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Abstract. In this note classical inequalities and Fibonacci num-
bers are used to obtain some miscellaneous inequalities involving
the elements of a triangle.

1. Introduction

The elements of a triangle are a source of many nice identities and
inequalities. A similar interpretation exists for Fibonacci numbers.
Many of these identities and inequalities have been documented in
extensive lists that appear in the work of Botema [1], Mitrinovic [3]
and Koshy [2]. However, as far as we know, miscellaneous geometric
inequalities for the elements of a triangle involving Fibonacci numbers
never have appeared. In this paper, using classical inequalities and
Fibonacci numbers some of these inequalities are given.

2. The Inequalities

In what follows some inequalities for the triangle are stated and proved.
We start with

Theorem 2.1. In all triangle 4ABC, with the usual notations, the
following inequality

(2.1) a2Fn + b2Fn+1 + c2Fn+2 ≥ 4S
√

FnFn+1 + Fn+1Fn+2 + Fn+2Fn

holds.

Proof. Let us denote by k = 4
√

FnFn+1 + Fn+1Fn+2 + Fn+2Fn. Then,
(2.1) reads

(2.2) a2Fn + b2Fn+1 + c2Fn+2 ≥ kS.
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Taking into account the Cosine Law, we have

a2Fn + b2Fn+1 + (a2 + b2 − 2ab cos C)Fn+2 ≥
1

2
kab sin C,

or equivalently,

2
a

b

(
Fn + Fn+2

)
+ 2

b

a

(
Fn+1 + Fn+2

)
−
(
4Fn+2 cos C + k sin C

)
≥ 0.

From Cauchy-Buniakovski-Schwarz’s inequality applied to (4Fn+2, k)
and (cos C, sin C), we obtain

4Fn+2 cos C + k sin C ≤
√

16F 2
n+2 + k2.

On the other hand, from AM-GM inequality, we get

2
a

b
(Fn + Fn+2) + 2

b

a
(Fn+1 + Fn+2) ≥ 4

√
(Fn + Fn+2)(Fn+1 + Fn+2).

Taking into account the preceding inequalities, we have

2
a

b
(Fn + Fn+2) + 2

b

a
(Fn+1 + Fn+2)− (4Fn+2 cos C + k sin C)

≥ 4
√

(Fn + Fn+2)(Fn+1 + Fn+2)− (4Fn+2 cos C + k sin C)

≥ 4
√

(Fn + Fn+2)(Fn+1 + Fn+2)−
√

16F 2
n+2 + k2 ≥ 0

when k ≤ 4
√

FnFn+1 + Fn+1Fn+2 + Fn+2Fn.

Consequently, (2.1) holds and Theorem 1 is proved. �

As an immediate consequence of the preceding result we obtain the
following inequality.

Corollary 2.2. In all triangle 4ABC, holds

(2.3) a2Fn + b2Fn+1 + c2Fn+2 ≥ 4S

(
n+2∑
k=1

F 2
k − F 2

n+1

)1/2

.

Proof. In fact, from Theorem 1 we have

a2Fn + b2Fn+1 + c2Fn+2 ≥ 4S
√

FnFn+1 + Fn+1Fn+2 + Fn+2Fn

= 4S
√

FnFn+1 + F 2
n+2

= 4S
√

F 2
1 + F 2

2 + . . . + F 2
n + F 2

n+2.
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Note that in the last expression we have used the fact that F 2
1 + F 2

2 +
. . . + F 2

n = FnFn+1. Therefore,

a2Fn + b2Fn+1 + c2Fn+2 ≥ 4S

(
n+2∑
k=1

F 2
k − F 2

n+1

)1/2

and the proof is complete. �

Before stating our next result we give a Lemma that we will use further
on.

Lemma 2.3. Let x, y, z and a, b, c be strictly positive real numbers.
Then, holds

3
(
yza2 + zxb2 + xyc2

)
≥
(
a
√

yz + b
√

zx + c
√

xy
)2

.

Proof. Let −→u =
(√

yz,
√

zx,
√

xy
)

and −→v = (a, b, c). By applying
Cauchy-Buniakovski-Schwarz’s inequality, we get[(√

yz,
√

zx,
√

xy
)
· (a, b, c)

]2 ≤‖ (√yz,
√

zx,
√

xy
)
‖2‖ (a, b, c) ‖2

or equivalently,

(2.4)
(
a
√

yz + b
√

zx + c
√

xy
)2 ≤ (yz + zx + xy)(a2 + b2 + c2).

On the other hand, by applying the rearrangement inequality yields

a2yz + b2zx + c2xy ≥ b2yz + c2zx + a2xy,

a2yz + b2zx + c2xy ≥ b2xy + a2zx + c2yz.

Hence, the right hand side of (2.4) becomes

(yz + zx + xy)(a2 + b2 + c2) ≤ 3(yza2 + zxb2 + xyc2)

and the proof is complete.
�

In particular, setting x = Fn, y = Fn+1, and z = Fn+2 in the preceding
Lemma, we get the following

Theorem 2.4. If a, b and c are the sides of triangle 4ABC, then

3
(
Fn+1Fn+2 a2 + Fn+2Fn b2 + FnFn+1 c2

)
≥
(
a
√

Fn+1Fn+2 + b
√

Fn+2Fn + c
√

FnFn+1

)2

.

Finally, we will use the preceding result to state and prove the follow-
ing
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Theorem 2.5. Let 4ABC be a triangle, then for α ∈
[
0,

π

2

)
, we

have√
Fn+1Fn+2 cos(C −α)+

√
Fn+2Fn cos(B−α)+

√
FnFn+1 cos(A−α)

≤ 2Fn+2 cos
(π

3
− α

)
.

Proof. By applying Botema inequality [1] and Theorem 2, we get(
a
√

Fn+1Fn+2 + b
√

Fn+2Fn + c
√

FnFn+1

)2

≤ 3
(
Fn+1Fn+2 a2 + Fn+2Fn b2 + FnFn+1 c2

)
≤ 3R2(Fn+Fn+1+Fn+2)

2,

and from it,

a
√

Fn+1Fn+2 + b
√

Fn+2Fn + c
√

FnFn+1 ≤ R
√

3(Fn + Fn+1 + Fn+2).

Since a = 2R sin A, b = 2R sin B, and c = 2R sin C, then from the
preceding inequality, we obtain
(2.5)√

Fn+1Fn+2 sin A +
√

Fn+2Fn sin B +
√

FnFn+1 sin C ≤
√

3Fn+2.

On the other hand, by applying the asymmetric trigonometric inequal-
ity of J. Wolstenholme ([3],[4]), we have

(2.6)
√

Fn+1Fn+2 cos A+
√

Fn+2Fn cos B +
√

FnFn+1 cos C ≤ Fn+2.

Multiplying (2.5) by tan α, adding it up to (2.6), and after simplifica-
tion, yields √

Fn+1Fn+2 [cos A cos α + sin A sin α]

+
√

Fn+2Fn [cos B cos α + sin B sin α]

+
√

FnFn+1 [cos C cos α + sin C sin α]

≤ 2Fn+2

[
cos

π

3
cos α + sin

π

3
sin α

]
and the proof is complete. �
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