The product of divisors minimum and maximum functions

József Sándor
Babeş-Bolyai University of Cluj, Romania

1. Let $T(n)=\prod_{i \mid n} i$ denote the product of all divisors of n. The product-of-divisors minimum, resp. maximum functions will be defined by

$$
\begin{equation*}
\mathcal{T}(n)=\min \{k \geq 1: n \mid T(k)\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{*}(n)=\max \{k \geq 1: T(k) \mid n\} \tag{2}
\end{equation*}
$$

There are particular cases of the functions F_{f}^{A}, G_{g}^{A} defined by

$$
\begin{equation*}
F_{f}^{A}(n)=\min \{k \in A: n \mid f(k)\} \tag{3}
\end{equation*}
$$

and its "dual"

$$
\begin{equation*}
G_{g}^{A}(n)=\max \{k \in A: g(k) \mid n\} \tag{4}
\end{equation*}
$$

where $A \subset \mathbb{N}^{*}$ is a given set, and $f, g: \mathbb{N}^{*} \rightarrow \mathbb{N}$ are given functions, introduced in [8] and [9]. For $A=\mathbb{N}^{*}, f(k)=g(k)=k$! one obtains the Smarandache function $S(n)$, and its dual $S_{*}(n)$, given by

$$
\begin{equation*}
S(n)=\min \{k \geq 1: n \mid k!\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{*}(n)=\max \{k \geq 1: k!\mid n\} \tag{6}
\end{equation*}
$$

The function $S_{*}(n)$ has been studied in [8], [9], [4], [1], [3]. For $A=\mathbb{N}^{*}$, $f(k)=g(k)=\varphi(k)$, one obtains the Euler minimum, resp. maximum functions

$$
\begin{equation*}
E(n)=\min \{k \geq 1: n \mid \varphi(k)\} \tag{7}
\end{equation*}
$$

studied in [6], [8], [13], resp., its dual

$$
\begin{equation*}
E_{*}(n)=\max \{k \geq 1: \varphi(k) \mid n\} \tag{8}
\end{equation*}
$$

studied in [13].
For $A=\mathbb{N}^{*}, f(k)=g(k)=S(k)$ one has the Smarandache minimum and maximum functions

$$
\begin{align*}
& S_{\text {min }}(n)=\min \{k \geq 1: n \mid S(k)\}, \tag{9}\\
& S_{\text {max }}(n)=\max \{k \geq 1: S(k) \mid n\}, \tag{10}
\end{align*}
$$

introduced, and studied in [15]. The divisor minimum function

$$
\begin{equation*}
D(n)=\min \{k \geq 1: n \mid d(k)\} \tag{11}
\end{equation*}
$$

(where $d(k)$ is the number of divisors of k) appears in [14], while the sum-of-divisors minimum and maximum functions

$$
\begin{align*}
\Sigma(n) & =\min \{k \geq 1: n \mid \sigma(k)\} \tag{12}\\
\Sigma_{*}(n) & =\max \{k \geq 1: \sigma(k) \mid n\} \tag{13}
\end{align*}
$$

have been recently studied in [16].
For functions $Q(n), Q_{1}(n)$ obtained from (3) for $f(k)=k!$ and $A=$ set of perfect squares, resp. $A=$ set of squarefree numbers, see [10].
2. The aim of this note is to study some properties of the functions $\mathcal{T}(n)$ and $\mathcal{T}_{*}(n)$ given by (1) and (2). We note that properties of $T(n)$ in connection with "multiplicatively perfect numbers" have been introduced in [11]. For other asymptotic properties of $T(n)$, see [7]. For divisibility properties of $T(\sigma(n))$ with $T(n)$, see [5]. For asymptotic results of sums of type $\sum_{n \leq x} \frac{1}{T(n)}$, see [17].

A divisor i of n is called "unitary" if $\left(i, \frac{n}{i}\right)=1$. Let $T^{*}(n)$ be the product of unitary divisors of n. For similar results to [11] for $T^{*}(n)$, or $T^{* *}(n)$ (i.e. the product of "bi-unitary" divisors of n), see [2]. The product of "exponential" divisors $T_{e}(n)$ is introduced in paper [12]. Clearly, one can introduce functions of type (1) and (2) for $T(n)$ replaced with one of the above functions $T^{*}(n), T^{* *}, T_{e}(n)$, but these functions will be studied in another paper.
3. The following auxiliary result will be important in what follows.

Lemma 1.

$$
\begin{equation*}
T(n)=n^{d(n) / 2} \tag{14}
\end{equation*}
$$

where $d(n)$ is the number of divisors of n.
Proof. This is well-known, see e.g. [11].

Lemma 2.

$$
\begin{equation*}
T(a) \mid T(b) \text { iff } a \mid b \tag{15}
\end{equation*}
$$

Proof. If $a \mid b$, then for any $d \mid a$ one has $d \mid b$, so $T(a) \mid T(b)$. Reciprocally, if $T(a) \mid T(b)$, let $\gamma_{p}(a)$ be the exponent of the prime in a. Clearly, if $p \mid a$, then $p \mid b$, otherwise $T(a) \mid T(b)$ is impossible. If $p^{\gamma_{p}(b)} \| b$, then we must have $\gamma_{p}(a) \leq \gamma_{p}(b)$. Writing this fact for all prime divisors of a, we get $a \mid b$.

Theorem 1. If n is squarefree, then

$$
\begin{equation*}
\mathcal{T}(n)=n \tag{16}
\end{equation*}
$$

Proof. Let $n=p_{1} p_{2} \ldots p_{r}$, where $p_{i}(i=\overline{1, r})$ are distinct primes. The relation $p_{1} p_{2} \ldots p_{r} \mid T(k)$ gives $p_{i} \mid T(k)$, so there is a $d \mid k$, so that $p_{i} \mid d$. But then $p_{i} \mid k$ for all $i=\overline{1, r}$, thus $p_{1} p_{2} \ldots p_{r}=n \mid k$. Since $p_{1} p_{2} \ldots p_{k} \mid T\left(p_{1} p_{2} \ldots p_{k}\right)$, the least k is exactly $p_{1} p_{2} \ldots p_{r}$, proving (16).

Remark. Thus, if p is a prime, $\mathcal{T}(p)=p$; if $p<q$ are primes, then $\mathcal{T}(p q)=p q$, etc.

Theorem 2. If $a \mid b, a \neq b$ and b is squarefree, then

$$
\begin{equation*}
\mathcal{T}(a b)=b \tag{17}
\end{equation*}
$$

Proof. If $a \mid b, a \neq b$, then clearly $T(b)=\prod_{d \mid b} d$ is divisible by $a b$, so $\mathcal{T}(a b) \leq b$. Reciprocally, if $a b \mid T(k)$, let $p \mid b$ a prime divisor of b. Then $p \mid T(k)$, so (see the proof of Theorem 1) $p \mid k$. But b being squarefree (i.e. a product of distinct primes), this implies $b \mid k$. The least such k is clearly $k=b$.

For example, $\mathcal{T}(12)=\mathcal{T}(2 \cdot 6)=6, \mathcal{T}(18)=\mathcal{T}(3 \cdot 6)=6, \mathcal{T}(20)=$ $\mathcal{T}(2 \cdot 10)=10$.

Theorem 3. $\mathcal{T}(T(n))=n$ for all $n \geq 1$.
Proof. Let $T(n) \mid T(k)$. Then by (15) one can write $n \mid k$. The least k with this property is $k=n$, proving relation (18).

Theorem 4. Let $p_{i}(i=\overline{1, r})$ be distinct primes, and $\alpha_{i} \geq 1$ positive integers. Then

$$
\begin{gather*}
\max \left\{\mathcal{T}\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right): i=\overline{1, r}\right\} \leq \mathcal{T}\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right) \leq \\
\leq \text { l.c.m. }\left[\mathcal{T}\left(p_{1}^{\alpha_{1}}\right), \ldots, \mathcal{T}\left(p_{r}^{\alpha_{r}}\right)\right] \tag{19}
\end{gather*}
$$

Proof. In [13] it is proved that for $A=\mathbb{N}^{*}$, and any function f such that $F_{f}^{\mathbb{N}^{*}}(n)=F_{f}(n)$ is well defined, one has

$$
\begin{equation*}
\max \left\{F_{f}\left(p_{i}^{\alpha_{i}}\right): i=\overline{1, r}\right\} \leq F_{f}\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right) \tag{20}
\end{equation*}
$$

On the other hand, if f satisfies the property

$$
\begin{equation*}
a|b \Rightarrow f(a)| f(b) \quad(a, b \geq 1) \tag{21}
\end{equation*}
$$

then

$$
\begin{equation*}
F_{f}\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right) \leq l . c . m .\left[F_{f}\left(p_{1}^{\alpha_{1}}\right), \ldots, F_{f}\left(p_{r}^{\alpha_{r}}\right)\right] \tag{22}
\end{equation*}
$$

By Lemma 2, (21) is true for $f(a)=T(a)$, and by using (20), (22), relation (19) follows.

Theorem 5.

$$
\begin{equation*}
\mathcal{T}\left(2^{n}\right)=2^{\alpha}, \tag{23}
\end{equation*}
$$

where α is the least positive integer such that

$$
\begin{equation*}
\frac{\alpha(\alpha+1)}{2} \geq n \tag{24}
\end{equation*}
$$

Proof. By (14), $2^{n} \mid T(k)$ iff $2^{n} \mid k^{d(k) / 2}$. Let $k=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$, when $d(k)=$ $\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)$. Since $2^{2 n} \mid k^{d(k)}=p_{1}^{\alpha_{1}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)} \ldots p_{r}^{\alpha_{r}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)}$ (let $p_{1}<p_{2}<\cdots<p_{r}$), clearly $p_{1}=2$ and the least k is when $\alpha_{2}=$ $\cdots=\alpha_{r}=0$ and α_{1} is the least positive integer with $2 n \leq \alpha_{1}\left(\alpha_{1}+1\right)$. This proves (23), with (24).

For example, $\mathcal{T}\left(2^{2}\right)=4$, since $\alpha=2, \mathcal{T}\left(2^{3}\right)=4$ again, $\mathcal{T}\left(2^{4}\right)=8$ since $\alpha=3$, etc.

For odd prime powers, the things are more complicated. For example, for 3^{n} one has:

Theorem 6.

$$
\begin{equation*}
\mathcal{T}\left(3^{n}\right)=\min \left\{3^{\alpha_{1}}, 2 \cdot 3^{\alpha_{2}}\right\}, \tag{25}
\end{equation*}
$$

where α_{1} is the least positive integer such that $\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \geq n$, and α_{2} is the least positive integer such that $\alpha_{2}\left(\alpha_{2}+1\right) \geq n$.

Proof. As in the proof of Theorem 5,

$$
3^{2 n} \mid p_{1}^{\alpha_{1}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)} \cdot p_{2}^{\alpha_{2}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{1}+1\right)} \ldots p_{r}^{\alpha_{r}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)},
$$

where $p_{1}<p_{2}<\cdots<p_{r}$, so we can distinguish two cases:
a) $p_{1}=2, p_{2}=3, p_{3} \geq 5$
b) $p_{1}=3, p_{2} \geq 5$.

Then $k=2^{\alpha_{1}} \cdot 3^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}} \geq 2^{\alpha_{1}} \cdot 3^{\alpha_{2}}$ in case a), and $k \geq 3^{\alpha_{1}}$ in case b). So for the least k we must have $\alpha_{2}\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \geq 2 n$ with $\alpha_{1}=1$ in case a), and $\alpha_{1}\left(\alpha_{1}+1\right) \geq 2 n$ in case b). Therefore $\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \geq n$ and $\alpha_{2}\left(\alpha_{2}+1\right) \geq n$, and we must select k with the least of $3^{\alpha_{1}}$ and $2^{1} \cdot 3^{\alpha_{2}}$, so Theorem 6 follows.

For example, $\mathcal{T}\left(3^{2}\right)=6$ since for $n=2, \alpha_{1}=2, \alpha_{2}=1$, and $\min \{2$. $\left.3^{1}, 3^{2}\right\}=6 ; \mathcal{T}\left(3^{3}\right)=9$ since for $n=3, \alpha_{1}=2, \alpha_{2}=2$ and $\min \{2$. $\left.3^{2}, 3^{2}\right\}=9$.

Theorem 7. Let $f:[1, \infty) \rightarrow[0, \infty)$ be given by $f(x)=\sqrt{x} \log x$. Then

$$
\begin{equation*}
f^{-1}(\log n)<\mathcal{T}(n) \leq n \tag{26}
\end{equation*}
$$

for all $n \geq 1$, where f^{-1} denotes the inverse function of f.
Proof. Since $n \mid T(n)$, the right side of (26) follows by definition (1) of $\mathcal{T}(n)$. On the other hand, by the known inequality $d(k)<2 \sqrt{k}$, and Lemma 1 (see (14)) we get $T(k)<k^{\sqrt{k}}$, so $\log T(k)<\sqrt{k} \log k=f(k)$. Since $n \mid T(k)$ implies $n \leq T(k)$, so $\log n \leq \log T(k)<f(k)$, and the
function f being strictly increasing and continuous, by the bijectivity of f, the left side of (26) follows.
4. The function $\mathcal{T}_{*}(n)$ given by (2) differs in many aspects from $\mathcal{T}(n)$. The first such property is:

Theorem 8. $\mathcal{T}_{*}(n) \leq n$ for all n, with equality only if $n=1$ or $n=$ prime.

Proof. If $T(k) \mid n$, then $T(k) \leq n$. But $T(k) \geq k$, so $k \leq n$, and the inequality follows.

Let us now suppose that for $n>1, \mathcal{T}_{*}(n)=n$. Then $T(n) \mid n$, by definition 2. On the other hand, clearly $n \mid T(n)$, so $T(n)=n$. This is possible only when $n=$ prime.

Remark. Therefore the equality

$$
\mathcal{T}_{*}(n)=n \quad(n>1)
$$

is a characterization of the prime numbers.
Lemma 3. Let p_{1}, \ldots, p_{r} be given distinct primes $(r \geq 1)$. Then the equation

$$
T(k)=p_{1} p_{2} \ldots p_{r}
$$

is solvable iff $r=1$.
Proof. Since $p_{i} \mid T(k)$, we get $p_{i} \mid k$ for all $i=\overline{1, r}$. Thus $p_{1} \ldots p_{r} \mid k$, and Lemma 2 implies $T\left(p_{1} \ldots p_{r}\right) \mid T(k)=p_{1} \ldots p_{r}$. Since $p_{1} \ldots p_{r} \mid T\left(p_{1} \ldots p_{r}\right)$, we have $T\left(p_{1} \ldots p_{r}\right)=p_{1} \ldots p_{r}$, which by Theorem 8 is possible only if $r=1$.

Theorem 9. Let $P(n)$ denote the greatest prime factor of $n>1$. If n is squarefree, then

$$
\begin{equation*}
\mathcal{T}_{*}(n)=P(n) \tag{27}
\end{equation*}
$$

Proof. Let $n=p_{1} p_{2} \ldots p_{r}$, where $p_{1}<p_{2}<\cdots<p_{r}$. If $T(k) \mid\left(p_{1} \ldots p_{r}\right)$, then clearly $T(k) \in\left\{1, p_{1}, \ldots, p_{r}, p_{1} p_{2}, \ldots, p_{1} p_{2} \ldots p_{r}\right\}$. By Lemma 3 we cannot have $T(k) \in\left\{p_{1} p_{2}, \ldots, p_{1} p_{2} \ldots p_{r}\right\}$, so $T(k) \in$ $\left\{1, p_{1}, \ldots, p_{r}\right\}$, when $k \in\left\{1, p_{1}, \ldots, p_{r}\right\}$. The greatest k is $p_{r}=P(n)$.

Remark. Therefore $\mathcal{T}_{*}(p q)=q$ for $p<q$. For example, $\mathcal{T}_{*}(2 \cdot 7)=7$, $\mathcal{T}_{*}(3 \cdot 5)=5, \mathcal{T}_{*}(3 \cdot 7)=7, \mathcal{T}_{*}(2 \cdot 11)=11$, etc.

Theorem 10.

$$
\begin{equation*}
\mathcal{T}_{*}\left(p^{n}\right)=p^{\alpha} \quad(p=\text { prime }) \tag{28}
\end{equation*}
$$

where α is the greatest integer with the property

$$
\begin{equation*}
\frac{\alpha(\alpha+1)}{2} \leq n \tag{29}
\end{equation*}
$$

Proof. If $T(k) \mid p^{n}$, then $T(k)=p^{m}$ for $m \leq n$. Let q be a prime divisor of k. Then $q=T(q) \mid T(k)=2^{m}$ implies $q=p$, so $k=p^{\alpha}$. But then $T(k)=p^{\alpha(\alpha+1) / 2}$ with α the greatest number such that $\alpha(\alpha+1) / 2 \leq n$, which finishes the proof of (28).

For example, $\mathcal{T}_{*}(4)=2$, since $\frac{\alpha(\alpha+1)}{2} \leq 2$ gives $\alpha_{\max }=1$.
$\mathcal{T}_{*}(16)=4$, since $\frac{\alpha(\alpha+1)}{2} \leq 4$ is satisfied with $\alpha_{\max }=2$.
$\mathcal{T}_{*}(9)=3$, and $\mathcal{T}_{*}(27)=9$ since $\frac{\alpha(\alpha+1)}{2} \leq 3$ with $\alpha_{\max }=2$.
Theorem 11. Let p, q be distinct primes. Then

$$
\begin{equation*}
\mathcal{T}_{*}\left(p^{2} q\right)=\max \{p, q\} \tag{30}
\end{equation*}
$$

Proof. If $T(k) \mid p^{2} q$, then $T(k) \in\left\{1, p, q, p^{2}, p q, p^{2} q\right\}$. The equations $T(k)=p^{2}, T(k)=p q, T(k)=p^{2} q$ are impossible. For example, for the first equation, this can be proved as follows. By $p \mid T(k)$ one has $p \mid k$, so $k=p m$. Then $p(p m)$ are in $T(k)$, so $m=1$. But then $T(k)=p \neq p^{2}$.

For the last equation, $k=(p q) m$ and $p q m(p m)(q m)(p q m)$ are in $T(k)$, which is impossible.

Theorem 12. Let p, q be distinct primes. Then

$$
\begin{equation*}
\mathcal{T}_{*}\left(p^{3} q\right)=\max \left\{p^{2}, q\right\} \tag{31}
\end{equation*}
$$

Proof. As above, $T(k) \in\left\{1, p, q, p q, p^{2} q, p^{3} q, p^{2}, p^{3}\right\}$ and $T(k) \in$ $\left\{p q, p^{2} q, p^{3} q, p^{2}\right\}$ are impossible. But $T(k)=p^{3}$ by Lemma 1 gives $k^{d(k)}=p^{6}$, so $k=p^{m}$, when $d(k)=m+1$. This gives $m(m+1)=6$, so $m=2$. Thus $k=p^{2}$. Since $p<p^{2}$ the result follows.

Remark. The equation

$$
\begin{equation*}
T(k)=p^{s} \tag{32}
\end{equation*}
$$

can be solved only if $k^{d(k)}=p^{2 s}$, so $k=p^{m}$ and we get $m(m+1)=2 s$. Therefore $k=p^{m}$, with $m(m+1)=2 s$, if this is solvable. If s is not a triangular number, this is impossible.

Theorem 13. Let p, q be distinct primes. Then

$$
\mathcal{T}_{*}\left(p^{s} q\right)=\left\{\begin{array}{l}
\max \{p, q\}, \text { if } s \text { is not a triangular number }, \\
\max \left\{p^{n}, q\right\}, \text { if } s=\frac{m(m+1)}{2}
\end{array}\right.
$$

References

[1] K. Atanasov, Remark on József Sándor and Florian Luca's theorem, C. R. Acad. Bulg. Sci. 55(2002), no. 10, 9-14.
[2] A. Bege, On multiplicatively unitary perfect numbers, Seminar on Fixed Point Theory, Cluj-Napoca, 2(2001), 59-63.
[3] M. Le, A conjecture concerning the Smarandache dual function, Smarandache Notion J. 14(2004), 153-155.
[4] F. Luca, On a divisibility property involving factorials, C. R. Acad. Bulg. Sci. 53(2000), no. 6, 35-38.
[5] F. Luca, On the product of divisors of n and $\sigma(n)$, J. Ineq. Pure Appl. Math. 4(2003), no. 2, 7 pp. (electronic).
[6] P. Moree and H. Roskam, On an arithmetical function related to Euler's totient and the discriminantor, Fib. Quart. 33(1995), 332340.
[7] T. Šalát and J. Tomanová, On the product of divisors of a positive integer, Math. Slovaca 52(2002), no. 3, 271-287.
[8] J. Sándor, On certain generalizations of the Smarandache function, Notes Number Theory Discr. Math. 5(1999), no. 2, 41-51.
[9] J. Sándor, On certain generalizations of the Smarandache function, Smarandache Notions J. 11(2000), no. 1-3, 202-212.
[10] J. Sándor, The Smarandache function of a set, Octogon Math. Mag. 9(2001), no. 1B, 369-371.
[11] J. Sándor, On multiplicatively perfect numbers, J. Ineq. Pure Appl. Math. 2(2001), no. 1, 6 pp. (electronic).
[12] J. Sándor, On multiplicatively e-perfect numbers, (to appear).
[13] J. Sándor, On the Euler minimum and maximum functions, (to appear).
[14] J. Sándor, A note on the divisor minimum function, (to appear).
[15] J. Sándor, The Smarandache minimum and maximum functions, (to appear).
[16] J. Sándor, The sum-of-divisors minimum and maximum functions, (to appear).
[17] Z. Weiyi, On the divisor product sequence, Smarandache Notions J., 14(2004), 144-146.

