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Abstract The main purpose of the present article is to generalize two new Hilbert
type integral inequalities which is recent given by Pachpatte, and get two more wide
results.
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1 Introduction

In resent years several authors!’ =5 have given considerable attention to Hilbert integral inequalities
and Hilbert’s type integral inequalities and their various generalizations and applications. In 2000, Pach-
patte [6] proved two new integral inequalities similar to certain extensions of Hilbert’s integral inequality.

In this paper we will generalize these two new inequalities.

2 Main Results

Our main results are given in the following theorems.
THEOREM 1 Let h > 1 and [ > 1 be constants and Zl? + é =1,p>1and I,g = (o, 3), Let f(s)

and g(t) be real-valued continuous functions defined on I, and I, resectively, then
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where

1
K(p7q7‘ray7a7 b) = ZTq(fE — a)(p_l)/p(y - b)(q_l)/q. (2)

Proof: From the hypotheses, we have the following identities
Flsha)=h [ (0" (s € Lo,

where F(s,h,a) = f"(s) — f*(a),
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Hence
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By (3),(4) and the elementary inequality!”
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WherexZO,yZOand%+%:1,p>1, we have
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Dividing both sides of (6) by hl (q(s —a)P=V/P 4 p(t — b)(qfl)/q> and then integrating first over ¢ from
b to y and integrating both sides of the resulting inequality over s from a to x and using Holder integral
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The proof is complete.

Remark 1: Taking h=1=1,a — 0,b — 0 and f(0) = g(0) = 0 in (1), then inequality (1) reduces

1/p

to the following inequality
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where K (p, q,x,y) = »=x®-1/Pyla=1)/q,



This is just an new inequality which was proved by Pachpatte[6].

THEOREM 2: Let h > 1 and ! > 1 be constants and let 1,3 be as in Theorem 1 and %—i—% =1,p>1.
Let f(s,t) and g(k,r) be real-valued continuous functions defined on I,; X I, and I., X Ig,, respectively.
we denote the partial derivatives (9/9s)u(s,t), (0/0t)u(s,t) and (8%/9sOt)u(s,t) by Dyu(s,t), Dau(s,t)
and DyDyu(s,t) = D1Dou(s,t), respectively , then
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where
F(Satv ha a, b) = fh(sﬂt) - fh(a7t) - fh(57 b) + fh(a7b)7
D3D; f(s,t,h) = h(h — 1) f""1(s,t) - D1 f(s,t) - Daf(s,t) + hf""(s,t) - DaDy f(s,t),
G(ka T, la c, d) = gl(kv T) - gl(cv T) - gl(kv d) + gl(ca d)a
D3DiG(k,r,0) = 1(1 = 1)g' ' (k,) - D1g(k,r) - Dag(k,r) +1g'~" (k,7) - DaD1g(k,r),
and
Oy zwabed = (@-am-1)" (- c)w-d))e/ (9
pq
and h > 1,1 > 1, a,b,c and d are constants.
Proof: From the hypotheses of Theorem 2, it is to note that

where (s,t) € Loy X Ipy.

This is, since
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= fh(svt) - fh(a’t) - fh<87b) + fh(aab) = F(Satahaaab)' (11)



for (10), by applying Holder integral inequality
s t
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By (12),(13) and (5), we have
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Dividing both sides of (14) by q((s —a)(t— b)) +p((k e)(r— d)) and then integrating first over
r from d to w then over k£ from c to z and integrating both sides of the resulting inequality over ¢ from b

to y and over s from a to  and using Holder integral inequality and Fubini’s Theorem!®!, we have
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The proof is complete.

Remark 2: It is obvious that inequality (8) is a new Hilbert’s type inequality.

We take h=1=1,a — 0,b — 0,¢ — 0,d — 0, f(0,0) = f(0,¢) + f(s,0) and g(0,0) = ¢g(0,7) + g(k,0)
in (8), we obvious have F(s,t, h,a,b) = f(s,t),G(k,r1,¢c,d) = g(k,r), D5D7 f(s,t,h) = DaD; f(s,t) and
D3 D;g(k,r, 1) = DaD1g(k,r), then inequality (8) reduces to the following inequality

[ [ akisns o< o
(/0 /Oy(x =s)(y—1t) | D2D1 f(s,1) |7 det>1/p</Oz /Ow(z — k)(w — 1) | DaDig(k,r) |9 dkdr)l/q

where

1
C(pa q,%,Y, Z7w) = pfq(fﬂy)(pil)/p(zw)(qfl)/q'

This is just another new inequality which was proved by Pachpatte[6].
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