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Abstract. An improvement of the Noiseless Coding Theorem for certain

probability distributions is given.

1. Introduction

The following analytic inequality for the log (·) map is well known in the literature
(see for example [1, Lemma 1.2.2, p. 22]):

Lemma 1. Let P = (p1, ..., pn) be a probability distribution that is, 0 ≤ pi ≤ 1 and
n∑

i=1

pi = 1. Let Q = (q1, ..., qn) have the property that 0 ≤ qi ≤ 1 and
n∑

i=1

qi ≤ 1,

then

(1.1)
n∑

i=1

pi logb

1
pi
≤

n∑
i=1

pi logb

1
qi

(b > 1)

where 0 logb
1
0 = 0 and p logb

1
0 = +∞ for p > 0. Furthermore, the equality holds if

and only if qi = pi for all i.

Note that the proof of this result in [1] uses the elementary inequality:

lnx ≤ x− 1 for all x > 0.

We give here an alternative proof based on the concavity of the mapping logr (·) .
As the mapping f (x) = logr (x) (r > 1) is a strictly concave mapping on (0,∞) ,

we have
f (x)− f (y) ≥ f ′ (x) (x− y)

for all x, y > 0, i.e., as f ′ (x) = 1
ln r ·

1
x for x > 0,

(1.2) logr x− logr y ≥ 1
ln r

(
x− y

x

)
for all x, y > 0.

Choosing x = 1
qi

, y = 1
pi

, in (1.2) gives

(1.3) logr

1
qi
− logr

1
pi
≥ 1

ln r

(
pi − qi

pi

)
for all i ∈ {1, ..., n} .

Multiplying this inequality by pi > 0 (i = 1, ..., n) we get

pi logr

1
qi
− pi logr

1
pi
≥ 1

ln r
(pi − qi)
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for all i ∈ {1, ..., n} .
Summing over i from 1 to n, gives

n∑
i=1

pi logr

1
qi
−

n∑
i=1

pi logr

1
pi
≥ 1

ln r

(
n∑

i=1

pi −
n∑

i=1

qi

)

=
1

ln r

(
1−

n∑
i=1

qi

)
≥ 0

and the inequality (1.1) is obtained.
The case of equality follows by the strict concavity of the mapping logr.
In this paper, by use of (1.1) , we point out an improvement to the Noiseless

Coding Theorem.

2. The Results

Consider an encoding scheme (c1, ..., cn) for a probability distribution
(p1, ..., pn) . The average codeword length of an encoding scheme (c1, ..., cn) for
(p1, ..., pn) is

AveLen (c1, ..., cn) =
n∑

i=1

pilen (ci) .

We denote the length len (ci) by li.
The r−ary entropy of a probability distribution is given by

Hr (c1, ..., cn) =
n∑

i=1

pi logr

(
1
pi

)
.

The following theorem is well known in the literature (see for example [1, The-
orem 2.3.1, p. 62]):

Theorem 2. Let C = (c1, ..., cn) be an instantaneous (or uniquely decipherable)
encoding scheme for P = (p1, ..., pn) , then,

Hr (p1, ..., pn) ≤ AveLen (c1, ..., cn)

with equality if and only if li = logr

(
1
pi

)
for all i = 1, ..., n.

The following result, providing a counterpart inequality, holds.

Theorem 3. Let P = (p1, ..., pn) be a given probability distribution and r ∈ N, r ≥
2. If ε > 0 is fixed and there exists natural numbers l1, ..., ln such that:

(2.1) logr

(
1
pi

)
≤ li ≤ logr

(
rε

pi

)
for all i ∈ {1, ...., n} , then there exists an instantaneous r−ary code C = (c1, ..., cn)
with codeword length len (ci) = li such that

(2.2) Hr (p1, ..., pn) ≤ AveLen (c1, ..., cn) ≤ Hr (p1, ..., pn) + ε.

Proof. Note that (2.1) is equivalent to

(2.3)
1
pi
≤ rli ≤ rε

pi
for all i ∈ {1, ..., n} .
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Now, since 1
rli

≤ pi (i = 1, ..., n) , it follows that
n∑

i=1

1
rli

≤
n∑

i=1

pi = 1

and by Kraft’s theorem (see for example [1, Theorem 2.1.2, p. 44]), there exists an
instantaneous r−ary code C = (c1, ..., cn) such that len (ci) = li.

Obviously, by Theorem 2, the first inequality in (2.2) holds.
We have:

AveLen (c1, ..., cn)

=
n∑

i=1

pili =
n∑

i=1

pi logr rli =
n∑

i=1

pi logr

1
qi

choosing qi = 1
rli

∈ [0, 1] . Also, by Kraft’s theorem,
∑n

i=1 qi ≤ 1.
By Lemma 1, we have,

0 ≤
n∑

i=1

pi logr

1
qi
−

n∑
i=1

pi logr

1
pi

= AveLen (c1, ..., cn)−Hr (p1, ..., pn)

=
n∑

i=1

pi

(
logr rli − logr

1
pi

)
=

∣∣∣∣∣
n∑

i=1

pi

(
logr rli − logr

1
pi

)∣∣∣∣∣
≤

n∑
i=1

pi

∣∣∣∣li − logr

(
1
pi

)∣∣∣∣ ≤ ε
n∑

i=1

pi = ε

since, by (2.1) , 0 ≤ li − logr
1
pi
≤ logr rε = ε.

We shall use the notation:

MinAveLenr (p1, ..., pn)

to denote the minimum average codeword length among all r−ary instantaneous
encoding schemes for the probability distribution P = (p1, ..., pn) .

The following Noiseless Coding Theorem is well known in the literature (see for
example [1, Theorem 2.3.2, p. 64]):

Theorem 4. For any probability distribution P = (p1, ..., pn) we have:

(2.4) Hr (p1, ..., pn) ≤ MinAveLenr (p1, ..., pn) < Hr (p1, ..., pn) + 1.

The following question is then a natural one to pose.

Question: Is it possible to replace the constant 1 in the above inequality by a
smaller one ε ∈ (0, 1) and, if so, under what conditions for the probability distribu-
tion P = (p1, ..., pn)?

The following is a partial answer to this question:

Theorem 5. Let r be a given natural number and ε ∈ (0, 1) . If a probability
distribution P = (p1, ..., pn) satisfies the condition that every closed interval of real
numbers

Ii =
[
logr

(
1
pi

)
, logr

(
rε

pi

)]
, i ∈ {1, ..., n} ,
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contains one natural number, then, for that probability distribution P, we have:

(2.5) Hr (p1, ..., pn) ≤ MinAveLenr (p1, ..., pn) ≤ Hr (p1, ..., pn) + ε.

Proof. Suppose that li ∈ Ii (i = 1, ..., n) are these natural numbers, then, as above,
n∑

i=1

1
rli

≤
n∑

i=1

pi = 1

and by Kraft’s theorem there exists an instantaneous code C = (c1, ..., cn) such that
len (ci) = li. For this code we have (2.1) and, by Theorem 3, the inequality (2.2)
for C. Taking the infimum in this inequality over all r−ary instantaneous codes,
gives (2.5).

Remark 1. The lengths of the intervals Ii are,

len (Ii) = logr

(
rε

pi

)
− logr

1
pi

= ε ∈ (0, 1) , i = 0, ..., n

but we cannot be sure that Ii always contains a natural number. Also, Ii could
contain at most one natural number.

The following result can be useful in practice.

Practical Criterion. Let ai be n natural numbers, i = 1, ..., n. If pi (i = 1, ..., n)
are such that

(2.6)
1

rai
≤ pi ≤

rε

rai
for i = 1, ..., n

and
∑n

i=1 pi = 1, then there exists an instantaneous code C = (c1, ..., cn) with
len (ci) = ai (i = 1, ..., n) such that (2.2) holds for the probability distribution P =
(p1, ..., pn) .

For other recent results in the applications of Theory of Inequalities in Informa-
tion Theory and Coding, see the following references.
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