CONVEXITY OF WEIGHTED EXTENDED MEAN VALUES

ALFRED WITKOWSKI

ABsTRACT. We investigate convexity properties of the one-parameter
families of Weighted Extended Mean Values

Fn(r) = Fu(r; a,b;2,y) = E(r,r 4 h;ax,by) /E(r, 7 + h; a, b)
where E is the Stolarsky mean and show that for arbitrary ro one of the
inequalities

Fn(ro +t)Fr(ro —t) < (>)Fi (ro)

holds for all real ¢. This implies some inequalities between classical
means.

1. INTRODUCTION

Extended mean values of positive numbers z,y introduced by Stolarsky
in |4] are defined as

( s s\ 1/(s—7r
= sr(s = 1) — 9) 0,
(liyr“”r )UT r(z—y) #0,s=0
(1) E(T’, S;.I',y) _ r logy—logx et Y ) )
ey fa )T = s (- ) £ 0,
N r=s=0z-y#0,
L T T =y.

It was shown in many ways that E increases in all variables (see [4, 3, 5, 6]).
Alzer in [1] investigated the one-parameter mean
(2) F(r) = F(r;z,y) = E(r,r + 1;2,9)

and proved that for = # y F' is strictly log-convex for r < —1/2 and strictly
log-concave for r > —1/2. He also proved that F(r)F(—r) < F?(0). In [2]
Alzer obtained similar result for the Lehmers means

(3) L(r) = L(r;z,y) = (@ + ¢ /(@ +y).
In the present paper we generalize the above results.

In [7] we extended the Stolarsky means to a four-parameter family of
means by adding positive weights a, b:

4)  F(rsabzy) = <(a$)s - (by)s/(ax)r - (by)r>1/(s—r)

as — b a” —b"
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Writing (4) as
E(r,s;a,b) ’

we see that F' is continuous on R? x Ri X ]R%r. Obviously

(5) F(r,s;a,b;x,y) =

F(r,sa,a;2,y) = E(r, s;3,y).
The following monotonicity properties of F' have been established in [7]:
Property 1. F increases in x and y.

Property 2. F increases in r and s if (x —y)(a®x — b%y) > 0 and decreases
if (x —y)(a®z —b%y) <0

Property 3. F increases in a if (x—y)(r+s) > 0 and decreases if (x—y)(r+
s) <0, F decreases in b if (x—y)(r+s) > 0 and increases if (x—y)(r+s) < 0

2. MAIN RESULT

In this paper we investigate convexity properties of one-parameter means
defined as

(6) Fu(r) = Fu(rya,b;z,y) = F(r,r + h;a, by 2, y).
It is obvious that the monotonicity of Fj matches that of F. The main

result consists of the following:
Theorem 1. If (x—y)(a?z—b%y) > 0 then Fy(r) is log-convez in (—oo, —h/2)
and log-concave in (—h/2,00).

If (x — y)(a®x — b%y) < O then F}, is log-concave in (—oo, —h/2) and log-
convez in (—h/2,00).
Theorem 2. If Fy, is log-convez in a neighborhood of ro then for every real
t

Fi(ro — t)Fy(ro + t) > F (ro).

If Fy, is log-concave in a neighborhood of o then for every real t

Fh(ro — t)Fh(To + t) < F}%(TO).

The following corollaries are immediate consequence of theorems 1 and 2:

Corollary 3. For = # y the one-parameter mean F(r) is log-convez for
r < —1/2 and log-concave for r > —1/2. If ro > —1/2 then for all real t
F(ro —t)F(ro +t) < F%(rg). For ro < —1/2 the inequality reverses.

Proof. F(rixz,y) = Fi(r;1,1;2,y). O

Corollary 4. For x # y the Lehmer mean L(r) is log-convez for r < —1/2
and log-concave forr > —1/2. If ro > —1/2 then for all real t L(ro—t)L(ro+
t) < L?(rg). For rg < —1/2 the inequality reverses.

Proof. L(r;z,y) = Fi(r;z,y;2,y). O
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In the last section we present some inequalities between classical means that
can be obtained from theorem 2.

3. LEMMAS

Note that in general case (6) can be written as

Arth 1 AT—1>1/h

") A =v (/3

where

axr a
by O b

It is enough to prove our theorems only in case the expression (7) makes
sense. Other cases follow from the continuity of F'.

Lemma 1. sgn((z — y)(a’x — b%y)) = sgn(log® A — log? B).
Proof. Lemma easily follows from the fact that sgn(z — y) = sgnlog % O
Lemma 2. For all real t

F(=h/2 —t)F,(=h/2 +t) = F?(—h/2).

Proof.

Fl(—=h/2 —t)FM(~h/2+1) =

oh AM2—t _ 1 B—h/2—t _ 1 Ah/2+t _ 1 RB-h/2+t _ 4
Bh/2—t _ 1 A-h/2—t _1 PRBh/2+t _1 A-h/2+t _ ]

oh B—h Ah/2—t _ 1 1 _ Bh/2+t  pAh/2+t _ 1 1 _ ph/2-t
A—h  Bh/2—t _ 1 1 _ Ah/2+t  Bh/2+t _ 1 1 _ Ah/2—t

= (5) = Gt = ),

=Y

Y

Let

Atlog? A Btlog’B
g(thvB) = (At— 1)2 - (Bt— 1)2

Lemma 3.
(1) g(t, A, B) = g(£t, A*1, B+,
(2) g is increasing in t on (0,00) if logZ A —log? B > 0 and decreasing
otherwise.

Proof. (1) becomes obvious when we write

log? A log? B
96AB) = A T B2t B
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From (1) if follows that replacing A, B with A=!, B~! if necessary we may
assume that A, B > 1. In this case sgn(log® A — log® B) = sgn(A! — BY).

dg At(A*+1)1log® A BYB' +1)log® B

ot (At—1)3 (Bt —1)3

3 (6(A") = 9(BY) = — (A"~ BYS (&),

where £ > 1 lies between A! and B and

u(u+1) log3 u
e T

To complete the proof it is enough to show that ¢'(u) < 0 for u > 1.
(W +4u+1)log?u [ 3(u?-1)

/
= -1
¢ () (u—1)4 W rdut1 BY)
so the sign of ¢’ is the same as the sign of (u) = 52(11;?1 — logu. But

P(1) =0 and ¥'(u) = —(u — 1)*/(u? + 4u + 1)2<0, so ¢(u) < 0. a
Let us remind now certain property of convex functions:

Property 4. If f is convexr (concave) then for h > 0 the function g(z) =
f(z+h) — f(x) is increasing (decreasing). For h < 0 the monotonicity of g
reverses.

For log-convex f the same holds for g(z) = f(x + h)/f(z).

4. PROOFS

Now we are ready to prove the main results
Proof of Theorem 1. Straightforward computation shows that

2

d
o log Fy(t) = h(g(t,A,B) — g(t+ h, A, B))

= h7'(g(t], A, B) = g(lt + h|,A,B))  (by Lemma 3 (1)),

and the assertion follows Lemma 3(2) and from inequality |t| < |t + h| valid
if and only if ¢ > —h/2 and h >0 or t < —h/2 and h < 0. O

Proof of Theorem 2. Suppose 19 > —h/2 and F}, is log-convex near r( (proof
of other cases is similar).
Due to symmetry it is enough to show the inequality

(8) Fy(ro — t)Fy(ro +t) > F2(ro)

for t > 0.

From theorem 1 we know that F}, is log-convex on (—h/2,00), so for t such
that 7o — ¢t > —h/2 the inequality (8) holds.

If ro—t<—h/2then —rg+t—h > —h/2 and by lemma 2

(9) Fy(ro —t)Fp(—ro +t — h) = FZ(—h/2).
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From log-convexity we have also
(10) Fu(=h/2)F(2ro + h/2) > Fi(ro).
Combining (9) and (10) we obtain

Fy(ro +t)F2(—h/2)
Fp(—ro+t—nh)
Fy(ro + t)Fn(—h/2)F2(ro)
Fy(=ro+t—h)Fp(2r0 + h/2)
Fi(ro),

Fr(ro —t)Fp(ro+t) =

Y

because

F(=h/2) _ Fu(zro+t—h)
Fh(2’l"o+h/2) B Fh(T0+t)

by property 4.

5. EXAMPLES

In the table below we show some inequalities between classical means:

Harmonic mean  H = H(x,y) = 2zy/(x + y)
Geometric mean G =G(z,y) =y
Logarithmic mean L=L(z,y) = (x—y)/(logx —logy)
Square-mean-root Q= Q(z,y) = (Vz +v)/2)*
Heronian mean N = N(z,y) = (z + zy + y)/3

Arithmetic mean A=Az,y) = (z+y)/2
Centroidal mean T =T(x,y) =2* + 2y +v*)/3(x +y)
Root-mean-square R = R(z,y) = /(22 +y?)/2

that can be obtained by appropriate choice of parameters in Theorem 2.
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No Inequality h 0 t a b
1 L?*>GN 1/2 0 1 1 1
2 L?>>HT 1 0 2 1 1
3 Q? > AG 1/2 0 1/2 T y
4 Q?>> LN 1/2 /2 1/2 1 1
5 N2 > AL 1 /2 1)2 1 1
6 A2 > LT 1 1 1 1 1
7 A2 > GR or AG > HR 1 0 1 x Y
8 LN > AG 1/2 1/2 1 1 1
9 GN > HT 1 -1 1/2 x y
10 AN > TG 1/2 0 1 T y
11 LT > HC 1 1 2 1 1
12 TA>NR 1 /2 1/2 T y
13 L3 > AG? 1 0 1 1 1
14 L3 > GQ? /2 —-1/2  1/2 1 1
15 N3 > AQ? 1/2 1 1/2 1 1
16 T3 > AR? 1 2 1 1 1
17 LN? > G*T 1 /2  3/2 1 1

Note that 4 is stroner than 3 (due to inequality 8), 14 is stronger than 13
(due to 3). Also 1 is stronger than 2 because of 9.
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