
CONVEXITY OF WEIGHTED EXTENDED MEAN VALUES
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Abstract. We investigate convexity properties of the one-parameter
families of Weighted Extended Mean Values

Fh(r) = Fh(r; a, b; x, y) = E(r, r + h; ax, by)/E(r, r + h; a, b)

where E is the Stolarsky mean and show that for arbitrary r0 one of the
inequalities

Fh(r0 + t)Fh(r0 − t) ≤ (≥)F 2
h (r0)

holds for all real t. This implies some inequalities between classical
means.

1. Introduction

Extended mean values of positive numbers x, y introduced by Stolarsky
in [4] are de�ned as

(1) E(r, s;x, y) =



(
r
s

ys−xs

yr−xr

)1/(s−r)
sr(s− r)(x− y) 6= 0,(

1
r

yr−xr

log y−log x

)1/r
r(x− y) 6= 0, s = 0,

e−1/r
(
yyr

/xxr)1/(yr−xr)
r = s, r(x− y) 6= 0,√

xy r = s = 0, x− y 6= 0,
x x = y.

It was shown in many ways that E increases in all variables (see [4, 3, 5, 6]).
Alzer in [1] investigated the one-parameter mean

(2) F (r) = F (r;x, y) = E(r, r + 1;x, y)

and proved that for x 6= y F is strictly log-convex for r < −1/2 and strictly
log-concave for r > −1/2. He also proved that F (r)F (−r) ≤ F 2(0). In [2]
Alzer obtained similar result for the Lehmers means

(3) L(r) = L(r;x, y) = (xr+1 + yr+1)/(xr + yr).

In the present paper we generalize the above results.
In [7] we extended the Stolarsky means to a four-parameter family of

means by adding positive weights a, b:

(4) F (r, s; a, b;x, y) =
(

(ax)s − (by)s

as − bs

/(ax)r − (by)r

ar − br

)1/(s−r)
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Writing (4) as

(5) F (r, s; a, b;x, y) =
E(r, s; ax, by)
E(r, s; a, b)

,

we see that F is continuous on R2 × R2
+ × R2

+. Obviously

F (r, s; a, a;x, y) = E(r, s;x, y).

The following monotonicity properties of F have been established in [7]:

Property 1. F increases in x and y.

Property 2. F increases in r and s if (x− y)(a2x− b2y) > 0 and decreases
if (x− y)(a2x− b2y) < 0

Property 3. F increases in a if (x−y)(r+s) > 0 and decreases if (x−y)(r+
s) < 0, F decreases in b if (x−y)(r+s) > 0 and increases if (x−y)(r+s) < 0

2. Main result

In this paper we investigate convexity properties of one-parameter means
de�ned as

(6) Fh(r) = Fh(r; a, b;x, y) = F (r, r + h; a, b;x, y).

It is obvious that the monotonicity of Fh matches that of F . The main

result consists of the following:

Theorem 1. If (x−y)(a2x−b2y) > 0 then Fh(r) is log-convex in (−∞,−h/2)
and log-concave in (−h/2,∞).

If (x− y)(a2x− b2y) < 0 then Fh is log-concave in (−∞,−h/2) and log-
convex in (−h/2,∞).

Theorem 2. If Fh is log-convex in a neighborhood of r0 then for every real
t

Fh(r0 − t)Fh(r0 + t) ≥ F 2
h (r0).

If Fh is log-concave in a neighborhood of r0 then for every real t

Fh(r0 − t)Fh(r0 + t) ≤ F 2
h (r0).

The following corollaries are immediate consequence of theorems 1 and 2:

Corollary 3. For x 6= y the one-parameter mean F (r) is log-convex for
r < −1/2 and log-concave for r > −1/2. If r0 > −1/2 then for all real t
F (r0 − t)F (r0 + t) ≤ F 2(r0). For r0 < −1/2 the inequality reverses.

Proof. F (r;x, y) = F1(r; 1, 1;x, y). �

Corollary 4. For x 6= y the Lehmer mean L(r) is log-convex for r < −1/2
and log-concave for r > −1/2. If r0 > −1/2 then for all real t L(r0−t)L(r0+
t) ≤ L2(r0). For r0 < −1/2 the inequality reverses.

Proof. L(r;x, y) = F1(r;x, y;x, y). �
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In the last section we present some inequalities between classical means that
can be obtained from theorem 2.

3. Lemmas

Note that in general case (6) can be written as

(7) Fh(r) = y

(
Ar+h − 1
Br+h − 1

/Ar − 1
Br − 1

)1/h

,

where

A =
ax

by
and B =

a

b
.

It is enough to prove our theorems only in case the expression (7) makes
sense. Other cases follow from the continuity of F .

Lemma 1. sgn((x− y)(a2x− b2y)) = sgn(log2A− log2B).

Proof. Lemma easily follows from the fact that sgn(x− y) = sgn log x
y . �

Lemma 2. For all real t

Fh(−h/2− t)Fh(−h/2 + t) = F 2
h (−h/2).

Proof.
F h

h (−h/2− t)F h
h (−h/2 + t) =

= y2hA
h/2−t − 1

Bh/2−t − 1
· B

−h/2−t − 1
A−h/2−t − 1

· A
h/2+t − 1

Bh/2+t − 1
· B

−h/2+t − 1
A−h/2+t − 1

= y2hB
−h

A−h
· A

h/2−t − 1
Bh/2−t − 1

· 1−Bh/2+t

1−Ah/2+t
· A

h/2+t − 1
Bh/2+t − 1

· 1−Bh/2−t

1−Ah/2−t

= y2h

(
x

y

)h

= (xy)h = F 2h
h (−h/2).

�
Let

g(t, A,B) =
At log2A

(At − 1)2
− Bt log2B

(Bt − 1)2
.

Lemma 3.

(1) g(t, A,B) = g(±t, A±1, B±1),
(2) g is increasing in t on (0,∞) if log2A− log2B > 0 and decreasing

otherwise.

Proof. (1) becomes obvious when we write

g(t, A,B) =
log2A

At − 2 +A−t
− log2B

Bt − 2 +B−t
.
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From (1) if follows that replacing A,B with A−1, B−1 if necessary we may
assume that A,B > 1. In this case sgn(log2A− log2B) = sgn(At −Bt).

∂g

∂t
= −A

t(At + 1) log3A

(At − 1)3
+
Bt(Bt + 1) log3B

(Bt − 1)3

= − 1
t3

(φ(At)− φ(Bt)) = − 1
t3

(At −Bt)φ′(ξ),

where ξ > 1 lies between At and Bt and

φ(u) =
u(u+ 1) log3 u

(u− 1)3
.

To complete the proof it is enough to show that φ′(u) < 0 for u > 1.

φ′(u) =
(u2 + 4u+ 1) log2 u

(u− 1)4

[
3(u2 − 1)
u2 + 4u+ 1

− log u
]
,

so the sign of φ′ is the same as the sign of ψ(u) = 3(u2−1)
u2+4u+1

− log u. But

ψ(1) = 0 and ψ′(u) = −(u− 1)4/(u2 + 4u+ 1)2<0, so φ(u) < 0. �
Let us remind now certain property of convex functions:

Property 4. If f is convex (concave) then for h > 0 the function g(x) =
f(x+ h)− f(x) is increasing (decreasing). For h < 0 the monotonicity of g
reverses.
For log-convex f the same holds for g(x) = f(x+ h)/f(x).

4. Proofs

Now we are ready to prove the main results
Proof of Theorem 1. Straightforward computation shows that

d2

dt2
logFh(t) = h−1(g(t, A,B)− g(t+ h,A,B))

= h−1(g(|t|, A,B)− g(|t+ h|, A,B)) (by Lemma 3 (1)),

and the assertion follows Lemma 3(2) and from inequality |t| < |t+ h| valid
if and only if t > −h/2 and h > 0 or t < −h/2 and h < 0. �

Proof of Theorem 2. Suppose r0 > −h/2 and Fh is log-convex near r0 (proof
of other cases is similar).
Due to symmetry it is enough to show the inequality

(8) Fh(r0 − t)Fh(r0 + t) ≥ F 2
n(r0)

for t > 0.
From theorem 1 we know that Fh is log-convex on (−h/2,∞), so for t such
that r0 − t ≥ −h/2 the inequality (8) holds.
If r0 − t ≤ −h/2 then −r0 + t− h ≥ −h/2 and by lemma 2

(9) Fh(r0 − t)Fh(−r0 + t− h) = F 2
h (−h/2).
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From log-convexity we have also

(10) Fh(−h/2)Fh(2r0 + h/2) ≥ F 2
h (r0).

Combining (9) and (10) we obtain

Fh(r0 − t)Fh(r0 + t) =
Fh(r0 + t)F 2

h (−h/2)
Fh(−r0 + t− h)

≥
Fh(r0 + t)Fh(−h/2)F 2

h (r0)
Fh(−r0 + t− h)Fh(2r0 + h/2)

≥ F 2
h (r0),

because

Fh(−h/2)
Fh(2r0 + h/2)

≥ Fh(−r0 + t− h)
Fh(r0 + t)

by property 4. �

5. Examples

In the table below we show some inequalities between classical means:

Harmonic mean H = H(x, y) = 2xy/(x+ y)

Geometric mean G = G(x, y) =
√
xy

Logarithmic mean L = L(x, y) = (x− y)/(log x− log y)

Square-mean-root Q = Q(x, y) = ((
√
x+

√
y)/2)2

Heronian mean N = N(x, y) = (x+
√
xy + y)/3

Arithmetic mean A = A(x, y) = (x+ y)/2

Centroidal mean T = T (x, y) = 2(x2 + xy + y2)/3(x+ y)

Root-mean-square R = R(x, y) =
√

(x2 + y2)/2

that can be obtained by appropriate choice of parameters in Theorem 2.
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No Inequality h r0 t a b

1 L2 ≥ GN 1/2 0 1 1 1
2 L2 ≥ HT 1 0 2 1 1
3 Q2 ≥ AG 1/2 0 1/2 x y
4 Q2 ≥ LN 1/2 1/2 1/2 1 1
5 N2 ≥ AL 1 1/2 1/2 1 1
6 A2 ≥ LT 1 1 1 1 1
7 A2 ≥ GR or AG ≥ HR 1 0 1 x y
8 LN ≥ AG 1/2 1/2 1 1 1
9 GN ≥ HT 1 −1 1/2 x y
10 AN ≥ TG 1/2 0 1 x y
11 LT ≥ HC 1 1 2 1 1
12 TA ≥ NR 1 1/2 1/2 x y
13 L3 ≥ AG2 1 0 1 1 1
14 L3 ≥ GQ2 1/2 −1/2 1/2 1 1
15 N3 ≥ AQ2 1/2 1 1/2 1 1
16 T 3 ≥ AR2 1 2 1 1 1
17 LN2 ≥ G2T 1 1/2 3/2 1 1

Note that 4 is stroner than 3 (due to inequality 8), 14 is stronger than 13
(due to 3). Also 1 is stronger than 2 because of 9.
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