣∣∣ ≤ 1
2
|T − t| ,

for µ−a.e. s ∈ Ω.
As a particular case of (1.1) we should note the following reverse of the Cauchy-

Bunyakovsky-Schwarz inequality

0 ≤ 1∫
Ω

ρ (s) dµ (s)

∫
Ω

ρ (s) |f (s)|2 dµ (s)−
∣∣∣∣ 1∫

Ω
ρ (s) dµ (s)

∫
Ω

ρ (s) f (s) dµ (s)
∣∣∣∣2

(1.4)

≤ 1
4
|Z − z|2 ,

provided f ∈ L2
ρ (Ω, K) and f satisfies either (1.2) or, equivalently, (1.3) and∫

Ω
ρ (s) dµ (s) > 0.
The main aim of this paper is to point out a pre-Grüss inequality for complex-

valued functions and apply it in approximating the finite Fourier transform of
complex-valued mappings.

2. A Pre-Grüss Type Inequality for Complex Valued Functions

The following result provides an inequality of Grüss type that may be useful in
applications where one of the factors is known and some bounds for the second
factor are provided.

Theorem 1. Let ρ : Ω → [0,∞) be a µ−measurable function on Ω with
∫
Ω

ρ (s) dµ (s) =
1. If f, g ∈ L2

ρ (Ω, K) and there exists the constants γ, Γ ∈ K with the property that
either

(2.1) Re
[
(Γ− f (s))

(
f (s)− γ

)]
≥ 0 for µ− a.e. s ∈ Ω

or, equivalently,

(2.2)
∣∣∣∣f (s)− γ + Γ

2

∣∣∣∣ ≤ 1
2
|Γ− γ| for µ− a.e. s ∈ Ω

holds, then

(2.3)
∣∣∣∣∫

Ω

ρ (s) f (s) g (s)dµ (s)−
∫

Ω

ρ (s) f (s) dµ (s)
∫

Ω

ρ (s) g (s)dµ (s)
∣∣∣∣

≤ 1
2
|Γ− γ|

[∫
Ω

ρ (s) |g (s)|2 dµ (s)−
∣∣∣∣∫

Ω

ρ (s) g (s) dµ (s)
∣∣∣∣2
] 1

2

.
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Proof. We know, by Korkine’s identity, that∫
Ω

ρ (s) f (s) g (s)dµ (s)−
∫

Ω

ρ (s) f (s) dµ (s)
∫

Ω

ρ (s) g (s)dµ (s)

=
1
2

∫
Ω

∫
Ω

ρ (s) ρ (t) [f (s)− f (t)]
[
g (s)− g (t)

]
dµ (s) dµ (t) .

Applying Schwarz’s integral inequality for double integrals, we have∣∣∣∣∫
Ω

∫
Ω

ρ (s) ρ (t) [f (s)− f (t)]
[
g (s)− g (t)

]
dµ (s) dµ (t)

∣∣∣∣(2.4)

≤
[∫

Ω

∫
Ω

ρ (s) ρ (t) |f (s)− f (t)|2 dµ (s) dµ (t)

×
∫

Ω

∫
Ω

ρ (s) ρ (t)
∣∣∣g (s)− g (t)

∣∣∣2 dµ (s) dµ (t)
] 1

2

=

(∫
Ω

ρ (s) |f (s)|2 dµ (s)−
∣∣∣∣∫

Ω

ρ (s) f (s) dµ (s)
∣∣∣∣2
) 1

2

×

(∫
Ω

ρ (s) |g (s)|2 dµ (s)−
∣∣∣∣∫

Ω

ρ (s) g (s)dµ (s)
∣∣∣∣2
) 1

2

,

and, for the last identity, we have also used Korkine’s identity for one function
(f = g) .

Applying the inequality (1.4) for the function f, and taking into account the
hypothesis of the theorem, we may state that

(2.5)
∫

Ω

ρ (s) |f (s)|2 dµ (s)−
∣∣∣∣∫

Ω

ρ (s) f (s) dµ (s)
∣∣∣∣2 ≤ 1

4
|Γ− γ|2 .

Utilising (2.4) and (2.5), we deduce the desired result (2.3). The fact that c = 1
2

is the best possible constant follows by the fact that 1
4 is best possible in Grüss’

inequality (1.1) and we omit the details.

Remark 1. If the function f is a real-valued function, then the condition (2.2)
may be replaced with the equivalent condition (say Γ > γ)

(2.6) γ ≤ f (s) ≤ Γ for µ− a.e. s ∈ Ω,

and thus, (2.3) becomes the corresponding real-valued pre-Grüss inequality used by
several authors in the last five years to obtain perturbed quadrature rules (see for
instance [7]).

3. Applications for Uni-Dimensional Fourier Transform

The Fourier Transform has applications in a wide variety of fields in science and
engineering [3, p. xi].

Let g : [a, b] → K (K = C, R) be a Lebesgue integrable mapping defined on the
finite interval [a, b] and F (g) its finite Fourier transform, i.e.,

F (g) (t) :=
∫ b

a

g (s) e−2πitsds.
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The following inequality in approximating the finite Fourier trasnform in terms
of the exponential mean was obtained in [1].

Theorem 2. Let g be an absolutely continuous mapping on [a, b] . Then we have
the inequality

(3.1)

∣∣∣∣∣F (g) (x)− E (−2πixa,−2πixb)
∫ b

a

g (t) dt

∣∣∣∣∣

≤



1
3
‖g′‖∞ (b− a)2 if g′ ∈ L∞ [a, b] ;

2
1
q

[(q + 1) (q + 2)]
1
q

(b− a)1+
1
q ‖g′‖p if g′ ∈ Lp [a, b] ;

(b− a) ‖g′‖1 ,

for each x ∈ [a, b] , x 6= 0, when E is the exponential mean of two complex numbers
defined by

(3.2) E (z, w) :=


ez − ew

z − w
, if z 6= w

exp (w) if z = w

, z, w ∈ C.

For functions of bounded variation, the following result holds as well (see [2]):

Theorem 3. Let g : [a, b] → K be a mapping of bounded variation on [a, b] . Then
we have the inequality

(3.3)

∣∣∣∣∣F (g) (x)− E (−2πixa,−2πixb)
∫ b

a

g (s) ds

∣∣∣∣∣ ≤ 3
4

(b− a)
b∨
a

(g) ,

for each x ∈ [a, b] , x 6= 0, where
∨b

a (g) is the total variation of g on [a, b] .

Finally, we mention the following result obtained in [5] providing an approxima-
tion of the Fourier transform of Lebesgue integrable functions:

Theorem 4. Let g : [a, b] → R be a measurable function on [a, b] . Then we have
the estimates:

(3.4)

∣∣∣∣∣F (g) (x)− E (−2πixa,−2πixb)
∫ b

a

g (s) ds

∣∣∣∣∣

≤



2π

3
|x| (b− a)2 ‖g‖∞ if g ∈ L∞ [a, b] ;

21+ 1
q (b− a)1+

1
q

[(q + 1) (q + 2)]
1
q

|x| ‖g‖p if g ∈ Lp [a, b] , p > 1,

1
p + 1

q = 1;
2π |x| (b− a) ‖g‖1 if g ∈ L1 [a, b]

for each x ∈ [a, b] , x 6= 0.

In the following we apply the pre-Grüss inequality obtained in Theorem 1 to
approximate the finite Fourier transform F (·) .
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Theorem 5. Let g : [a, b] → K be a real or complex-valued function with g ∈
L2

ρ (Ω, K) , and there exists the constants ϕ, φ ∈ K with the property that, either

(3.5)
∣∣∣∣g (s)− φ + ϕ

2

∣∣∣∣ ≤ 1
2
|φ− ϕ| for µ− a.e. s ∈ [a, b]

or, equivalently

(3.6) Re
[
(φ− g (s))

(
g (s)− ϕ

)]
≥ 0 for a.e. s ∈ [a, b]

hold. Then we have the inequality

(3.7)

∣∣∣∣∣F (g) (x)− E (−2πixa,−2πixb)
∫ b

a

g (s) ds

∣∣∣∣∣
≤ 1

2
|φ− ϕ| (b− a)

[
1− sin2 [πx (b− a)]

π2 |x|2 (b− a)2

] 1
2

,

for each x ∈ [a, b] (x 6= 0) , where E (·, ·) is the exponential mean defined above.

Proof. We apply the pre-Grüss inequality (2.3) to get

(3.8)

∣∣∣∣∣ 1
b− a

∫ b

a

g (s) e−2πixsds− 1
b− a

∫ b

a

e−2πixsds · 1
b− a

∫ b

a

g (s) ds

∣∣∣∣∣
≤ 1

2
|φ− ϕ|

 1
b− a

∫ b

a

∣∣e2πixs
∣∣2 ds−

∣∣∣∣∣ 1
b− a

∫ b

a

e2πixsds

∣∣∣∣∣
2
 1

2

.

However, ∫ b

a

e−2πixsds = (b− a) E (−2πixa,−2πixb) ,∣∣e2πixs
∣∣2 = 1,∫ b

a

e2πixsds =
1

2πix

[
e2πixb − e2πixa

]
,

and∣∣∣∣∣
∫ b

a

e2πixsds

∣∣∣∣∣
2

=
(

1
2π |x|

)2 [∣∣e2πixb
∣∣2 − 2 Re

[
e2πixbe−2πixa

]
+
∣∣e2πixa

∣∣2]
=

1
4π2 |x|2

[
1− 2 Re

[
e2πix(b−a)

]
+ 1
]

=
1

2π2 |x|2
[1− Re [cos (2πx (b− a)) + i sin (2πx (b− a))]]

=
1

2π2 |x|2
[1− cos (2πx (b− a))]

=
1

2π2 |x|2
[
1−

(
1− 2 sin2 (πx (b− a))

)]
=

sin2 [πx (b− a)]
π2 |x|2

.
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Using (3.8) multiplied with b− a > 0, we deduce∣∣∣∣∣F (g) (x)− E (−2πixa,−2πixb)
∫ b

a

g (s) ds

∣∣∣∣∣
≤ 1

2
|φ− ϕ| (b− a)

[
1− sin2 [πx (b− a)]

π2 |x|2 (b− a)2

] 1
2

,

giving the desired inequality (3.7).

Remark 2. If g takes real values, then the condition (3.5) may be replaced by the
equivalent condition (for Γ > γ)

(3.9) γ ≤ g (s) ≤ Γ for a.e. s ∈ [a, b] .

4. Errors in a Quadrature Formula

Let In := a = x0 < x1 < · · · < xn−1 < xn = b be a division of the interval [a, b] ,
put hk := xk+1 − xk (k = 0, . . . , n− 1) and ν (h) := max {hk|k = 0, . . . , n− 1} .
Define the sum (see also [1] and [2])

(4.1) E (g, In, x) :=
n−1∑
k=0

E (−2πixk,−2πixk+1)
∫ xk+1

xk

g (t) dt,

where x ∈ [a, b] , x 6= 0.
The following approximation result holds.

Theorem 6. Let g : [a, b] → K be such that g ∈ L2
ρ (Ω, K) and there exists the

constants φ, ϕ ∈ K such that either (3.5) or, equivalently, (3.6) holds true. Then
we have

(4.2) F (g) (x) = E (g, In, x) +R (g, In, x) ,

for each x ∈ [a, b] (x 6= 0) , where E (g, In, x) is as defined in (4.1) and the remainder
R (g, In, x) satisfies the estimate:

|R (g, In, x)| ≤ 1
2
|φ− ϕ|

(
n−1∑
k=0

h2
k

) 1
2
(

n−1∑
k=0

(
1− sin2 (πxhk)

π2 |x|2 h2
k

)) 1
2

(4.3)

≤ 1
2
|φ− ϕ| (b− a)

1
2 [ν (h)]

1
2

(
n−1∑
k=0

(
1− sin2 (πxhk)

π2 |x|2 h2
k

)) 1
2

.

Proof. If we apply Theorem 5 on every subinterval [xn, xn+1] , k = 0, . . . , n − 1,
then we can state that∣∣∣∣∫ xk+1

xk

g (t) e−2πixtdt− E (−2πixk,−2πixk+1) ·
∫ xk+1

xk

g (t) dt

∣∣∣∣
≤ 1

2
|φ− ϕ|hk

[
1− sin2 (πxhk)

π2 |x|2 h2
k

] 1
2

,

for all k ∈ {0, . . . , n− 1} .
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Summing over i from 0 to n− 1 and utilising the generalised triangle inequality
and the Cauchy-Bunyakovsky-Schwarz inequality∣∣∣∣∣

n∑
i=1

αiβi

∣∣∣∣∣
2

≤
n∑

i=1

|αi|2
n∑

i=1

|βi|
2
,

where αi, βi ∈ K, we deduce

|R (g, In, x)| = |F (g) (x)− E (g, In, x)|

≤ 1
2
|φ− ϕ|

n−1∑
k=0

hk

[
1− sin2 (πxhk)

π2 |x|2 h2
k

] 1
2

≤ 1
2
|φ− ϕ|


n−1∑
k=0

h2
k

n−1∑
k=0

(1− sin2 (πxhk)
π2 |x|2 h2

k

) 1
2
2


1
2

=
1
2
|φ− ϕ|

(
n−1∑
k=0

h2
k

) 1
2
[

n−1∑
k=0

(
1− sin2 (πxhk)

π2 |x|2 h2
k

)] 1
2

and the first part of (4.3) is proved.
For the second part, let us observe that

n−1∑
k=0

h2
k ≤ ν (h)

n−1∑
k=0

hk = (b− a) ν (h) .

The proof is thus completed.

In practical applications, it is more convenient to consider the equidistant par-
titioning on the interval [a, b] . Thus, let

In : xj = a + j · b− a

n
, j = 0, . . . , n;

be an equidistant partition of [a, b] , and define the sum (see [1] and [2])

(4.4) En (g, x) :=
n−1∑
k=0

E

[
−2πix

(
a + k · b− a

n

)
,−2πix

(
a + (k + 1) · b− a

n

)]

×
∫ a+(k+1)· b−a

n

a+k· b−a
n

g (t) dt.

We may state the following corollary as well.

Corollary 1. Let g be as defined in Theorem 6. Then we have

(4.5) F (g) (x) = En (g, x) +Rn (g, x) ,

where En (g, x) approximates the Fourier transform at any point x ∈ [a, b] (x 6= 0) .
The error of approximation Rn (g, x) satisfies the bound

(4.6) |Rn (g, x)| ≤ 1
2n

|φ− ϕ| (b− a)

(
n−1∑
k=0

(
1−

sin2
[
πx
(
a + k · b−a

n

)]
π2x2

(
a + k · b−a

n

)2
)) 1

2

for any x ∈ [a, b] , (x 6= 0) .
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Remark 3. For the computer numerical implementation of the quadrature formula
outlined above we refer the reader to either [1] or [2].
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