CONVEXITY OF WEIGHTED EXTENDED MEAN VALUES

ALFRED WITKOWSKI

ABSTRACT. We investigate convexity properties of the one-parameter families of Weighted Extended Mean Values

$$F_h(r) = F_h(r; a, b; x, y) = E(r, r+h; ax, by)/E(r, r+h; a, b)$$

where E is the Stolarsky mean and show that for arbitrary r_0 one of the inequalities

$$F_h(r_0 + t)F_h(r_0 - t) \le (\ge)F_h^2(r_0)$$

holds for all real t. This implies some inequalities between classical means.

1. INTRODUCTION

Extended mean values of positive numbers x, y introduced by Stolarsky in [4] are defined as

(1)
$$E(r,s;x,y) = \begin{cases} \left(\frac{r}{s}\frac{y^s - x^s}{y^r - x^r}\right)^{1/(s-r)} & sr(s-r)(x-y) \neq 0, \\ \left(\frac{1}{r}\frac{y^r - x^r}{\log y - \log x}\right)^{1/r} & r(x-y) \neq 0, \ s = 0, \\ e^{-1/r} \left(y^{y^r}/x^{x^r}\right)^{1/(y^r - x^r)} & r = s, \ r(x-y) \neq 0, \\ \sqrt{xy} & r = s = 0, \ x - y \neq 0, \\ x & x = y. \end{cases}$$

It was shown in many ways that E increases in all variables (see [4, 3, 5, 6]). Alzer in [1] investigated the one-parameter mean

(2)
$$F(r) = F(r; x, y) = E(r, r+1; x, y)$$

and proved that for $x \neq y F$ is strictly log-convex for r < -1/2 and strictly log-concave for r > -1/2. He also proved that $F(r)F(-r) \leq F^2(0)$. In [2] Alzer obtained similar result for the Lehmers means

(3)
$$L(r) = L(r; x, y) = (x^{r+1} + y^{r+1})/(x^r + y^r).$$

In the present paper we generalize the above results.

In [7] we extended the Stolarsky means to a four-parameter family of means by adding positive weights a, b:

(4)
$$F(r,s;a,b;x,y) = \left(\frac{(ax)^s - (by)^s}{a^s - b^s} / \frac{(ax)^r - (by)^r}{a^r - b^r}\right)^{1/(s-r)}$$

Date: 1 May 2004.

²⁰⁰⁰ Mathematics Subject Classification. 26D15.

Key words and phrases. Extended mean values, mean, convexity.

Writing (4) as

(5)
$$F(r,s;a,b;x,y) = \frac{E(r,s;ax,by)}{E(r,s;a,b)},$$

we see that F is continuous on $\mathbb{R}^2 \times \mathbb{R}^2_+ \times \mathbb{R}^2_+$. Obviously

$$F(r,s;a,a;x,y) = E(r,s;x,y).$$

The following monotonicity properties of F have been established in [7]:

Property 1. F increases in x and y.

Property 2. F increases in r and s if $(x-y)(a^2x-b^2y) > 0$ and decreases if $(x-y)(a^2x-b^2y) < 0$

Property 3. F increases in a if (x-y)(r+s) > 0 and decreases if (x-y)(r+s) < 0, F decreases in b if (x-y)(r+s) > 0 and increases if (x-y)(r+s) < 0

2. Main result

In this paper we investigate convexity properties of one-parameter means defined as

(6)
$$F_h(r) = F_h(r; a, b; x, y) = F(r, r+h; a, b; x, y)$$

It is obvious that the monotonicity of F_h matches that of F. The main result consists of the following:

Theorem 1. If $(x-y)(a^2x-b^2y) > 0$ then $F_h(r)$ is log-convex in $(-\infty, -h/2)$ and log-concave in $(-h/2, \infty)$.

If $(x-y)(a^2x-b^2y) < 0$ then F_h is log-concave in $(-\infty, -h/2)$ and log-convex in $(-h/2, \infty)$.

Theorem 2. If F_h is log-convex in a neighborhood of r_0 then for every real t

$$F_h(r_0 - t)F_h(r_0 + t) \ge F_h^2(r_0).$$

If F_h is log-concave in a neighborhood of r_0 then for every real t

$$F_h(r_0 - t)F_h(r_0 + t) \le F_h^2(r_0).$$

The following corollaries are immediate consequence of theorems 1 and 2:

Corollary 3. For $x \neq y$ the one-parameter mean F(r) is log-convex for r < -1/2 and log-concave for r > -1/2. If $r_0 > -1/2$ then for all real t $F(r_0 - t)F(r_0 + t) \leq F^2(r_0)$. For $r_0 < -1/2$ the inequality reverses.

Proof.
$$F(r; x, y) = F_1(r; 1, 1; x, y).$$

Corollary 4. For $x \neq y$ the Lehmer mean L(r) is log-convex for r < -1/2and log-concave for r > -1/2. If $r_0 > -1/2$ then for all real t $L(r_0-t)L(r_0+t) \le L^2(r_0)$. For $r_0 < -1/2$ the inequality reverses.

Proof.
$$L(r; x, y) = F_1(r; x, y; x, y).$$

 $\mathbf{2}$

In the last section we present some inequalities between classical means that can be obtained from theorem 2.

3. Lemmas

Note that in general case (6) can be written as

(7)
$$F_h(r) = y \left(\frac{A^{r+h} - 1}{B^{r+h} - 1} \middle/ \frac{A^r - 1}{B^r - 1} \right)^{1/h},$$

where

$$A = \frac{ax}{by}$$
 and $B = \frac{a}{b}$.

It is enough to prove our theorems only in case the expression (7) makes sense. Other cases follow from the continuity of F.

Lemma 1. $sgn((x - y)(a^2x - b^2y)) = sgn(\log^2 A - \log^2 B).$

Proof. Lemma easily follows from the fact that $sgn(x - y) = sgn \log \frac{x}{y}$.

Lemma 2. For all real t

$$F_h(-h/2 - t)F_h(-h/2 + t) = F_h^2(-h/2).$$

$$\begin{split} &Proof.\\ F_h^h(-h/2-t)F_h^h(-h/2+t) = \\ &= y^{2h}\frac{A^{h/2-t}-1}{B^{h/2-t}-1}\cdot\frac{B^{-h/2-t}-1}{A^{-h/2-t}-1}\cdot\frac{A^{h/2+t}-1}{B^{h/2+t}-1}\cdot\frac{B^{-h/2+t}-1}{A^{-h/2+t}-1} \\ &= y^{2h}\frac{B^{-h}}{A^{-h}}\cdot\frac{A^{h/2-t}-1}{B^{h/2-t}-1}\cdot\frac{1-B^{h/2+t}}{1-A^{h/2+t}}\cdot\frac{A^{h/2+t}-1}{B^{h/2+t}-1}\cdot\frac{1-B^{h/2-t}}{1-A^{h/2-t}} \\ &= y^{2h}\left(\frac{x}{y}\right)^h = (xy)^h = F_h^{2h}(-h/2). \end{split}$$

 Let

$$g(t, A, B) = \frac{A^t \log^2 A}{(A^t - 1)^2} - \frac{B^t \log^2 B}{(B^t - 1)^2}.$$

Lemma 3.

- (1) $g(t, A, B) = g(\pm t, A^{\pm 1}, B^{\pm 1}),$ (2) g is increasing in t on $(0, \infty)$ if $\log^2 A \log^2 B > 0$ and decreasing otherwise.

Proof. (1) becomes obvious when we write

$$g(t, A, B) = \frac{\log^2 A}{A^t - 2 + A^{-t}} - \frac{\log^2 B}{B^t - 2 + B^{-t}}.$$

From (1) if follows that replacing A, B with A^{-1}, B^{-1} if necessary we may assume that A, B > 1. In this case $\operatorname{sgn}(\log^2 A - \log^2 B) = \operatorname{sgn}(A^t - B^t)$.

$$\frac{\partial g}{\partial t} = -\frac{A^t (A^t + 1) \log^3 A}{(A^t - 1)^3} + \frac{B^t (B^t + 1) \log^3 B}{(B^t - 1)^3}$$
$$= -\frac{1}{t^3} (\phi(A^t) - \phi(B^t)) = -\frac{1}{t^3} (A^t - B^t) \phi'(\xi),$$

where $\xi > 1$ lies between A^t and B^t and

$$\phi(u) = \frac{u(u+1)\log^3 u}{(u-1)^3}.$$

To complete the proof it is enough to show that $\phi'(u) < 0$ for u > 1.

$$\phi'(u) = \frac{(u^2 + 4u + 1)\log^2 u}{(u - 1)^4} \left[\frac{3(u^2 - 1)}{u^2 + 4u + 1} - \log u\right]$$

so the sign of ϕ' is the same as the sign of $\psi(u) = \frac{3(u^2-1)}{u^2+4u+1} - \log u$. But $\psi(1) = 0$ and $\psi'(u) = -(u-1)^4/(u^2+4u+1)^2 < 0$, so $\phi(u) < 0$. \Box Let us remind now certain property of convex functions:

Property 4. If f is convex (concave) then for h > 0 the function g(x) = f(x+h) - f(x) is increasing (decreasing). For h < 0 the monotonicity of g reverses.

For log-convex f the same holds for g(x) = f(x+h)/f(x).

4. Proofs

Now we are ready to prove the main results

Proof of Theorem 1. Straightforward computation shows that

$$\frac{d^2}{dt^2} \log F_h(t) = h^{-1}(g(t, A, B) - g(t + h, A, B))$$

= $h^{-1}(g(|t|, A, B) - g(|t + h|, A, B))$ (by Lemma 3 (1)),

and the assertion follows Lemma 3(2) and from inequality |t| < |t+h| valid if and only if t > -h/2 and h > 0 or t < -h/2 and h < 0.

Proof of Theorem 2. Suppose $r_0 > -h/2$ and F_h is log-convex near r_0 (proof of other cases is similar).

Due to symmetry it is enough to show the inequality

(8)
$$F_h(r_0 - t)F_h(r_0 + t) \ge F_n^2(r_0)$$

for t > 0.

From theorem 1 we know that F_h is log-convex on $(-h/2, \infty)$, so for t such that $r_0 - t \ge -h/2$ the inequality (8) holds.

If $r_0 - t \le -h/2$ then $-r_0 + t - h \ge -h/2$ and by lemma 2

(9)
$$F_h(r_0 - t)F_h(-r_0 + t - h) = F_h^2(-h/2).$$

From log-convexity we have also

(10)
$$F_h(-h/2)F_h(2r_0+h/2) \ge F_h^2(r_0).$$

Combining (9) and (10) we obtain

$$F_{h}(r_{0}-t)F_{h}(r_{0}+t) = \frac{F_{h}(r_{0}+t)F_{h}^{2}(-h/2)}{F_{h}(-r_{0}+t-h)}$$

$$\geq \frac{F_{h}(r_{0}+t)F_{h}(-h/2)F_{h}^{2}(r_{0})}{F_{h}(-r_{0}+t-h)F_{h}(2r_{0}+h/2)}$$

$$\geq F_{h}^{2}(r_{0}),$$

because

$$\frac{F_h(-h/2)}{F_h(2r_0+h/2)} \ge \frac{F_h(-r_0+t-h)}{F_h(r_0+t)}$$

by property 4.

5. Examples

In the table below we show some inequalities between classical means:

Harmonic mean	H = H(x, y) = 2xy/(x+y)
Geometric mean	$G = G(x, y) = \sqrt{xy}$
Logarithmic mean	$L = L(x, y) = (x - y)/(\log x - \log y)$
Square-mean-root	$Q = Q(x,y) = ((\sqrt{x} + \sqrt{y})/2)^2$
Heronian mean	$N = N(x,y) = (x + \sqrt{xy} + y)/3$
Arithmetic mean	A = A(x, y) = (x + y)/2
Centroidal mean	$T = T(x, y) = 2(x^{2} + xy + y^{2})/3(x + y)$
Root-mean-square	$R=R(x,y)=\sqrt{(x^2+y^2)/2}$

that can be obtained by appropriate choice of parameters in Theorem 2.

No	Inequality	h	r_0	t	a	b
1	$L^2 > C M$	1 /0	0	1	1	1
1	$L^2 \ge GN$	1/2	0	1	1	T
2	$L^2 \ge HT$	1	0	2	1	1
3	$Q^2 \ge AG$	1/2	0	1/2	x	y
4	$Q^2 \ge LN$	1/2	1/2	1/2	1	1
5	$N^2 \ge AL$	1	1/2	1/2	1	1
6	$A^2 \ge LT$	1	1	1	1	1
7	$A^2 \ge GR \text{ or } AG \ge HR$	1	0	1	x	y
8	$LN \ge AG$	1/2	1/2	1	1	1
9	$GN \ge HT$	1	-1	1/2	x	y
10	$AN \ge TG$	1/2	0	1	x	y
11	$LT \ge HC$	1	1	2	1	1
12	$TA \ge NR$	1	1/2	1/2	x	y
13	$L^3 \ge AG^2$	1	0	1	1	1
14	$L^3 \ge GQ^2$	1/2	-1/2	1/2	1	1
15	$N^3 \ge AQ^2$	1/2	1	1/2	1	1
16	$T^3 \ge AR^2$	1	2	1	1	1
17	$LN^2 \geq G^2T$	1	1/2	3/2	1	1

Note that 4 is stronger than 3 (due to inequality 8), 14 is stronger than 13 (due to 3). Also 1 is stronger than 2 because of 9.

$\operatorname{References}$

- Alzer H., Über eine einparametrige Familie von Mittelwerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1987 (1988), 1-9
- [2] Alzer H., Über Lehmers Mittelwertefamilie, Elem. Math. 43 (1988), 50-54
- [3] Leach E. and Sholander M., Extended mean values, Amer. Math. Monthly 85 (1978), 84-90.
- [4] Stolarsky K. B., Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87– 92.
- [5] Qi F., Generalized weighted mean values with two parameters, Proc. Roy. Soc. London Ser. A 454 (1998), no. 1978, 2723-2732.
- [6] Witkowski A., Monotonicity of generalized extended mean values, Colloq. Math. 2004 (in print). [ONLINE: RGMIA Research Report Collection, 7(1), Article 12, 2004 http:/rgmia.vu.edu.au/v7n1.html].
- [7] Witkowski A., Weighted extended mean values, Colloq. Math. 2004 (accepted). [ONLINE: RGMIA Research Report Collection, 7(1), Article 6, 2004 http:/rgmia.vu.edu.au/v7n1.html]

MIELCZARSKIEGO 4/29, 85-796 BYDGOSZCZ, POLAND *E-mail address:* alfred.witkowski@atosorigin.com