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1 Introduction

In recent years several authors [1], [2], [4], [5], [6], [7], [8], [9] and [10] have
gaven considerable attention to Hilbert’s inequalities and Hilbert’s type inequalities
and their various generalizations. In particular, Zhao and Benczel'!] established the

y[10.P:226]

inverses of two new inequalities similar to Hilbert’s inequalit The main

purpose of this paper is to improve these two reverse inequalities.

2 Main results

Our main results are given in the following theorems.

Theorem 1 Let h; > 1 and fi(o;) > 0 for o; € (0,x;) where z; are positive real

1

numbers and define F(s;) = Osi filoi)do; and for s; € (0, x;) and ]%Z +

or 0 <p; <1, wherei=1,...,n. Then

x1 oo T . phe . n , z; ; 1/qi
/ . / Mdsl co-ds, > H hixil/pz (/ (l’z _ Si)‘? dSi) , (1)
0 o C(sistipi) ey 0

where C(si,p;) = [T, (Jy" [P (07)doy) /P
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Proof From the hypotheses,it is easy to observe that
FPi(s,) = Iy / " EN o) fi(o)dow, s € (0,2).
0
Therefore
HFh H hi ( / FhY(g,) fi(ai)dm) (2)
On the other hand,accordlng to Holder integral inequality(see[2] P.154) we have

[ e eastoosz ([ (#te0)"ao) ™ ([ arionae) ™ @
By (2) and (3) yield that

iljFihi = lf[ (/SZ fPi(o;) dal>1/pi</08i <Pwihi1(o_)>qid0_i>1/(h'.

Thus e
[T, E (s:) / b1 i 1/qi
M 70 ) o s, > h( <F i)m) , 4
RS | Y A G R
where C(s;,p;) = [T, () 0 ff’(ai)dai)l/pl.
Integrating both sides of (4) over s; from 0 to x;(: = 1,...,n) and using special

case of Holder integral inequality, we observe that

o o H?: thl(sz> & i 5 — qi 1/
/0 ; —Cési,pi) dSl"'dSnZghi(/o </0 (Fih 1(%’)) d0i> d8i>

([ ([ o)

1=1
n

H " (/ ‘(xi_Si><Fihi_1(5i)>qid8i)l/%

The proof is cornplete.
Remark 1 Taking n = 2,21 = 2,y = x2,51 = 5,52 = t,h1 = h,hy = [,p12 =
D.qi2 = q, Fi(s1) = F(s) and Fy(sy) = G(t) to (1), (1) changes to the following.

1/q

x ( /0 (v-1) (G’—l(t))th) ,
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where C(s,t,p) fo fP(o)do)'/P( fo gP(T)dT)VP,
This is just a new inequality which was given by Zhao and Bencze[11].
Theorem 2 Let f;,F; be as in Theorem 1. Let p;(0;) be n positive functions defined
for o; € (0,z;) and define P;(s;) fo pi(0;)do;, for sz (0, x;), where z; are n posi-
tive real numbers and p;, q; are n real numbers and -+ l =1,p;<0or0<p; <l.
Let ¢; be n real-valued nonnegative, concave, and supermultzplzcatwe functions (f; is

said to be supermultiplicative function if f(x122) > f(x1)f(x2), 21,29 € Ry )defined
on Ry =[0,4+00) Then

o 11¢z i(s:)
[ eedre),
s [ ([ (- Si) (@(%))%d&) " ®)

i=1

L(z;, p;) ﬁ(/ <%>md%>lm

where

and

Dsup) =] ([ siooin) "

i=1
Proof From the hypotheses and by using Jensen inquality and Holder integral

inequality , it is easy to observe that
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Hence,we get that

where D(s;, p;) (et )Upi.
Integrating two sides of (7) over s; from 0 to z; and using Holder integral inequal-

ity, we observe that

where

eI ( [ (4

Remark 2 Taking n = 2,21 = x,y = 22,5 = s1,t = So,hy = h,hy = [,p12 =

P2 = 4, 91(Fi(s1)) = ¢(F(5)), ¢2(Fa(s2)) = »(G(1)), Fi(s1) = F(s) and F(sz) =
G(t) to (5), () changes to the following.
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where




and

D(s,t,p) = (/Ospp(a)da) v (/Ot qp(T)dT> ”

This is just a another new inequality which was given by Zhao and Bencze[11].
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