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1. Let T'(n) = H1 denote the product of all divisors of n. The
product-of-divisors minimum, resp. maximum functions will be defined

by
T(n)=min{k > 1: n|T(k)} (1)

and
T.(n) =max{k >1: T(k)|n} (2)

There are particular cases of the functions F ]‘f‘, G;‘ defined by
Ff‘(n) =min{k € A: n|f(k)} (3)

and its "dual”

G‘;(n) =max{k € A: g(k)|n}, (4)

where A C N* is a given set, and f,¢g : N* — N are given functions,
introduced in [8] and [9]. For A = N*| f(k) = g(k) = k! one obtains the
Smarandache function S(n), and its dual S,(n), given by

S(n) =min{k > 1: nl|k!} (5)
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and
Si(n) =max{k >1: klln} (6)

The function S,(n) has been studied in [8], [9], [4], [1], [3]. For A = N*,
f(k) = g(k) = ¢(k), one obtains the Euler minimum, resp. maximum
functions

E(n) =min{k > 1: n|e(k)} (7)
studied in [6], [8], [13], resp., its dual
E.(n) =max{k >1: p(k)|n}, (8)

studied in [13].
For A =N* f(k) = g(k) = S(k) one has the Smarandache minimum

and maximum functions
Smin(n) = min{k > 1: n|S(k)}, 9)
Smaz(n) = max{k >1: S(k)|n}, (10)
introduced, and studied in [15]. The divisor minimum function
D(n) =min{k > 1: n|d(k)} (11)

(where d(k) is the number of divisors of k) appears in [14], while the

sum-of-divisors minimum and maximum functions
Y(n) =min{k > 1: n|o(k)} (12)

Yu(n) =max{k >1: o(k)|n} (13)

have been recently studied in [16].
For functions Q(n),Q1(n) obtained from (3) for f(k) = k! and A =

set of perfect squares, resp. A = set of squarefree numbers, see [10].
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2. The aim of this note is to study some properties of the functions
7 (n) and 7.(n) given by (1) and (2). We note that properties of T'(n) in
connection with multiplicatively perfect numbers” have been introduced
in [11]. For other asymptotic properties of T'(n), see [7]. For divisibility
properties of T'(o(n)) with T'(n), see [5]. For asymptotic results of sums
of type Z ﬁ, see [17].

n<z

A divisor i of n is called "unitary” if (i, ﬁ) = 1. Let T*(n) be the
product of unitary divisors of n. For similar résults to [11] for T*(n), or
T**(n) (i.e. the product of ”bi-unitary” divisors of n), see [2]. The product
of "exponential” divisors T,(n) is introduced in paper [12]. Clearly, one
can introduce functions of type (1) and (2) for T'(n) replaced with one of
the above functions 7*(n), T**, T.(n), but these functions will be studied
in another paper.

3. The following auxiliary result will be important in what follows.

Lemma 1.

T(n) = nd™/2, (14)

where d(n) is the number of divisors of n.
Proof. This is well-known, see e.g. [11].
Lemma 2.
T(a)|T(b) iff a|b (15)

Proof. If a|b, then for any d|a one has d|b, so T'(a)|T'(b). Reciprocally,
if T'(a)|T'(b), let y,(a) be the exponent of the prime in a. Clearly, if p|a,
then p|b, otherwise T'(a)|T(b) is impossible. If p?»®)||b, then we must have
Yp(a) < 7,(b). Writing this fact for all prime divisors of a, we get alb.

Theorem 1. If n is squarefree, then
T(n)=n (16)
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Proof. Let n = pips...p,, where p; (i = 1,r) are distinct primes.
The relation pips...p.|T(k) gives p;|T(k), so there is a d|k, so that
pi|d. But then p;|k for all i = 1,r, thus pips...p, = n|k. Since
P12 - - - Pe|T (P1p2 - - . pr), the least k is exactly pips ... p,, proving (16).

Remark. Thus, if p is a prime, 7 (p) = p; if p < ¢ are primes, then

T (pq) = pg, etc.
Theorem 2. If a|b, a # b and b is squarefree, then

T (ab) = b (17)

Proof. If a|b, a # b, then clearly T'(b) = Hd is divisible by ab, so
dlb
7 (ab) < b. Reciprocally, if ab|T(k), let p|b a prime divisor of b. Then

p|T(k), so (see the proof of Theorem 1) p|k. But b being squarefree (i.e.
a product of distinct primes), this implies b|k. The least such k is clearly
k=b.

For example, 7(12) = T7(2-6) =6, 7(18) =7(3-6) = 6, 7(20) =
T(2-10) = 10.

Theorem 3. 7(T'(n)) =n for alln > 1. (18)

Proof. Let T'(n)|T'(k). Then by (15) one can write n|k. The least k
with this property is k = n, proving relation (18).

Theorem 4. Let p; (i = 1,7) be distinct primes, and a; > 1 positive

integers. Then

max {T (ﬁpf“) D= W} <7 (ﬁpf‘l) <
i=1 =1

<l.em.T(pt),...,T(p2)] (19)



Proof. In [13] it is proved that for A = N* and any function f such
that F}'" (n) = Ff(n) is well defined, one has

max{Fy(p{") : i =11} < Fy (HP?) (20)
i=1
On the other hand, if f satisfies the property
alp = f(a)lf(b) (a,b=1), (21)

then
Fy (préi> <lem.[Fr(p), ..., Fr(py")] (22)
i=1

By Lemma 2, (21) is true for f(a) = T'(a), and by using (20), (22),
relation (19) follows.

Theorem 5.
T(2") =29, (23)

where o 1s the least positive integer such that

ala+1)
2

>n (24)
Proof. By (14), 2"|T(k) iff 2" |k?%)/2 Let k = pS* ... p®, when d(k) =
(ay +1)...(a, 4+ 1). Since 227|k4*) = p?l(aﬁl)'"(a"ﬂ) . .p?’”(alﬂ)”'(arﬂ)
(let p1 < pa < -+ < p,), clearly p; = 2 and the least k is when ay =
- = a, = 0 and oy is the least positive integer with 2n < ay(a; + 1).
This proves (23), with (24).
For example, 7T (2%) = 4, since a = 2, T(2%) = 4 again, 7(2!) = 8
since a = 3, etc.
For odd prime powers, the things are more complicated. For example,

for 3" one has:



Theorem 6.
7(3") = min{3%*,2 - 32} (25)

. . ap (o +1
where o is the least positive integer such that M > n, and oo
is the least positive integer such that ag(a + 1) > n.

Proof. As in the proof of Theorem 5,

32n|p(111(0¢1+1)---(06r+1) _p§2(a1+1)...(a1+1) N .pg,«(al—f—l)...(ar—}—l),

where p; < py < --- < p,, so we can distinguish two cases:
a)pr=2,pp=3, p3=>5
b) p1 =3, p2 > 5.
Then k = 2% -3%2 .. p% > 2%1.3% in case a), and k > 3% in case b).
So for the least & we must have as(ay + 1)(ae + 1) > 2n with ay = 1 in

M>nand

case a), and aj(a; + 1) > 2n in case b). Therefore
as(ap + 1) > n, and we must select k with the least of 3% and 2! - 392,
so Theorem 6 follows.

For example, 7 (3%) = 6 since for n =2, a; = 2, ay = 1, and min{2 -
31,32} = 6; 7(3%) = 9 since for n = 3, @y = 2, ap = 2 and min{2 -
32,32} = 0.

Theorem 7. Let [ : [1,00) — [0,00) be given by f(x) = \/zlogz.
Then

ft(logn) < T(n)<n (26)

for allm > 1, where f=! denotes the inverse function of f.

Proof. Since n|T'(n), the right side of (26) follows by definition (1)
of T(n). On the other hand, by the known inequality d(k) < 2v'k, and
Lemma 1 (see (14)) we get T(k) < kV¥, so log T(k) < Vklogk = f(k).
Since n|T'(k) implies n < T'(k), so logn < logT(k) < f(k), and the



function f being strictly increasing and continuous, by the bijectivity of
f, the left side of (26) follows.

4. The function 7, (n) given by (2) differs in many aspects from 7 (n).
The first such property is:

Theorem 8. 7.(n) < n for all n, with equality only if n =1 orn =
prime.

Proof. If T'(k)|n, then T'(k) < n. But T'(k) > k, so k < n, and the
inequality follows.

Let us now suppose that for n > 1, 7,(n) = n. Then T'(n)|n, by
definition 2. On the other hand, clearly n|T'(n), so T'(n) = n. This is
possible only when n = prime.

Remark. Therefore the equality
T.n)=n (n>1)

is a characterization of the prime numbers.
Lemma 3. Let py,...,p, be given distinct primes (r > 1). Then the
equation

T(k) =pip2...pr

is solvable iff r = 1.

Proof. Since p;|T'(k), we get p;|k for all i = 1,7. Thus p; ... p.|k, and
Lemma 2 implies T'(py ...p,)|T(k) = p1...p.. Since py ... p|T(p1...pp),
we have T'(py...p.) = p1...p, which by Theorem 8 is possible only if
r=1.

Theorem 9. Let P(n) denote the greatest prime factor of n > 1. If
n 1s squarefree, then

Z.(n) = P(n) (27)



Proof. Let n = pips...p., Where p;1 < py < --- < p,.. If
T(k)|(p1--.pr), then clearly T'(k) € {1,p1,...,Dr,p1P2,--,P1P2---Dr}-
By Lemma 3 we cannot have T'(k) € {pip2,...,p1p2...p}, so T(k) €
{1,p1,...,p}, when k € {1,p1,...,p,}. The greatest k is p, = P(n).

Remark. Therefore 7, (pq) = ¢ for p < q. For example, 7,(2-7) =7,
7.(3:-5)=5,7.(3-7)=7,7.(2-11) = 11, etc.

Theorem 10.

T.(p") =p" (p = prime) (28)
where « is the greatest integer with the property

aletl) (29)

Proof. If T(k)|p", then T'(k) = p™ for m < n. Let ¢ be a prime
divisor of k. Then ¢ = T'(q)|T (k) = 2™ implies ¢ = p, so k = p. But then
T(k) = p*@*Y/2 with o the greatest number such that a(a +1)/2 < n,
which finishes the proof of (28).
ala+1)

2

For example, 7,(4) = 2, since < 2 gives e = 1.

1
7.(16) = 4, since % < 4 is satisfied with a,,e, = 2.

1
7.(9) = 3, and 7,(27) = 9 since OC(OCT—F)

Theorem 11. Let p,q be distinct primes. Then

< 3 with ayee = 2.

T.(p*q) = max{p, ¢} (30)

Proof. If T'(k)|p*q, then T(k) € {1,p,q, p? pq,p*°q}. The equations
T(k) = p*, T(k) = pq, T(k) = p*q are impossible. For example, for the
first equation, this can be proved as follows. By p|T'(k) one has pl|k, so
k = pm. Then p(pm) are in T'(k), so m = 1. But then T'(k) = p # p*.
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For the last equation, k& = (pg)m and pgm(pm)(gm)(pgm) are in T'(k),
which is impossible.

Theorem 12. Let p,q be distinct primes. Then

T.(p*q) = max{p?, ¢} (31)

Proof. As above, T'(k) € {1,p,q,pq,p’q,p’q,p* p’} and T(k) €
{pq, p*q, p>q,p*} are impossible. But T'(k) = p® by Lemma 1 gives
k) = pS so k = p™, when d(k) = m + 1. This gives m(m + 1) = 6, so
m = 2. Thus k = p%. Since p < p? the result follows.

Remark. The equation
T(k) = p* (32)

can be solved only if k%) = p?* so k = p™ and we get m(m + 1) = 2s.
Therefore k = p™, with m(m + 1) = 2s, if this is solvable. If s is not a
triangular number, this is impossible.
Theorem 13. Let p,q be distinct primes. Then
max{p, q}, if s is not a triangular number,

T.(p°q) =
P max{p",q}, if s = M
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