On the Certain Extensions of Hilbert Inequality

Zhao Changjian^{1,2} Mihály Bencze³

1 Department of Mathematics, Binzhou College, Shandong, 256600, P. R. China

2 Department of Mathematics, Shanghai University, Shanghai, 200436, P. R. China

3 Str. Harmanului, RO-2212 6, Sacele, Jud. Brasov, Romania

Abstract In this paper we establish some new inequalities similar to certain extensions of Hilbert inequality.

MR (2000) Subject Classification 26D15

Keywords Hilbert inequality, Jensen integral inequality, Hölder inequality.

1 Introduction

In[1,P.284] the following the extension of Hilbert inequality is given

Theorem A If
$$p > 1, q > 1, \frac{1}{p} + \frac{1}{q} \ge 1, 0 < \lambda = 2 - \frac{1}{p} - \frac{1}{q} = \frac{1}{p'} + \frac{1}{q'} \le 1$$
, then

$$\sum_{1}^{\infty} \sum_{1}^{\infty} \frac{a_m b_n}{(m+n)^{\lambda}} \le k \left(\sum_{1}^{\infty} a_m^p\right)^{1/p} \left(\sum_{1}^{\infty} b_n^q\right)^{1/q},$$
(1)

where k = k(p,q) depends on p and q only.

The integral analogue of Theorem A can be stated as follows^[1, P.286]

Theorem B Under the same conditions as in Theorem A , we have

$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{(x+y)^{\lambda}} dx dy \le k \Big(\int_0^\infty p^p(x) dx\Big)^{1/p} \Big(\int_0^\infty g^q(y) dy\Big)^{1/q},\tag{2}$$

where k = k(p,q) depends on p and q only.

The inequalities in Theorems A and B were studied extensively and numerous variants, generalizations, and extensions appeared in the literature, see [2-7]. Recently, in [8] inqualities have given similar to the inequalities given in Theorems A and B. The main purpose of this paper is to establish some new inequalities similar to Theorems A and B, too. Our results provide new estimates on inequalities of this type.

2 Main Results

Our main results are given in the following Theorems

Theorem 1 Let a(s) and b(t) be real-valued nonnegative non-decreasing functions defined on N_m and N_n , respectively, where $N_m = \{0, 1, 2, \dots, m\}, N_n = \{0, 1, 2, \dots, n\}$ and define the operator ∇ by

Foundation item. 1. Supported by National Natural Sciences Foundation of China (10271071).

^{2.} Supported by Academic Mainstay of Middle-age and Youth Foundation of Shandong Province of China.

 $\nabla u(t) = u(t) - u(t-1)$ for any non-decreasing function u defined on $N_0 = \{0, 1, 2, \dots\}$. Let $p \ge 1, q \ge 1$ and $h > 1, \frac{1}{h} + \frac{1}{l} = 1$. Then

$$\sum_{s=1}^{m} \sum_{t=1}^{n} \frac{hl \left(a(s) - a(0)\right)^{p} \left(b(t) - b(0)\right)^{q}}{l \cdot s^{h-1} + h \cdot t^{l-1}}$$

$$\leq pq \cdot m^{(h-1)/h} \cdot n^{(l-1)/l} \left(\sum_{s=1}^{m} (m-s+1) \left(\nabla a(s) \cdot \left(a(s) - a(0)\right)^{p-1}\right)^{h}\right)^{1/h}$$

$$\times \left(\sum_{t=1}^{n} (n-t+1) \left(\nabla b(t) \cdot \left(b(t) - b(0)\right)^{q-1}\right)^{l}\right)^{1/l}.$$
(3)

Proof: From the hypotheses, it is easy to observe that

$$a(s) - a(0) = \sum_{\tau=1}^{s} \nabla a(\tau), s \in N_m$$

$$\tag{4}$$

$$b(t) - b(0) = \sum_{\sigma=1}^{t} \nabla b(\sigma), t \in N_n$$
(5)

By using the elementary inequality [1, P.40], $x^p - y^q \le px^{p-1}(x-y)$, where $x \ge 0, y \ge 0$ and $p \ge 1$, we have

$$\left(a(s+1) - a(0) \right)^p - \left(a(s) - a(0) \right)^p \le p \left(a(s+1) - a(0) \right)^{p-1} \left(a(s+1) - a(s) \right)$$
$$= p \left(a(s+1) - a(0) \right)^{p-1} \cdot \nabla a(s+1)$$

and

$$\sum_{s=0}^{k-1} \left(\left(a(s+1) - a(0) \right)^p - \left(a(s) - a(0) \right)^p \right) = \left(a(k) - a(0) \right)^p$$
$$\leq p \sum_{s=0}^{k-1} \nabla a(s+1) \cdot \left(a(s+1) - a(0) \right)^{p-1} = p \sum_{s=1}^k \nabla a(s) \cdot \left(a(s) - a(0) \right)^{p-1}$$

Thus

$$\left(a(s) - a(0)\right)^{p} \le p \sum_{\tau=1}^{s} \nabla a(\tau) \cdot \left(a(\tau) - a(0)\right)^{p-1}$$
(6)

and similarly

$$\left(b(t) - b(0)\right)^{q} \le q \sum_{\sigma=1}^{t} \nabla b(\sigma) \cdot \left(b(\sigma) - b(0)\right)^{q-1}$$
(7)

From (6),(7) and using Hölder inequality and the elementary inequality^[9]

$$xy \le \frac{x^h}{h} + \frac{y^l}{l} \tag{8}$$

where $x \ge 0, y \ge 0$ and $\frac{1}{h} + \frac{1}{l} = 1, h > 1$, then

$$\left(a(s) - a(0)\right)^{p} \left(b(t) - b(0)\right)^{q} \le pq \sum_{\tau=1}^{s} \nabla a(\tau) \cdot \left(a(\tau) - a(0)\right)^{p-1}$$

$$\times \sum_{\sigma=1}^{t} \nabla b(\sigma) \cdot \left(b(\sigma) - b(0)\right)^{q-1}$$

$$\leq pq \cdot s^{(h-1)/h} \left(\sum_{\tau=1}^{s} \left(\nabla a(\tau) \cdot \left(a(\tau) - a(0)\right)^{p-1}\right)^{h}\right)^{1/h}$$

$$\times t^{(l-1)/l} \left(\sum_{\sigma=1}^{t} \left(\nabla b(\sigma) \cdot \left(b(\sigma) - b(0)\right)^{q-1}\right)^{l}\right)^{1/l}$$

$$\leq \frac{pq(l \cdot s^{h-1} + h \cdot t^{l-1})}{hl} \left(\sum_{\tau=1}^{s} \left(\nabla a(\tau) \cdot \left(a(\tau) - a(0)\right)^{p-1}\right)^{h}\right)^{1/h}$$

$$\times \left(\sum_{\sigma=1}^{t} \left(\nabla b(\sigma) \cdot \left(b(\sigma) - b(0)\right)^{q-1}\right)^{l}\right)^{1/l}$$
(9)

Dividing both sides of (9) by $\frac{l \cdot s^{h-1} + h \cdot t^{l-1}}{hl}$ and then taking the sum over t from 1 to n and then the sum over s from 1 to m and using Hölder inequality ,we observe that

$$\begin{split} \sum_{s=1}^{m} \sum_{t=1}^{n} \frac{hl(a(s) - a(0))^{p} (b(t) - b(0))^{q}}{l \cdot s^{h-1} + h \cdot t^{l-1}} &\leq pq \sum_{s=1}^{m} \left(\sum_{\tau=1}^{s} \left(\nabla a(\tau) \cdot \left(a(\tau) - a(0) \right)^{p-1} \right)^{h} \right)^{1/h} \\ &\times \sum_{t=1}^{n} \left(\sum_{\sigma=1}^{t} \left(\nabla b(\sigma) \cdot \left(b(\sigma) - b(0) \right)^{q-1} \right)^{l} \right)^{1/l} \\ &\leq pq \cdot m^{(h-1)/h} \left(\sum_{s=1}^{m} \sum_{\tau=1}^{s} \left(\nabla a(\tau) \cdot \left(a(\tau) - a(0) \right)^{p-1} \right)^{h} \right)^{1/h} \\ &\times n^{(l-1)/l} \left(\sum_{t=1}^{n} \sum_{\sigma=1}^{t} \left(\nabla b(\sigma) \cdot \left(b(\sigma) - b(0) \right)^{q-1} \right)^{l} \right)^{1/l} \\ &= pq \cdot m^{(h-1)/h} \cdot n^{(l-1)/l} \left(\sum_{\tau=1}^{m} \left(\nabla a(\tau) \cdot \left(a(\tau) - a(0) \right)^{p-1} \right)^{h} \sum_{s=\tau}^{m} 1 \right)^{h-1} \\ &\times \left(\sum_{\sigma=1}^{n} \left(\nabla b(\sigma) \cdot \left(b(\sigma) - b(0) \right)^{q-1} \right)^{l} \sum_{t=\sigma}^{n} 1 \right)^{l-1} \\ &= pq \cdot m^{(h-1)/h} \cdot n^{(l-1)/l} \left(\sum_{s=1}^{m} (m-s+1) \left(\nabla a(s) \cdot \left(a(s) - a(0) \right)^{p-1} \right)^{h} \right)^{h-1} \\ &\times \left(\sum_{t=1}^{n} (n-t+1) \left(\nabla b(t) \cdot \left(b(t) - b(0) \right)^{q-1} \right)^{l} \right)^{l-1} \end{split}$$

Remark 1: We take p = q = 1, a(0) = b(0) = 0 in (3), the inequality (3) reduces to the following inequality

$$\sum_{s=1}^{m} \sum_{t=1}^{n} \frac{a(s)b(t)}{l \cdot s^{h-1} + h \cdot t^{l-1}} \le \frac{m^{(h-1)/h} \cdot n^{(l-1)/l}}{hl} \left(\sum_{s=1}^{m} (m-s+1) \left(\nabla a(s)\right)^{h}\right)^{1/h}$$

$$\times \left(\sum_{t=1}^{n} (n-t+1) \left(\nabla b(t)\right)^{l}\right)^{1/l} \tag{10}$$

This is just a new inequality similar to Theorem 1 which was given by B.G.Pachpatte in [8].

On the other hand, dividing both sides of (3) by $m^{(h-1)/h} \cdot n^{(l-1)/l}$ and then taking the sum over n from 1 to v and then the sum over m from 1 to u and using Hölder inequality, we get following inequality

$$\sum_{m=1}^{u} \sum_{n=1}^{v} \left(\frac{m^{(1-h)/h}}{n^{(l-1)/l}} \sum_{s=1}^{m} \sum_{t=1}^{n} \frac{hl \left(a(s) - a(0) \right)^{p} \left(b(t) - b(0) \right)^{q}}{l \cdot s^{h-1} + h \cdot t^{l-1}} \right)$$

$$\leq pq \cdot u^{(h-1)/h} \cdot v^{(l-1)/l} \left(\sum_{s=1}^{u} (u - s + 1)(m - s + 1) \left(\nabla a(s) \cdot \left(a(s) - a(0) \right)^{p-1} \right)^{h} \right)^{1/h}$$

$$\times \left(\sum_{t=1}^{v} (v - t + 1)(n - t + 1) \left(\nabla b(t) \cdot \left(b(t) - b(0) \right)^{q-1} \right)^{l} \right)^{1/l}.$$
(11)

where u, v are two nature numbers.

Theorem 2 Let f(s) and g(t) be two real-valued nonnegative, non-decreasing continuous functions defined on [0, x) and [0, y), respectively, where x and y are positive real numbers. Let $p \ge 1, q \ge 1$ and $\frac{1}{h} + \frac{1}{l} = 1, h > 1$, then

$$\int_{0}^{x} \int_{0}^{y} \frac{hl\left(f^{p}(s) - f^{p}(0)\right) \left(g^{q}(t) - g^{q}(0)\right)}{l \cdot s^{h-1} + h \cdot t^{l-1}} ds dt \le pqx^{(h-1)/h} \cdot y^{(l-1)/l} \\ \times \left(\int_{0}^{x} (x-s) \left(f'(s)f^{p-1}(s)\right)^{h} ds\right)^{1/h} \left(\int_{0}^{y} (y-t) \left(g'(t)g^{q-1}(t)\right)^{l} dt\right)^{1/l}.$$
(12)

Proof: From the hypotheses ,we have

$$f^{p}(s) - f^{p}(0) = p \int_{0}^{s} f'(\tau) f^{p-1}(\tau) d\tau, s \in [0, x),$$
(13)

$$g^{q}(t) - g^{q}(0) = q \int_{0}^{t} g'(\sigma) g^{q-1}(\sigma) d\sigma, t \in [0, y).$$
(14)

From (13) and (14) and using Hölder integral inequality and the elementary inequality (8), we have

$$\left(f^{p}(s) - f^{p}(0) \right) \left(g^{q}(t) - g^{q}(0) \right) \leq pq \cdot s^{(h-1)/h} \left(\int_{0}^{s} \left(f'(\tau) f^{p-1}(\tau) \right)^{h} d\tau \right)^{1/h}$$

$$\times t^{(l-1)/l} \left(\int_{0}^{t} \left(g'(\sigma) g^{q-1}(\sigma) \right)^{l} d\sigma \right)^{1/l}$$

$$\leq pq \frac{l \cdot s^{h-1} + h \cdot t^{l-1}}{hl} \left(\int_{0}^{s} \left(f'(\tau) f^{p-1}(\tau) \right)^{h} d\tau \right)^{1/h}$$

$$\times \left(\int_{0}^{t} \left(g'(\sigma) g^{q-1}(\sigma) \right)^{l} d\sigma \right)^{1/l}$$

$$(15)$$

Dividing both sides of (15) by $\frac{l \cdot s^{h-1} + h \cdot t^{l-1}}{hl}$ and integrating over t from 0 to y first and then integrating the resulting inequality over s from 0 to x and using Hölder integral inequality, we get that

$$\begin{split} &\int_{0}^{x} \int_{0}^{y} \frac{hl \Big(f^{p}(s) - f^{p}(0)\Big) \Big(g^{q}(t) - g^{q}(0)\Big)}{l \cdot s^{h-1} + h \cdot t^{l-1}} ds dt \\ &\leq pq \int_{0}^{x} \Big(\int_{0}^{s} \Big(f'(\tau) f^{p-1}(\tau)\Big)^{h} d\tau \Big)^{1/h} ds \times \int_{0}^{y} \Big(\int_{0}^{t} \Big(g'(\sigma) g^{q-1}(\sigma)\Big)^{l} d\sigma \Big)^{1/l} dt \\ &\leq pqx^{(h-1)/h} \cdot y^{(l-1)/l} \bigg(\int_{0}^{x} \Big(\int_{0}^{s} \Big(f'(\tau) f^{p-1}(\tau)\Big)^{h} d\tau \Big) ds \bigg)^{1/h} \bigg(\int_{0}^{y} \Big(\int_{0}^{t} \Big(g'(\sigma) g^{q-1}(\sigma)\Big)^{l} d\sigma \Big) dt \bigg)^{1/l} \\ &= pq \cdot x^{(h-1)/h} \cdot y^{(l-1)/l} \bigg(\int_{0}^{x} (x - s) \Big(f'(s) f^{p-1}(s)\Big)^{h} ds \bigg)^{1/h} \bigg(\int_{0}^{y} (y - t) \Big(g'(t) g^{q-1}(t)\Big)^{l} dt \bigg)^{1/l} \\ &\mathbf{Remark 2} \text{ If we take } p = q = 1, f(0) = g(0) = 0 \text{ in (12), then} \end{split}$$

 $e^{T} = g(0) = g(0) = 0 \text{ in } (12), \text{ order}$

$$\int_{0}^{x} \int_{0}^{y} \frac{f(s)g(t)}{l \cdot s^{h-1} + h^{l-1}} ds dt \leq \frac{x^{(h-1)/h} \cdot y^{(l-1)/l}}{hl}$$

$$\times \left(\int_{0}^{x} (x-s) \left(f'(s)\right)^{h} ds\right)^{1/h} \left(\int_{0}^{y} (y-t) \left(g'(t)\right)^{l} dt\right)^{1/l}.$$
(16)

This is just a new inequality similar to Theorem 2 which was given by B.G.Pachpatte in [8].

On the other hand, we apply the inequality (8) on the right-hand side of (12), we get that

$$\int_{0}^{x} \int_{0}^{y} \frac{hl\left(f^{p}(s) - f^{p}(0)\right)\left(g^{q}(t) - g^{q}(0)\right)}{l \cdot s^{h-1} + h \cdot t^{l-1}} ds dt \leq pqx^{(h-1)/h} \cdot y^{(l-1)/l} \\
\times \left(\frac{1}{h} \int_{0}^{x} (x - s)\left(f'(s)f^{p-1}(s)\right)^{h} ds + \frac{1}{l} \int_{0}^{y} (y - t)\left(g'(t)g^{q-1}(t)\right)^{l} dt\right).$$
(17)

References

- G.H.Hardy. J.E.Littlewood. G.Polya. Inequalities (Chinese edition). Cambridge University Press, 2nd Edition 1972.
- [2] Hu Ke. On Hilbert inequality and its application. Advance Mathematics, 1993,22(2):160-163.
- [3] Gao Mingzhe. On Hilbert inequality and its applications. J.Math.Anal.Appl. 1997,212:316-323.
- [4] Yang Bicheng. On Hilbert's integral inequality. J.Math.Anal.Appl.,1998,220(2):778-785.
- [5] B.G.Pachpatte. On some new inequalities similar to Hilbert's inequality. J.Math.Anal.Appl., 1998,226(1):166-179.
- [6] Yang Bicheng. On a strengthened version of the more accurate Hardy-Hilbert's inequality. Acta Mathematica Sinica, 1999,42(6):1103-1110.
- [7] Zhao Chang-jian. On extensions of some new inqualities similar to Hilbert's inequality. Journal of Mathematics for Technology[J], 2000,16(3):50-53.

- [8] B.G.Pachpatte. Inequilities similar to certain extensions of Hilbert's inequality. J.Math.Anal. Appl.,2000,243(2):217-227.
- [9] D.S.Mitrinovic. Analytic Inequalities. Springer-Verlag, 1970.