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1. Let T (n) =
∏
i|n

i denote the product of all divisors of n. The

product-of-divisors minimum, resp. maximum functions will be defined

by

T (n) = min{k ≥ 1 : n|T (k)} (1)

and

T∗(n) = max{k ≥ 1 : T (k)|n} (2)

There are particular cases of the functions FA
f , GA

g defined by

FA
f (n) = min{k ∈ A : n|f(k)} (3)

and its ”dual”

GA
g (n) = max{k ∈ A : g(k)|n}, (4)

where A ⊂ N∗ is a given set, and f, g : N∗ → N are given functions,

introduced in [8] and [9]. For A = N∗, f(k) = g(k) = k! one obtains the

Smarandache function S(n), and its dual S∗(n), given by

S(n) = min{k ≥ 1 : n|k!} (5)
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and

S∗(n) = max{k ≥ 1 : k!|n} (6)

The function S∗(n) has been studied in [8], [9], [4], [1], [3]. For A = N∗,

f(k) = g(k) = ϕ(k), one obtains the Euler minimum, resp. maximum

functions

E(n) = min{k ≥ 1 : n|ϕ(k)} (7)

studied in [6], [8], [13], resp., its dual

E∗(n) = max{k ≥ 1 : ϕ(k)|n}, (8)

studied in [13].

For A = N∗, f(k) = g(k) = S(k) one has the Smarandache minimum

and maximum functions

Smin(n) = min{k ≥ 1 : n|S(k)}, (9)

Smax(n) = max{k ≥ 1 : S(k)|n}, (10)

introduced, and studied in [15]. The divisor minimum function

D(n) = min{k ≥ 1 : n|d(k)} (11)

(where d(k) is the number of divisors of k) appears in [14], while the

sum-of-divisors minimum and maximum functions

Σ(n) = min{k ≥ 1 : n|σ(k)} (12)

Σ∗(n) = max{k ≥ 1 : σ(k)|n} (13)

have been recently studied in [16].

For functions Q(n), Q1(n) obtained from (3) for f(k) = k! and A =

set of perfect squares, resp. A = set of squarefree numbers, see [10].
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2. The aim of this note is to study some properties of the functions

T (n) and T∗(n) given by (1) and (2). We note that properties of T (n) in

connection with ”multiplicatively perfect numbers” have been introduced

in [11]. For other asymptotic properties of T (n), see [7]. For divisibility

properties of T (σ(n)) with T (n), see [5]. For asymptotic results of sums

of type
∑
n≤x

1

T (n)
, see [17].

A divisor i of n is called ”unitary” if
(
i,

n

i

)
= 1. Let T ∗(n) be the

product of unitary divisors of n. For similar results to [11] for T ∗(n), or

T ∗∗(n) (i.e. the product of ”bi-unitary” divisors of n), see [2]. The product

of ”exponential” divisors Te(n) is introduced in paper [12]. Clearly, one

can introduce functions of type (1) and (2) for T (n) replaced with one of

the above functions T ∗(n), T ∗∗, Te(n), but these functions will be studied

in another paper.

3. The following auxiliary result will be important in what follows.

Lemma 1.

T (n) = nd(n)/2, (14)

where d(n) is the number of divisors of n.

Proof. This is well-known, see e.g. [11].

Lemma 2.

T (a)|T (b) iff a|b (15)

Proof. If a|b, then for any d|a one has d|b, so T (a)|T (b). Reciprocally,

if T (a)|T (b), let γp(a) be the exponent of the prime in a. Clearly, if p|a,

then p|b, otherwise T (a)|T (b) is impossible. If pγp(b)‖b, then we must have

γp(a) ≤ γp(b). Writing this fact for all prime divisors of a, we get a|b.
Theorem 1. If n is squarefree, then

T (n) = n (16)
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Proof. Let n = p1p2 . . . pr, where pi (i = 1, r) are distinct primes.

The relation p1p2 . . . pr|T (k) gives pi|T (k), so there is a d|k, so that

pi|d. But then pi|k for all i = 1, r, thus p1p2 . . . pr = n|k. Since

p1p2 . . . pk|T (p1p2 . . . pk), the least k is exactly p1p2 . . . pr, proving (16).

Remark. Thus, if p is a prime, T (p) = p; if p < q are primes, then

T (pq) = pq, etc.

Theorem 2. If a|b, a 6= b and b is squarefree, then

T (ab) = b (17)

Proof. If a|b, a 6= b, then clearly T (b) =
∏
d|b

d is divisible by ab, so

T (ab) ≤ b. Reciprocally, if ab|T (k), let p|b a prime divisor of b. Then

p|T (k), so (see the proof of Theorem 1) p|k. But b being squarefree (i.e.

a product of distinct primes), this implies b|k. The least such k is clearly

k = b.

For example, T (12) = T (2 · 6) = 6, T (18) = T (3 · 6) = 6, T (20) =

T (2 · 10) = 10.

Theorem 3. T (T (n)) = n for all n ≥ 1. (18)

Proof. Let T (n)|T (k). Then by (15) one can write n|k. The least k

with this property is k = n, proving relation (18).

Theorem 4. Let pi (i = 1, r) be distinct primes, and αi ≥ 1 positive

integers. Then

max

{
T

(
r∏

i=1

pαi
i

)
: i = 1, r

}
≤ T

(
r∏

i=1

pαi
i

)
≤

≤ l.c.m.[T (pα1
1 ), . . . , T (pαr

r )] (19)
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Proof. In [13] it is proved that for A = N∗, and any function f such

that F N∗

f (n) = Ff (n) is well defined, one has

max{Ff (p
αi
i ) : i = 1, r} ≤ Ff

(
r∏

i=1

pαi
i

)
(20)

On the other hand, if f satisfies the property

a|b ⇒ f(a)|f(b) (a, b ≥ 1), (21)

then

Ff

(
r∏

i=1

pαi
i

)
≤ l.c.m.[Ff (p

α1
1 ), . . . , Ff (p

αr
r )] (22)

By Lemma 2, (21) is true for f(a) = T (a), and by using (20), (22),

relation (19) follows.

Theorem 5.

T (2n) = 2α, (23)

where α is the least positive integer such that

α(α + 1)

2
≥ n (24)

Proof. By (14), 2n|T (k) iff 2n|kd(k)/2. Let k = pα1
1 . . . pαr

r , when d(k) =

(α1 + 1) . . . (αr + 1). Since 22n|kd(k) = p
α1(α1+1)...(αr+1)
1 . . . p

αr(α1+1)...(αr+1)
r

(let p1 < p2 < · · · < pr), clearly p1 = 2 and the least k is when α2 =

· · · = αr = 0 and α1 is the least positive integer with 2n ≤ α1(α1 + 1).

This proves (23), with (24).

For example, T (22) = 4, since α = 2, T (23) = 4 again, T (24) = 8

since α = 3, etc.

For odd prime powers, the things are more complicated. For example,

for 3n one has:
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Theorem 6.

T (3n) = min{3α1 , 2 · 3α2}, (25)

where α1 is the least positive integer such that
α1(α1 + 1)

2
≥ n, and α2

is the least positive integer such that α2(α2 + 1) ≥ n.

Proof. As in the proof of Theorem 5,

32n|pα1(α1+1)...(αr+1)
1 · pα2(α1+1)...(α1+1)

2 . . . pαr(α1+1)...(αr+1)
r ,

where p1 < p2 < · · · < pr, so we can distinguish two cases:

a) p1 = 2, p2 = 3, p3 ≥ 5

b) p1 = 3, p2 ≥ 5.

Then k = 2α1 ·3α2 . . . pαr
r ≥ 2α1 ·3α2 in case a), and k ≥ 3α1 in case b).

So for the least k we must have α2(α1 + 1)(α2 + 1) ≥ 2n with α1 = 1 in

case a), and α1(α1 + 1) ≥ 2n in case b). Therefore
α1(α1 + 1)

2
≥ n and

α2(α2 + 1) ≥ n, and we must select k with the least of 3α1 and 21 · 3α2 ,

so Theorem 6 follows.

For example, T (32) = 6 since for n = 2, α1 = 2, α2 = 1, and min{2 ·
31, 32} = 6; T (33) = 9 since for n = 3, α1 = 2, α2 = 2 and min{2 ·
32, 32} = 9.

Theorem 7. Let f : [1,∞) → [0,∞) be given by f(x) =
√

x log x.

Then

f−1(log n) < T (n) ≤ n (26)

for all n ≥ 1, where f−1 denotes the inverse function of f .

Proof. Since n|T (n), the right side of (26) follows by definition (1)

of T (n). On the other hand, by the known inequality d(k) < 2
√

k, and

Lemma 1 (see (14)) we get T (k) < k
√

k, so log T (k) <
√

k log k = f(k).

Since n|T (k) implies n ≤ T (k), so log n ≤ log T (k) < f(k), and the
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function f being strictly increasing and continuous, by the bijectivity of

f , the left side of (26) follows.

4. The function T∗(n) given by (2) differs in many aspects from T (n).

The first such property is:

Theorem 8. T∗(n) ≤ n for all n, with equality only if n = 1 or n =

prime.

Proof. If T (k)|n, then T (k) ≤ n. But T (k) ≥ k, so k ≤ n, and the

inequality follows.

Let us now suppose that for n > 1, T∗(n) = n. Then T (n)|n, by

definition 2. On the other hand, clearly n|T (n), so T (n) = n. This is

possible only when n = prime.

Remark. Therefore the equality

T∗(n) = n (n > 1)

is a characterization of the prime numbers.

Lemma 3. Let p1, . . . , pr be given distinct primes (r ≥ 1). Then the

equation

T (k) = p1p2 . . . pr

is solvable iff r = 1.

Proof. Since pi|T (k), we get pi|k for all i = 1, r. Thus p1 . . . pr|k, and

Lemma 2 implies T (p1 . . . pr)|T (k) = p1 . . . pr. Since p1 . . . pr|T (p1 . . . pr),

we have T (p1 . . . pr) = p1 . . . pr, which by Theorem 8 is possible only if

r = 1.

Theorem 9. Let P (n) denote the greatest prime factor of n > 1. If

n is squarefree, then

T∗(n) = P (n) (27)
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Proof. Let n = p1p2 . . . pr, where p1 < p2 < · · · < pr. If

T (k)|(p1 . . . pr), then clearly T (k) ∈ {1, p1, . . . , pr, p1p2, . . . , p1p2 . . . pr}.
By Lemma 3 we cannot have T (k) ∈ {p1p2, . . . , p1p2 . . . pr}, so T (k) ∈
{1, p1, . . . , pr}, when k ∈ {1, p1, . . . , pr}. The greatest k is pr = P (n).

Remark. Therefore T∗(pq) = q for p < q. For example, T∗(2 · 7) = 7,

T∗(3 · 5) = 5, T∗(3 · 7) = 7, T∗(2 · 11) = 11, etc.

Theorem 10.

T∗(pn) = pα (p = prime) (28)

where α is the greatest integer with the property

α(α + 1)

2
≤ n (29)

Proof. If T (k)|pn, then T (k) = pm for m ≤ n. Let q be a prime

divisor of k. Then q = T (q)|T (k) = 2m implies q = p, so k = pα. But then

T (k) = pα(α+1)/2 with α the greatest number such that α(α + 1)/2 ≤ n,

which finishes the proof of (28).

For example, T∗(4) = 2, since
α(α + 1)

2
≤ 2 gives αmax = 1.

T∗(16) = 4, since
α(α + 1)

2
≤ 4 is satisfied with αmax = 2.

T∗(9) = 3, and T∗(27) = 9 since
α(α + 1)

2
≤ 3 with αmax = 2.

Theorem 11. Let p, q be distinct primes. Then

T∗(p2q) = max{p, q} (30)

Proof. If T (k)|p2q, then T (k) ∈ {1, p, q, p2, pq, p2q}. The equations

T (k) = p2, T (k) = pq, T (k) = p2q are impossible. For example, for the

first equation, this can be proved as follows. By p|T (k) one has p|k, so

k = pm. Then p(pm) are in T (k), so m = 1. But then T (k) = p 6= p2.
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For the last equation, k = (pq)m and pqm(pm)(qm)(pqm) are in T (k),

which is impossible.

Theorem 12. Let p, q be distinct primes. Then

T∗(p3q) = max{p2, q} (31)

Proof. As above, T (k) ∈ {1, p, q, pq, p2q, p3q, p2, p3} and T (k) ∈
{pq, p2q, p3q, p2} are impossible. But T (k) = p3 by Lemma 1 gives

kd(k) = p6, so k = pm, when d(k) = m + 1. This gives m(m + 1) = 6, so

m = 2. Thus k = p2. Since p < p2 the result follows.

Remark. The equation

T (k) = ps (32)

can be solved only if kd(k) = p2s, so k = pm and we get m(m + 1) = 2s.

Therefore k = pm, with m(m + 1) = 2s, if this is solvable. If s is not a

triangular number, this is impossible.

Theorem 13. Let p, q be distinct primes. Then

T∗(psq) =

 max{p, q}, if s is not a triangular number,

max{pn, q}, if s =
m(m + 1)

2
.
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