CONVEXITY OF WEIGHTED EXTENDED MEAN VALUES

ALFRED WITKOWSKI

Abstract. We investigate convexity properties of the one-parameter families of Weighted Extended Mean Values

$$
F_{h}(r)=F_{h}(r ; a, b ; x, y)=E(r, r+h ; a x, b y) / E(r, r+h ; a, b)
$$

where E is the Stolarsky mean and show that for arbitrary r_{0} one of the inequalities

$$
F_{h}\left(r_{0}+t\right) F_{h}\left(r_{0}-t\right) \leq(\geq) F_{h}^{2}\left(r_{0}\right)
$$

holds for all real t. This implies some inequalities between classical means.

1. Introduction

Extended mean values of positive numbers x, y introduced by Stolarsky in [4] are defined as

$$
E(r, s ; x, y)= \begin{cases}\left(\frac{r}{s} \frac{y^{s}-x^{s}}{y^{r}-x^{r}}\right)^{1 /(s-r)} & \operatorname{sr}(s-r)(x-y) \neq 0 \tag{1}\\ \left(\frac{1}{r} \frac{y^{r}-x^{r}}{\log y-\log x}\right)^{1 / r} & r(x-y) \neq 0, s=0 \\ e^{-1 / r}\left(y^{y^{r}} / x^{x^{r}}\right)^{1 /\left(y^{r}-x^{r}\right)} & r=s, r(x-y) \neq 0 \\ \sqrt{x y} & r=s=0, x-y \neq 0 \\ x & x=y\end{cases}
$$

It was shown in many ways that E increases in all variables (see $[4,3,5,6]$). Alzer in [1] investigated the one-parameter mean

$$
\begin{equation*}
F(r)=F(r ; x, y)=E(r, r+1 ; x, y) \tag{2}
\end{equation*}
$$

and proved that for $x \neq y F$ is strictly log-convex for $r<-1 / 2$ and strictly log-concave for $r>-1 / 2$. He also proved that $F(r) F(-r) \leq F^{2}(0)$. In [2] Alzer obtained similar result for the Lehmers means

$$
\begin{equation*}
L(r)=L(r ; x, y)=\left(x^{r+1}+y^{r+1}\right) /\left(x^{r}+y^{r}\right) \tag{3}
\end{equation*}
$$

In the present paper we generalize the above results.
In [7] we extended the Stolarsky means to a four-parameter family of means by adding positive weights a, b :

$$
\begin{equation*}
F(r, s ; a, b ; x, y)=\left(\frac{(a x)^{s}-(b y)^{s}}{a^{s}-b^{s}} / \frac{(a x)^{r}-(b y)^{r}}{a^{r}-b^{r}}\right)^{1 /(s-r)} \tag{4}
\end{equation*}
$$

Date: 1 May 2004.
2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Extended mean values, mean, convexity.

Writing (4) as

$$
\begin{equation*}
F(r, s ; a, b ; x, y)=\frac{E(r, s ; a x, b y)}{E(r, s ; a, b)} \tag{5}
\end{equation*}
$$

we see that F is continuous on $\mathbb{R}^{2} \times \mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$. Obviously

$$
F(r, s ; a, a ; x, y)=E(r, s ; x, y)
$$

The following monotonicity properties of F have been established in [7]:
Property 1. F increases in x and y.
Property 2. F increases in r and s if $(x-y)\left(a^{2} x-b^{2} y\right)>0$ and decreases if $(x-y)\left(a^{2} x-b^{2} y\right)<0$

Property 3. F increases in a if $(x-y)(r+s)>0$ and decreases if $(x-y)(r+$ $s)<0, F$ decreases in b if $(x-y)(r+s)>0$ and increases if $(x-y)(r+s)<0$

2. Main Result

In this paper we investigate convexity properties of one-parameter means defined as

$$
\begin{equation*}
F_{h}(r)=F_{h}(r ; a, b ; x, y)=F(r, r+h ; a, b ; x, y) \tag{6}
\end{equation*}
$$

It is obvious that the monotonicity of F_{h} matches that of F. The main result consists of the following:

Theorem 1. If $(x-y)\left(a^{2} x-b^{2} y\right)>0$ then $F_{h}(r)$ is log-convex in $(-\infty,-h / 2)$ and log-concave in $(-h / 2, \infty)$.

If $(x-y)\left(a^{2} x-b^{2} y\right)<0$ then F_{h} is log-concave in $(-\infty,-h / 2)$ and logconvex in $(-h / 2, \infty)$.

Theorem 2. If F_{h} is log-convex in a neighborhood of r_{0} then for every real t

$$
F_{h}\left(r_{0}-t\right) F_{h}\left(r_{0}+t\right) \geq F_{h}^{2}\left(r_{0}\right)
$$

If F_{h} is log-concave in a neighborhood of r_{0} then for every real t

$$
F_{h}\left(r_{0}-t\right) F_{h}\left(r_{0}+t\right) \leq F_{h}^{2}\left(r_{0}\right)
$$

The following corollaries are immediate consequence of theorems 1 and 2:
Corollary 3. For $x \neq y$ the one-parameter mean $F(r)$ is log-convex for $r<-1 / 2$ and log-concave for $r>-1 / 2$. If $r_{0}>-1 / 2$ then for all real t $F\left(r_{0}-t\right) F\left(r_{0}+t\right) \leq F^{2}\left(r_{0}\right)$. For $r_{0}<-1 / 2$ the inequality reverses.

Proof. $F(r ; x, y)=F_{1}(r ; 1,1 ; x, y)$.
Corollary 4. For $x \neq y$ the Lehmer mean $L(r)$ is log-convex for $r<-1 / 2$ and log-concave for $r>-1 / 2$. If $r_{0}>-1 / 2$ then for all real $t L\left(r_{0}-t\right) L\left(r_{0}+\right.$ $t) \leq L^{2}\left(r_{0}\right)$. For $r_{0}<-1 / 2$ the inequality reverses.
Proof. $L(r ; x, y)=F_{1}(r ; x, y ; x, y)$.

In the last section we present some inequalities between classical means that can be obtained from theorem 2.

3. Lemmas

Note that in general case (6) can be written as

$$
\begin{equation*}
F_{h}(r)=y\left(\frac{A^{r+h}-1}{B^{r+h}-1} / \frac{A^{r}-1}{B^{r}-1}\right)^{1 / h} \tag{7}
\end{equation*}
$$

where

$$
A=\frac{a x}{b y} \quad \text { and } \quad B=\frac{a}{b}
$$

It is enough to prove our theorems only in case the expression (7) makes sense. Other cases follow from the continuity of F.

Lemma 1. $\operatorname{sgn}\left((x-y)\left(a^{2} x-b^{2} y\right)\right)=\operatorname{sgn}\left(\log ^{2} A-\log ^{2} B\right)$.
Proof. Lemma easily follows from the fact that $\operatorname{sgn}(x-y)=\operatorname{sgn} \log \frac{x}{y}$.
Lemma 2. For all real t

$$
F_{h}(-h / 2-t) F_{h}(-h / 2+t)=F_{h}^{2}(-h / 2) .
$$

Proof.

$$
\begin{aligned}
& F_{h}^{h}(-h / 2-t) F_{h}^{h}(-h / 2+t)= \\
&=y^{2 h} \frac{A^{h / 2-t}-1}{B^{h / 2-t}-1} \cdot \frac{B^{-h / 2-t}-1}{A^{-h / 2-t}-1} \cdot \frac{A^{h / 2+t}-1}{B^{h / 2+t}-1} \cdot \frac{B^{-h / 2+t}-1}{A^{-h / 2+t}-1} \\
&=y^{2 h} \frac{B^{-h}}{A^{-h}} \cdot \frac{A^{h / 2-t}-1}{B^{h / 2-t}-1} \cdot \frac{1-B^{h / 2+t}}{1-A^{h / 2+t}} \cdot \frac{A^{h / 2+t}-1}{B^{h / 2+t}-1} \cdot \frac{1-B^{h / 2-t}}{1-A^{h / 2-t}} \\
&=y^{2 h}\left(\frac{x}{y}\right)^{h}=(x y)^{h}=F_{h}^{2 h}(-h / 2) .
\end{aligned}
$$

Let

$$
g(t, A, B)=\frac{A^{t} \log ^{2} A}{\left(A^{t}-1\right)^{2}}-\frac{B^{t} \log ^{2} B}{\left(B^{t}-1\right)^{2}}
$$

Lemma 3.

(1) $g(t, A, B)=g\left(\pm t, A^{ \pm 1}, B^{ \pm 1}\right)$,
(2) g is increasing in t on $(0, \infty)$ if $\log ^{2} A-\log ^{2} B>0$ and decreasing otherwise.

Proof. (1) becomes obvious when we write

$$
g(t, A, B)=\frac{\log ^{2} A}{A^{t}-2+A^{-t}}-\frac{\log ^{2} B}{B^{t}-2+B^{-t}}
$$

From (1) if follows that replacing A, B with A^{-1}, B^{-1} if necessary we may assume that $A, B>1$. In this case $\operatorname{sgn}\left(\log ^{2} A-\log ^{2} B\right)=\operatorname{sgn}\left(A^{t}-B^{t}\right)$.

$$
\begin{aligned}
\frac{\partial g}{\partial t} & =-\frac{A^{t}\left(A^{t}+1\right) \log ^{3} A}{\left(A^{t}-1\right)^{3}}+\frac{B^{t}\left(B^{t}+1\right) \log ^{3} B}{\left(B^{t}-1\right)^{3}} \\
& =-\frac{1}{t^{3}}\left(\phi\left(A^{t}\right)-\phi\left(B^{t}\right)\right)=-\frac{1}{t^{3}}\left(A^{t}-B^{t}\right) \phi^{\prime}(\xi)
\end{aligned}
$$

where $\xi>1$ lies between A^{t} and B^{t} and

$$
\phi(u)=\frac{u(u+1) \log ^{3} u}{(u-1)^{3}}
$$

To complete the proof it is enough to show that $\phi^{\prime}(u)<0$ for $u>1$.

$$
\phi^{\prime}(u)=\frac{\left(u^{2}+4 u+1\right) \log ^{2} u}{(u-1)^{4}}\left[\frac{3\left(u^{2}-1\right)}{u^{2}+4 u+1}-\log u\right]
$$

so the sign of ϕ^{\prime} is the same as the sign of $\psi(u)=\frac{3\left(u^{2}-1\right)}{u^{2}+4 u+1}-\log u$. But $\psi(1)=0$ and $\psi^{\prime}(u)=-(u-1)^{4} /\left(u^{2}+4 u+1\right)^{2}<0$, so $\phi(u)<0$.
Let us remind now certain property of convex functions:
Property 4. If f is convex (concave) then for $h>0$ the function $g(x)=$ $f(x+h)-f(x)$ is increasing (decreasing). For $h<0$ the monotonicity of g reverses.
For log-convex f the same holds for $g(x)=f(x+h) / f(x)$.

4. Proofs

Now we are ready to prove the main results
Proof of Theorem 1. Straightforward computation shows that

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} \log F_{h}(t) & =h^{-1}(g(t, A, B)-g(t+h, A, B)) \\
& =h^{-1}(g(|t|, A, B)-g(|t+h|, A, B)) \quad(\text { by Lemma } 3(1))
\end{aligned}
$$

and the assertion follows Lemma $3(2)$ and from inequality $|t|<|t+h|$ valid if and only if $t>-h / 2$ and $h>0$ or $t<-h / 2$ and $h<0$.

Proof of Theorem 2. Suppose $r_{0}>-h / 2$ and F_{h} is log-convex near r_{0} (proof of other cases is similar).
Due to symmetry it is enough to show the inequality

$$
\begin{equation*}
F_{h}\left(r_{0}-t\right) F_{h}\left(r_{0}+t\right) \geq F_{n}^{2}\left(r_{0}\right) \tag{8}
\end{equation*}
$$

for $t>0$.
From theorem 1 we know that F_{h} is log-convex on $(-h / 2, \infty)$, so for t such that $r_{0}-t \geq-h / 2$ the inequality (8) holds.
If $r_{0}-t \leq-h / 2$ then $-r_{0}+t-h \geq-h / 2$ and by lemma 2

$$
\begin{equation*}
F_{h}\left(r_{0}-t\right) F_{h}\left(-r_{0}+t-h\right)=F_{h}^{2}(-h / 2) \tag{9}
\end{equation*}
$$

From log-convexity we have also

$$
\begin{equation*}
F_{h}(-h / 2) F_{h}\left(2 r_{0}+h / 2\right) \geq F_{h}^{2}\left(r_{0}\right) \tag{10}
\end{equation*}
$$

Combining (9) and (10) we obtain

$$
\begin{aligned}
F_{h}\left(r_{0}-t\right) F_{h}\left(r_{0}+t\right) & =\frac{F_{h}\left(r_{0}+t\right) F_{h}^{2}(-h / 2)}{F_{h}\left(-r_{0}+t-h\right)} \\
& \geq \frac{F_{h}\left(r_{0}+t\right) F_{h}(-h / 2) F_{h}^{2}\left(r_{0}\right)}{F_{h}\left(-r_{0}+t-h\right) F_{h}\left(2 r_{0}+h / 2\right)} \\
& \geq F_{h}^{2}\left(r_{0}\right),
\end{aligned}
$$

because

$$
\frac{F_{h}(-h / 2)}{F_{h}\left(2 r_{0}+h / 2\right)} \geq \frac{F_{h}\left(-r_{0}+t-h\right)}{F_{h}\left(r_{0}+t\right)}
$$

by property 4.

5. Examples

In the table below we show some inequalities between classical means:

$$
\begin{aligned}
\text { Harmonic mean } & H=H(x, y)=2 x y /(x+y) \\
\text { Geometric mean } & G=G(x, y)=\sqrt{x y} \\
\text { Logarithmic mean } & L=L(x, y)=(x-y) /(\log x-\log y) \\
\text { Square-mean-root } & Q=Q(x, y)=((\sqrt{x}+\sqrt{y}) / 2)^{2} \\
\text { Heronian mean } & N=N(x, y)=(x+\sqrt{x y}+y) / 3 \\
\text { Arithmetic mean } & A=A(x, y)=(x+y) / 2 \\
\text { Centroidal mean } & T=T(x, y)=2\left(x^{2}+x y+y^{2}\right) / 3(x+y) \\
\text { Root-mean-square } & R=R(x, y)=\sqrt{\left(x^{2}+y^{2}\right) / 2}
\end{aligned}
$$

that can be obtained by appropriate choice of parameters in Theorem 2.

No	Inequality	h	r_{0}	t	a	b
1	$L^{2} \geq G N$	$1 / 2$	0	1	1	1
2	$L^{2} \geq H T$	1	0	2	1	1
3	$Q^{2} \geq A G$	$1 / 2$	0	$1 / 2$	x	y
4	$Q^{2} \geq L N$	$1 / 2$	$1 / 2$	$1 / 2$	1	1
5	$N^{2} \geq A L$	1	$1 / 2$	$1 / 2$	1	1
6	$A^{2} \geq L T$	1	1	1	1	1
7	$A^{2} \geq G R$ or $A G \geq H R$	1	0	1	x	y
8	$L N \geq A G$	$1 / 2$	$1 / 2$	1	1	1
9	$G N \geq H T$	1	-1	$1 / 2$	x	y
10	$A N \geq T G$	$1 / 2$	0	1	x	y
11	$L T \geq H C$	1	1	2	1	1
12	$T A \geq N R$	1	$1 / 2$	$1 / 2$	x	y
13	$L^{3} \geq A G^{2}$	1	0	1	1	1
14	$L^{3} \geq G Q^{2}$	$1 / 2$	$-1 / 2$	$1 / 2$	1	1
15	$N^{3} \geq A Q^{2}$	$1 / 2$	1	$1 / 2$	1	1
16	$T^{3} \geq A R^{2}$	1	2	1	1	1
17	$L N^{2} \geq G^{2} T$	1	$1 / 2$	$3 / 2$	1	1

Note that 4 is stroner than 3 (due to inequality 8), 14 is stronger than 13 (due to 3). Also 1 is stronger than 2 because of 9 .

References

[1] Alzer H., Über eine einparametrige Familie von Mittelwerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1987 (1988), 1-9
[2] Alzer H., Über Lehmers Mittelwertefamilie, Elem. Math. 43 (1988), 50-54
[3] Leach E. and Sholander M., Extended mean values, Amer. Math. Monthly 85 (1978), 84-90.
[4] Stolarsky K. B., Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 8792.
[5] Qi F., Generalized weighted mean values with two parameters, Proc. Roy. Soc. London Ser. A 454 (1998), no. 1978, 2723-2732.
[6] Witkowski A., Monotonicity of generalized extended mean values, Colloq. Math. 2004 (in print). [ONLINE: RGMIA Research Report Collection, 7(1), Article 12, 2004 http:/rgmia.vu.edu.au/v7n1.html].
[7] Witkowski A., Weighted extended mean values, Colloq. Math. 2004 (accepted). [ONLINE: RGMIA Research Report Collection, 7(1), Article 6, 2004 http:/rgmia.vu.edu.au/v7n1.html]

Mielczarskiego 4/29, 85-796 Bydgoszcz, Poland
E-mail address: alfred.witkowski@atosorigin.com

