The product of divisors minimum and maximum functions

József Sándor

Babeş-Bolyai University of Cluj, Romania

1. Let $T(n) = \prod_{i|n} i$ denote the product of all divisors of n. The product-of-divisors minimum, resp. maximum functions will be defined by

$$\mathcal{T}(n) = \min\{k \ge 1 : \ n | T(k)\}$$
(1)

and

$$\mathcal{T}_{*}(n) = \max\{k \ge 1 : T(k)|n\}$$
(2)

There are particular cases of the functions F_f^A, G_g^A defined by

$$F_f^A(n) = \min\{k \in A : n | f(k)\}$$
 (3)

and its "dual"

$$G_g^A(n) = \max\{k \in A : g(k)|n\},$$
 (4)

where $A \subset \mathbb{N}^*$ is a given set, and $f, g : \mathbb{N}^* \to \mathbb{N}$ are given functions, introduced in [8] and [9]. For $A = \mathbb{N}^*$, f(k) = g(k) = k! one obtains the Smarandache function S(n), and its dual $S_*(n)$, given by

$$S(n) = \min\{k \ge 1 : n|k!\}$$
 (5)

and

$$S_*(n) = \max\{k \ge 1 : k! | n\}$$
(6)

The function $S_*(n)$ has been studied in [8], [9], [4], [1], [3]. For $A = \mathbb{N}^*$, $f(k) = g(k) = \varphi(k)$, one obtains the Euler minimum, resp. maximum functions

$$E(n) = \min\{k \ge 1 : n | \varphi(k)\}$$
(7)

studied in [6], [8], [13], resp., its dual

$$E_*(n) = \max\{k \ge 1 : \varphi(k)|n\},\tag{8}$$

studied in [13].

For $A = \mathbb{N}^*$, f(k) = g(k) = S(k) one has the Smarandache minimum and maximum functions

$$S_{min}(n) = \min\{k \ge 1 : n | S(k)\},$$
(9)

$$S_{max}(n) = \max\{k \ge 1: S(k)|n\},$$
 (10)

introduced, and studied in [15]. The divisor minimum function

$$D(n) = \min\{k \ge 1 : \ n | d(k)\}$$
(11)

(where d(k) is the number of divisors of k) appears in [14], while the sum-of-divisors minimum and maximum functions

$$\Sigma(n) = \min\{k \ge 1 : \ n | \sigma(k)\}$$
(12)

$$\Sigma_*(n) = \max\{k \ge 1 : \ \sigma(k)|n\}$$
(13)

have been recently studied in [16].

For functions $Q(n), Q_1(n)$ obtained from (3) for f(k) = k! and A = set of perfect squares, resp. A = set of squarefree numbers, see [10].

2. The aim of this note is to study some properties of the functions $\mathcal{T}(n)$ and $\mathcal{T}_*(n)$ given by (1) and (2). We note that properties of T(n) in connection with "multiplicatively perfect numbers" have been introduced in [11]. For other asymptotic properties of T(n), see [7]. For divisibility properties of $T(\sigma(n))$ with T(n), see [5]. For asymptotic results of sums of type $\sum_{n \leq x} \frac{1}{T(n)}$, see [17].

A divisor *i* of *n* is called "unitary" if $\left(i, \frac{n}{i}\right) = 1$. Let $T^*(n)$ be the product of unitary divisors of *n*. For similar results to [11] for $T^*(n)$, or $T^{**}(n)$ (i.e. the product of "bi-unitary" divisors of *n*), see [2]. The product of "exponential" divisors $T_e(n)$ is introduced in paper [12]. Clearly, one can introduce functions of type (1) and (2) for T(n) replaced with one of the above functions $T^*(n), T^{**}, T_e(n)$, but these functions will be studied in another paper.

The following auxiliary result will be important in what follows.
 Lemma 1.

$$T(n) = n^{d(n)/2},$$
 (14)

where d(n) is the number of divisors of n.

Proof. This is well-known, see e.g. [11].

Lemma 2.

$$T(a)|T(b) \text{ iff } a|b \tag{15}$$

Proof. If a|b, then for any d|a one has d|b, so T(a)|T(b). Reciprocally, if T(a)|T(b), let $\gamma_p(a)$ be the exponent of the prime in a. Clearly, if p|a, then p|b, otherwise T(a)|T(b) is impossible. If $p^{\gamma_p(b)}||b$, then we must have $\gamma_p(a) \leq \gamma_p(b)$. Writing this fact for all prime divisors of a, we get a|b.

Theorem 1. If n is squarefree, then

$$\mathcal{T}(n) = n \tag{16}$$

Proof. Let $n = p_1 p_2 \dots p_r$, where p_i $(i = \overline{1, r})$ are distinct primes. The relation $p_1 p_2 \dots p_r | T(k)$ gives $p_i | T(k)$, so there is a d | k, so that $p_i | d$. But then $p_i | k$ for all $i = \overline{1, r}$, thus $p_1 p_2 \dots p_r = n | k$. Since $p_1 p_2 \dots p_k | T(p_1 p_2 \dots p_k)$, the least k is exactly $p_1 p_2 \dots p_r$, proving (16).

Remark. Thus, if p is a prime, $\mathcal{T}(p) = p$; if p < q are primes, then $\mathcal{T}(pq) = pq$, etc.

Theorem 2. If $a|b, a \neq b$ and b is squarefree, then

$$\mathcal{T}(ab) = b \tag{17}$$

Proof. If $a|b, a \neq b$, then clearly $T(b) = \prod_{d|b} d$ is divisible by ab, so $\mathcal{T}(ab) \leq b$. Reciprocally, if ab|T(k), let p|b a prime divisor of b. Then p|T(k), so (see the proof of Theorem 1) p|k. But b being squarefree (i.e. a product of distinct primes), this implies b|k. The least such k is clearly k = b.

For example, $\mathcal{T}(12) = \mathcal{T}(2 \cdot 6) = 6$, $\mathcal{T}(18) = \mathcal{T}(3 \cdot 6) = 6$, $\mathcal{T}(20) = \mathcal{T}(2 \cdot 10) = 10$.

Theorem 3. $\mathcal{T}(T(n)) = n \text{ for all } n \ge 1.$ (18)

Proof. Let T(n)|T(k). Then by (15) one can write n|k. The least k with this property is k = n, proving relation (18).

Theorem 4. Let p_i $(i = \overline{1, r})$ be distinct primes, and $\alpha_i \ge 1$ positive integers. Then

$$\max\left\{ \mathcal{T}\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right): i = \overline{1, r} \right\} \leq \mathcal{T}\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right) \leq \\ \leq l.c.m.[\mathcal{T}(p_{1}^{\alpha_{1}}), \dots, \mathcal{T}(p_{r}^{\alpha_{r}})]$$
(19)

Proof. In [13] it is proved that for $A = \mathbb{N}^*$, and any function f such that $F_f^{\mathbb{N}^*}(n) = F_f(n)$ is well defined, one has

$$\max\{F_f(p_i^{\alpha_i}): \ i = \overline{1, r}\} \le F_f\left(\prod_{i=1}^r p_i^{\alpha_i}\right)$$
(20)

On the other hand, if f satisfies the property

$$a|b \Rightarrow f(a)|f(b) \quad (a,b \ge 1),$$
 (21)

then

$$F_f\left(\prod_{i=1}^r p_i^{\alpha_i}\right) \le l.c.m.[F_f(p_1^{\alpha_1}), \dots, F_f(p_r^{\alpha_r})]$$
(22)

By Lemma 2, (21) is true for f(a) = T(a), and by using (20), (22), relation (19) follows.

Theorem 5.

$$\mathcal{T}(2^n) = 2^\alpha,\tag{23}$$

where α is the least positive integer such that

$$\frac{\alpha(\alpha+1)}{2} \ge n \tag{24}$$

Proof. By (14), $2^n |T(k)$ iff $2^n |k^{d(k)/2}$. Let $k = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, when $d(k) = (\alpha_1 + 1) \dots (\alpha_r + 1)$. Since $2^{2n} |k^{d(k)} = p_1^{\alpha_1(\alpha_1+1)\dots(\alpha_r+1)} \dots p_r^{\alpha_r(\alpha_1+1)\dots(\alpha_r+1)}$ (let $p_1 < p_2 < \dots < p_r$), clearly $p_1 = 2$ and the least k is when $\alpha_2 = \dots = \alpha_r = 0$ and α_1 is the least positive integer with $2n \le \alpha_1(\alpha_1 + 1)$. This proves (23), with (24).

For example, $\mathcal{T}(2^2) = 4$, since $\alpha = 2$, $\mathcal{T}(2^3) = 4$ again, $\mathcal{T}(2^4) = 8$ since $\alpha = 3$, etc.

For odd prime powers, the things are more complicated. For example, for 3^n one has:

Theorem 6.

$$\mathcal{T}(3^n) = \min\{3^{\alpha_1}, 2 \cdot 3^{\alpha_2}\},\tag{25}$$

where α_1 is the least positive integer such that $\frac{\alpha_1(\alpha_1+1)}{2} \ge n$, and α_2 is the least positive integer such that $\alpha_2(\alpha_2+1) \ge n$.

Proof. As in the proof of Theorem 5,

$$3^{2n} | p_1^{\alpha_1(\alpha_1+1)\dots(\alpha_r+1)} \cdot p_2^{\alpha_2(\alpha_1+1)\dots(\alpha_1+1)} \dots p_r^{\alpha_r(\alpha_1+1)\dots(\alpha_r+1)},$$

where $p_1 < p_2 < \cdots < p_r$, so we can distinguish two cases:

- a) $p_1 = 2, p_2 = 3, p_3 \ge 5$
- b) $p_1 = 3, p_2 \ge 5.$

Then $k = 2^{\alpha_1} \cdot 3^{\alpha_2} \dots p_r^{\alpha_r} \ge 2^{\alpha_1} \cdot 3^{\alpha_2}$ in case a), and $k \ge 3^{\alpha_1}$ in case b). So for the least k we must have $\alpha_2(\alpha_1 + 1)(\alpha_2 + 1) \ge 2n$ with $\alpha_1 = 1$ in case a), and $\alpha_1(\alpha_1 + 1) \ge 2n$ in case b). Therefore $\frac{\alpha_1(\alpha_1 + 1)}{2} \ge n$ and $\alpha_2(\alpha_2 + 1) \ge n$, and we must select k with the least of 3^{α_1} and $2^1 \cdot 3^{\alpha_2}$, so Theorem 6 follows.

For example, $\mathcal{T}(3^2) = 6$ since for n = 2, $\alpha_1 = 2$, $\alpha_2 = 1$, and $\min\{2 \cdot 3^1, 3^2\} = 6$; $\mathcal{T}(3^3) = 9$ since for n = 3, $\alpha_1 = 2$, $\alpha_2 = 2$ and $\min\{2 \cdot 3^2, 3^2\} = 9$.

Theorem 7. Let $f : [1, \infty) \to [0, \infty)$ be given by $f(x) = \sqrt{x} \log x$. Then

$$f^{-1}(\log n) < \mathcal{T}(n) \le n \tag{26}$$

for all $n \ge 1$, where f^{-1} denotes the inverse function of f.

Proof. Since n|T(n), the right side of (26) follows by definition (1) of $\mathcal{T}(n)$. On the other hand, by the known inequality $d(k) < 2\sqrt{k}$, and Lemma 1 (see (14)) we get $T(k) < k^{\sqrt{k}}$, so $\log T(k) < \sqrt{k} \log k = f(k)$. Since n|T(k) implies $n \leq T(k)$, so $\log n \leq \log T(k) < f(k)$, and the

function f being strictly increasing and continuous, by the bijectivity of f, the left side of (26) follows.

4. The function $\mathcal{T}_*(n)$ given by (2) differs in many aspects from $\mathcal{T}(n)$. The first such property is:

Theorem 8. $\mathcal{T}_*(n) \leq n$ for all n, with equality only if n = 1 or n = prime.

Proof. If T(k)|n, then $T(k) \leq n$. But $T(k) \geq k$, so $k \leq n$, and the inequality follows.

Let us now suppose that for n > 1, $\mathcal{T}_*(n) = n$. Then T(n)|n, by definition 2. On the other hand, clearly n|T(n), so T(n) = n. This is possible only when n =prime.

Remark. Therefore the equality

$$\mathcal{T}_*(n) = n \quad (n > 1)$$

is a characterization of the prime numbers.

Lemma 3. Let p_1, \ldots, p_r be given distinct primes $(r \ge 1)$. Then the equation

$$T(k) = p_1 p_2 \dots p_r$$

is solvable iff r = 1.

Proof. Since $p_i|T(k)$, we get $p_i|k$ for all $i = \overline{1, r}$. Thus $p_1 \dots p_r|k$, and Lemma 2 implies $T(p_1 \dots p_r)|T(k) = p_1 \dots p_r$. Since $p_1 \dots p_r|T(p_1 \dots p_r)$, we have $T(p_1 \dots p_r) = p_1 \dots p_r$, which by Theorem 8 is possible only if r = 1.

Theorem 9. Let P(n) denote the greatest prime factor of n > 1. If *n* is squarefree, then

$$\mathcal{T}_*(n) = P(n) \tag{27}$$

Proof. Let $n = p_1 p_2 \dots p_r$, where $p_1 < p_2 < \dots < p_r$. If $T(k)|(p_1 \dots p_r)$, then clearly $T(k) \in \{1, p_1, \dots, p_r, p_1 p_2, \dots, p_1 p_2 \dots p_r\}$. By Lemma 3 we cannot have $T(k) \in \{p_1 p_2, \dots, p_1 p_2 \dots p_r\}$, so $T(k) \in \{1, p_1, \dots, p_r\}$, when $k \in \{1, p_1, \dots, p_r\}$. The greatest k is $p_r = P(n)$.

Remark. Therefore $\mathcal{T}_{*}(pq) = q$ for p < q. For example, $\mathcal{T}_{*}(2 \cdot 7) = 7$, $\mathcal{T}_{*}(3 \cdot 5) = 5$, $\mathcal{T}_{*}(3 \cdot 7) = 7$, $\mathcal{T}_{*}(2 \cdot 11) = 11$, etc.

Theorem 10.

$$\mathcal{T}_*(p^n) = p^\alpha \quad (p = prime) \tag{28}$$

where α is the greatest integer with the property

$$\frac{\alpha(\alpha+1)}{2} \le n \tag{29}$$

Proof. If $T(k)|p^n$, then $T(k) = p^m$ for $m \leq n$. Let q be a prime divisor of k. Then $q = T(q)|T(k) = 2^m$ implies q = p, so $k = p^{\alpha}$. But then $T(k) = p^{\alpha(\alpha+1)/2}$ with α the greatest number such that $\alpha(\alpha+1)/2 \leq n$, which finishes the proof of (28).

For example, $\mathcal{T}_*(4) = 2$, since $\frac{\alpha(\alpha+1)}{2} \leq 2$ gives $\alpha_{max} = 1$. $\mathcal{T}_*(16) = 4$, since $\frac{\alpha(\alpha+1)}{2} \leq 4$ is satisfied with $\alpha_{max} = 2$. $\mathcal{T}_*(9) = 3$, and $\mathcal{T}_*(27) = 9$ since $\frac{\alpha(\alpha+1)}{2} \leq 3$ with $\alpha_{max} = 2$. **Theorem 11.** Let p, q be distinct primes. Then

$$\mathcal{T}_*(p^2q) = \max\{p,q\}\tag{30}$$

Proof. If $T(k)|p^2q$, then $T(k) \in \{1, p, q, p^2, pq, p^2q\}$. The equations $T(k) = p^2$, T(k) = pq, $T(k) = p^2q$ are impossible. For example, for the first equation, this can be proved as follows. By p|T(k) one has p|k, so k = pm. Then p(pm) are in T(k), so m = 1. But then $T(k) = p \neq p^2$.

For the last equation, k = (pq)m and pqm(pm)(qm)(pqm) are in T(k), which is impossible.

Theorem 12. Let p, q be distinct primes. Then

$$\mathcal{T}_*(p^3 q) = \max\{p^2, q\} \tag{31}$$

Proof. As above, $T(k) \in \{1, p, q, pq, p^2q, p^3q, p^2, p^3\}$ and $T(k) \in \{pq, p^2q, p^3q, p^2\}$ are impossible. But $T(k) = p^3$ by Lemma 1 gives $k^{d(k)} = p^6$, so $k = p^m$, when d(k) = m + 1. This gives m(m + 1) = 6, so m = 2. Thus $k = p^2$. Since $p < p^2$ the result follows.

Remark. The equation

$$T(k) = p^s \tag{32}$$

can be solved only if $k^{d(k)} = p^{2s}$, so $k = p^m$ and we get m(m+1) = 2s. Therefore $k = p^m$, with m(m+1) = 2s, if this is solvable. If s is not a **triangular number**, this is impossible.

Theorem 13. Let p, q be distinct primes. Then

$$\mathcal{T}_*(p^s q) = \begin{cases} \max\{p, q\}, & \text{if } s \text{ is not a triangular number,} \\ \max\{p^n, q\}, & \text{if } s = \frac{m(m+1)}{2}. \end{cases}$$

References

- K. Atanasov, Remark on József Sándor and Florian Luca's theorem,
 C. R. Acad. Bulg. Sci. 55(2002), no. 10, 9-14.
- [2] A. Bege, On multiplicatively unitary perfect numbers, Seminar on Fixed Point Theory, Cluj-Napoca, 2(2001), 59-63.

- [3] M. Le, A conjecture concerning the Smarandache dual function, Smarandache Notion J. 14(2004), 153-155.
- [4] F. Luca, On a divisibility property involving factorials, C. R. Acad. Bulg. Sci. 53(2000), no. 6, 35-38.
- [5] F. Luca, On the product of divisors of n and $\sigma(n)$, J. Ineq. Pure Appl. Math. 4(2003), no. 2, 7 pp. (electronic).
- [6] P. Moree and H. Roskam, On an arithmetical function related to Euler's totient and the discriminantor, Fib. Quart. 33(1995), 332-340.
- [7] T. Šalát and J. Tomanová, On the product of divisors of a positive integer, Math. Slovaca 52(2002), no. 3, 271-287.
- [8] J. Sándor, On certain generalizations of the Smarandache function, Notes Number Theory Discr. Math. 5(1999), no. 2, 41-51.
- [9] J. Sándor, On certain generalizations of the Smarandache function, Smarandache Notions J. 11(2000), no. 1-3, 202-212.
- [10] J. Sándor, The Smarandache function of a set, Octogon Math. Mag. 9(2001), no. 1B, 369-371.
- [11] J. Sándor, On multiplicatively perfect numbers, J. Ineq. Pure Appl. Math. 2(2001), no. 1, 6 pp. (electronic).
- [12] J. Sándor, On multiplicatively e-perfect numbers, (to appear).
- [13] J. Sándor, On the Euler minimum and maximum functions, (to appear).

- [14] J. Sándor, A note on the divisor minimum function, (to appear).
- [15] J. Sándor, *The Smarandache minimum and maximum functions*, (to appear).
- [16] J. Sándor, The sum-of-divisors minimum and maximum functions, (to appear).
- [17] Z. Weiyi, On the divisor product sequence, Smarandache Notions J., 14(2004), 144-146.