THE PROPERTIES OF THE GENERALIZED HERON MEAN AND ITS DUAL FORM

ZHI-HUA ZHANG, YU-DONG WU, AND AN-PING ZHAO

ABSTRACT. In this paper, we define the generalized Heron mean $H_r(a, b; k)$ and its dual form $h_r(a, b; k)$, and obtain some propositions for the same means. In the final, an open problem is posed.

1. INTRODUCTION AND DEFINITION

.

For positive numbers a, b, let

(1.1)
$$G = G(a, b) = \sqrt{ab};$$

(1.2)
$$L = L(a,b) = \begin{cases} \frac{a-b}{\ln a - \ln b}, & a \neq b; \\ a, & a = b; \end{cases}$$

(1.3)
$$H = H(a,b) = \frac{a + \sqrt{ab} + b}{3}.$$

These are respectively called the geometric, logarithmic, and Heron means.

In 2003, Zh.-G. Xiao and Zh.-H. Zhang [1] gave the generalization of Heron mean and its dual form respectively as follows

(1.4)
$$H(a,b;k) = \frac{1}{k+1} \sum_{i=0}^{k} a^{\frac{k-i}{k}} b^{\frac{i}{k}},$$

and

(1.5)
$$h(a,b;k) = \frac{1}{k} \sum_{i=1}^{k} a^{\frac{k+1-i}{k+1}} b^{\frac{i}{k+1}}.$$

where k is a natural number. Authors proved that H(a, b; k) is monotone decreasing function and h(a, b; k) is monotone increasing function for k, and $\lim_{k \to +\infty} H(a, b; k) = \lim_{k \to +\infty} h(a, b; k) = L(a, b)$.

Let r be a real number, the r-order power mean (see [2]) is defined by

(1.6)
$$M_r = M_r(a,b) = \begin{cases} \left(\frac{a^r + b^r}{2}\right)^{\frac{1}{r}}, & r \neq 0; \\ \sqrt{ab}, & r = 0. \end{cases}$$

Date: March 31, 2004.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26D15, 26D10.

Key words and phrases. Heron mean; Inequality; Monotonicity; Logarithmic Convexity; Proposition.

The authors would like to thank professor Wan-lan Wang and the anonymous referee for some valuable suggestions which have improved the final version of this paper.

This paper was typeset using \mathcal{AMS} -ETEX.

In [3], G. Jia and J.-D. Cao studied the power-type generalization of Heron mean

(1.7)
$$H_r = H_p(a,b) = \begin{cases} \left[\frac{a^r + (ab)^{r/2} + b^r}{3}\right]^{\frac{1}{r}}, & r \neq 0; \\ \sqrt{ab}, & r = 0; \end{cases}$$

and obtained inequalities

(1.8)
$$L \leqslant H_p \leqslant M_q,$$

where $p \ge \frac{1}{2}, q \ge \frac{2}{3}p$. Furthermore, $p = \frac{1}{2}, q = \frac{1}{3}$ are the best constants. Combining (1.7), (1.4) and (1.5), two class of new means for two variables will be defined.

Definition 1.1. Let a > 0, b > 0, k is a natural number, and r is a real number, then the generalized power-type Heron mean and its dual form are defined as follows

(1.9)
$$H_r(a,b;k) = \begin{cases} \left[\frac{1}{k+1}\sum_{i=0}^k a^{\frac{(k-i)r}{k}}b^{\frac{ir}{k}}\right]^{\frac{1}{r}}, & r \neq 0;\\ \sqrt{ab}, & r = 0; \end{cases}$$

and

(1.10)
$$h_r(a,b;k) = \begin{cases} \left[\frac{1}{k}\sum_{i=1}^k a^{\frac{(k+1-i)r}{k+1}}b^{\frac{ir}{k+1}}\right]^{\frac{1}{r}}, & r \neq 0; \\ \sqrt{ab}, & r = 0. \end{cases}$$

According to Definition 1.1, we easily find the following characteristic properties and two remarks for $H_r(a, b; k)$ and h(a, b.; k).

Proposition 1.1. If k is a natural number, and r is a real number, then

$$\begin{array}{l} (a) \ H_r(a,b;k) = H_r(b,a;k), \ and \ h_r(a,b;k) = h_r(b,a;k); \\ (b) \ \lim_{r \to 0} H_r(a,b;k) = \lim_{r \to 0} h_r(a,b;k) = G(a,b); \\ (c) \ H_r(a,b;1) = M_r(a,b), \ H_r(a,b;2) = H_r(a,b), \ and \ h_r(a,b;1) = G(a,b); \\ (d) \ \lim_{k \to +\infty} H_r(a,b;k) = \lim_{k \to +\infty} h_r(a,b;k) = [L(a^r,b^r)]^{\frac{1}{r}}; \\ (e) \ a \leqslant H_r(a,b;k) \leqslant b, \ and \ a \leqslant h_r(a,b;k) \leqslant b, \ if \ 0 < a < b; \\ (f) \ H_r(a,b;k) = h_r(a,b;k) = a \ if \ and \ only \ if \ a = b; \\ (g) \ H_r(ta,tb;k) = tH_r(a,b;k), \ and \ h_r(ta,tb;k) = th_r(a,b;k), \ if \ t > 0. \end{array}$$

Remark 1.1. Let a > 0, b > 0, k is a natural number, and r is a real number, then the generalized power-type Heron mean $H_r(a,b;k)$ and its dual form $h_r(a,b;k)$ can be written that

(1.11)
$$H_r(a,b;k) = \begin{cases} \left[\frac{a^{\frac{(k+1)r}{k}} - b^{\frac{(k+1)r}{k}}}{(k+1)(a^{\frac{r}{k}} - b^{\frac{r}{k}})}\right]^{\frac{1}{r}}, & r \neq 0, a \neq b;\\ \sqrt{ab}, & r = 0, a \neq b;\\ a, & r \in R, a = b; \end{cases}$$

or

(1.12)
$$H_r(a,b;k) = \begin{cases} \left[\int_0^1 \left(x a^{\frac{r}{k}} + (1-x) b^{\frac{r}{k}} \right)^k dx \right]^{\frac{1}{r}}, & r \neq 0, a \neq b; \\ \sqrt{ab}, & r = 0, a \neq b; \\ a, & r \in R, a = b; \end{cases}$$

and

(1.13)
$$h_r(a,b;k) = \begin{cases} \left[\frac{a^{\frac{kr}{k+1}} - b^{\frac{kr}{k+1}}}{-k(a^{-\frac{r}{k+1}} - b^{-\frac{r}{k+1}})}\right]^{\frac{1}{r}}, & r \neq 0, a \neq b;\\ \sqrt{ab}, & r = 0, a \neq b;\\ a, & r \in R, a = b; \end{cases}$$

or

(1.14)
$$h_r(a,b;k) = \begin{cases} \left[\int_0^1 \left(x a^{-\frac{r}{k+1}} + (1-x) b^{-\frac{r}{k+1}} \right)^{-k-1} dx \right]^{\frac{1}{r}}, & r \neq 0, a \neq b; \\ \sqrt{ab}, & r = 0, a \neq b; \\ a, & r \in R, a = b. \end{cases}$$

Remark 1.2. Let a > 0, b > 0, k is a natural number, then the following Detemple-Robertson mean $D_r(a, b)$ (see [4]) and its dual form $d_k(a, b)$ are respectively the special cases for $H_r(a, b; k)$ and $h_k(a, b; k)$:

(1.15)
$$D_k(a,b) = \left[H_k(a,b;k)\right]^k = \frac{1}{k+1} \sum_{i=0}^k a^{k-i} b^k,$$

or

(1.16)
$$D_k(a,b) = \begin{cases} \frac{a^{k+1} - b^{k+1}}{(k+1)(a-b)}, & a \neq b; \\ a^k, & a = b; \end{cases}$$

(1.17)
$$d_k(a,b) = [h_{k+1}(a,b;k)]^{k+1} = \frac{1}{k} \sum_{i=1}^k a^{k+1-i} b^k,$$

or

(1.18)
$$d_k(a,b) = \begin{cases} \frac{ab(a^k - b^k)}{k(a-b)}, & a \neq b; \\ a^{k+1}, & a = b. \end{cases}$$

In this paper, we obtain the monotonicity and logarithmic convexity of the generalized powertype Heron mean $H_r(a, b; k)$ and its dual form $h_r(a, b; k)$. In the final, an open problem is posed.

2. Lemmas

In order to prove the theorems of the next section, we require some lemmas in this section.

Lemma 2.1. ([5],[6]) Let p,q be arbitrary real numbers, and a, b > 0. Then the extended mean values

(2.1)
$$E_{p,q}(a,b) = \begin{cases} \left[\frac{q}{p} \cdot \frac{a^p - b^p}{a^q - b^q}\right]^{1/(p-q)}, & pq(p-q)(a-b) \neq 0; \\ \left[\frac{1}{p} \cdot \frac{a^p - b^p}{\ln a - \ln b}\right]^{1/p}, & p(a-b) \neq 0, q = 0; \\ \frac{1}{e} \left(\frac{a^a}{b^b}\right)^{\frac{1}{a-b}}, & p(a-b) \neq 0, p = q; \\ \sqrt{ab}, & (a-b) \neq 0, p = q = 0; \\ a, & a = b. \end{cases}$$

are monotone increasing function with both p and q, or with both a and b; and are logarithmical concave on $(0, +\infty)$ with respect to either p or q, respectively; and logarithmical convex on $(-\infty, 0)$ with respect to either p or q, respectively.

Lemma 2.2. ([7]) Let p, q, u, v be arbitrary with $p \neq q, u \neq v$. Then the inequality

(2.2)
$$E_{p,q}(a,b) \ge E_{u,v}(a,b)$$

is satisfied for all $a, b > 0, a \neq b$ if and only if

 $(2.3) p+q \ge u+v,$

and

$$(2.4) e(p,q) \ge e(u,v)$$

where

(2.5)
$$e(x,y) = \begin{cases} (x-y)/\ln(x/y), & \text{for } xy > 0, x \neq y; \\ 0, & \text{for } xy = 0; \end{cases}$$

if either $0 \leq \min\{p, q, u, v\}$ or $\max\{p, q, u, v\} \leq 0$; and

(2.6)
$$e(x,y) = (|x| - |y|)/(x-y), \text{ for } x, y \in \mathbb{R}, x \neq y,$$

if either $\min\{p, q, u, v\} < 0 < \max\{p, q, u, v\}.$

Lemma 2.3. ([2])Let $a_i, 1 \leq i \leq n$ be real numbers with $a_i \neq a_j$ for $i \neq j$, and

(2.7)
$$M_r(a) = \begin{cases} \left[\frac{1}{n}\sum_{i=1}^n a_i^r\right]^{\frac{1}{r}}, & 0 < |r| < +\infty; \\ \prod_{i=1}^n a_i^{\frac{1}{n}}, & r = 0. \end{cases}$$

Then $M_r(a)$ is monotone increasing function for r, and $f(r) = [M_r(a)]^r$ is logarithmic convex function with respect to r > 0.

Lemma 2.4. ([8]) If $b_1 \ge b_2 \ge \cdots \ge b_n > 0$, $\frac{a_1}{b_1} \ge \frac{a_2}{b_2} \ge \cdots \ge \frac{a_n}{b_n} > 0$. Then the function

(2.8)
$$F_r(a,b) = \begin{cases} \left[\sum_{i=1}^n a_i^r / \sum_{i=1}^n b_i^r\right]^{\frac{1}{r}}, & r \neq 0, \\ \left(\prod_{i=1}^n \frac{a_i}{b_i}\right)^{1/n}, & r = 0, \end{cases}$$

is monotone increasing one with respect to r.

Lemma 2.5. If $x \ge 1$, and k is a fixed natural number. Then the functions

(2.9)
$$f_k(x) = \left(\sum_{i=0}^k x^{k-i}\right)^{\frac{1}{k}} / \left(\sum_{i=0}^{k+1} x^{k+1-i}\right)^{\frac{1}{k+1}}$$

and

(2.10)
$$g_k(x) = \left(\sum_{i=1}^k x^{k+1-i}\right)^{\frac{1}{k+1}} / \left(\sum_{i=1}^{k+1} x^{k+2-i}\right)^{\frac{1}{k+2}}$$

both are monotone decreasing ones with respect to $x \in [1, +\infty)$.

Proof. Calculating the derivative for $f_k(x)$ and $g_k(x)$ about x, respectively, we get

$$f'_{k}(x) = \left[\sum_{i=1}^{k} \frac{i(i+1)}{2} (x^{i-1} - x^{2k-i})\right] / \left[k(k+1) \left(\sum_{i=0}^{k} x^{k-i}\right)^{\frac{k-1}{k}} \left(\sum_{i=0}^{k+1} x^{k+1-i}\right)^{\frac{k+2}{k+1}}\right],$$

and

$$g_{k}'(x) = \left[x\sum_{i=1}^{k} \frac{i(i+1)}{2}(x^{i-1} - x^{2k-i})\right] / \left[(k+1)(k+2)\left(\sum_{i=1}^{k} x^{k+1-i}\right)^{\frac{k}{k+1}}\left(\sum_{i=1}^{k+1} x^{k+2-i}\right)^{\frac{k+3}{k+2}}\right].$$

Since $x \ge 1$ and k is a fixed natural number, we find that $x^{i-1} - x^{2k-i} \le 0$, $(1 \le i \le k)$, or $f'_k(x) \le 0$ and $g'_k(x) \le 0$. It is to see that the functions $f_k(x)$ and $g_k(x)$ both are monotone decreasing ones with respect to $x \in [1, +\infty)$. The proof of Lemma2.5 is completed.

3. MONOTONICITY AND LOGARITHMIC CONVEXITY

From Lemma2.1 and Lemma2.3, we easily prove the following Theorem3.1 and Theorem3.2, respectively.

Theorem 3.1. If k is a fixed natural number, then $H_r(a, b; k)$ and $h_r(a, b; k)$ both are monotone increasing function with both a and b for fixed real numbers r, or with r for fixed positive numbers a and b; and are logarithmical concave on $(0, +\infty)$, and logarithmical convex on $(-\infty, 0)$ with respect to r.

Theorem 3.2. Assume a and b are fixed positive numbers, and k is a fixed natural number, then $[H_r(a,b;k)]^r$ and $[h_r(a,b;k)]^r$ both are logarithmic convex function for r > 0.

Theorem 3.3. [1] For any r > 0, we have that $H_r(a,b;k)$ is monotonic decreasing function, and $h_r(a,b;k)$ is monotone increasing function with k.

Theorem 3.4. If $b_1 \ge b_2 > 0$ and $a_1/b_1 \ge a_2/b_2 > 0$, then $H_r(a_1, a_2; k)/H_r(b_1, b_2; k)$ and $h_r(a_1, a_2; k)/h_r(b_1, b_2; k)$ are monotone increasing functions with r on **R**.

Proof. According to Definition 1.1, we have

(3.1)
$$\frac{H_r(a_1, a_2; k)}{H_r(b_1, b_2; k)} = \begin{cases} \left[\sum_{i=0}^k a_1^{\frac{(k-i)r}{k}} a_2^{\frac{ir}{k}} / \sum_{i=0}^k b_1^{\frac{(k-i)r}{k}} b_2^{\frac{ir}{k}}\right]^{\frac{1}{r}}, & r \neq 0; \\ \sqrt{\frac{a_1 a_2}{b_1 b_2}}, & r = 0. \end{cases}$$

and

(3.2)
$$\frac{h_r(a_1, a_2; k)}{h_r(b_1, b_2; k)} = \begin{cases} \left[\sum_{i=1}^k a_1^{\frac{(k+1-i)r}{k+1}} a_2^{\frac{ir}{k+1}} / \sum_{i=1}^k b_1^{\frac{(k+1-i)r}{k+1}} b_2^{\frac{ir}{k+1}}\right]^{\frac{1}{r}}, & r \neq 0; \\ \sqrt{\frac{a_1 a_2}{b_1 b_2}}, & r = 0. \end{cases}$$

For $b_1 \ge b_2 > 0$ and $a_1/b_1 \ge a_2/b_2 > 0$, we find

(3.3)
$$b_1 \ge b_1^{\frac{k-1}{k}} b_2^{\frac{1}{k}} \ge b_1^{\frac{k-2}{k}} b_2^{\frac{2}{k}} \ge \dots \ge b_2 > 0,$$

and

(3.4)
$$\frac{a_1}{b_1} \ge \left(\frac{a_1}{b_1}\right)^{\frac{k-1}{k}} \left(\frac{a_2}{b_2}\right)^{\frac{1}{k}} \ge \left(\frac{a_1}{b_1}\right)^{\frac{k-2}{k}} \left(\frac{a_2}{b_2}\right)^{\frac{2}{k}} \ge \dots \ge \frac{a_2}{b_2} > 0.$$

From Lemma2.4, combining (3.1)-(3.4), the proof of Theorem 3.4 is completed.

Theorem 3.5. If $0 < a \leq b \leq \frac{1}{2}$, then $H_r(a,b;k)/H_r(1-a,1-b;k)$ and $h_r(a,b;k)/h_r(1-a,1-b;k)$ are monotone increasing functions for r.

Proof. From $0 < a \leq b \leq \frac{1}{2}$, we get

(3.5)
$$0 < 1 - a \le 1 - b$$
, and $0 < \frac{a}{1 - a} \le \frac{b}{1 - b}$

Using Theorem 3.4, we obtain Theorem 3.5. \blacksquare

Theorem 3.6. If $b_1 \ge b_2 > 0$ and $a_1/b_1 \ge a_2/b_2 > 0$, then $(D_k(a_1, a_2)/D_k(b_1, b_2))^{\frac{1}{k}}$ and $(d_k(a_1, a_2)/d_k(b_1, b_2))^{\frac{1}{k+1}}$ both are monotone increasing functions with k on \mathbf{N} .

Proof. To prove $(D_k(a_1, a_2)/D_k(b_1, b_2))^{\frac{1}{k}}$ is monotone increasing function with k on **N**, we only want to prove that: if $b_1 \ge b_2 > 0$, $a_1/b_1 \ge a_2/b_2 > 0$ and k is a natural number, then

(3.6)
$$\left(\sum_{i=0}^{k} a_1^{k-i} a_2^i / \sum_{i=0}^{k} b_1^{k-i} b_2^i\right)^{\frac{1}{k}} \leqslant \left(\sum_{i=0}^{k+1} a_1^{k+1-i} a_2^i / \sum_{i=0}^{k+1-i} b_1^{k+1-i} b_2^i\right)^{\frac{1}{k+1}}$$

or

$$(3.7) \qquad \left[\sum_{i=0}^{k} \left(\frac{a_1}{a_2}\right)^{k-i}\right]^{\frac{1}{k}} / \left[\sum_{i=0}^{k+1} \left(\frac{a_1}{a_2}\right)^{k+1-i}\right]^{\frac{1}{k+1}} \leqslant \left[\sum_{i=0}^{k} \left(\frac{b_1}{b_2}\right)^{k-i}\right]^{\frac{1}{k}} / \left[\sum_{i=0}^{k+1} \left(\left(\frac{b_1}{b_2}\right)^{k+1-i}\right]^{\frac{1}{k+1}}\right]^{\frac{1}{k+1}}$$

Taking $x_1 = \frac{a_1}{a_2}, x_2 = \frac{b_1}{b_2}$, we have $x_1 \ge x_2 \ge 1$, and inequality (3.7) is equivalent to

(3.8)
$$\left(\sum_{i=0}^{k} x_1^{k-i}\right)^{\frac{1}{k}} / \left(\sum_{i=0}^{k+1} x_1^{k+1-i}\right)^{\frac{1}{k+1}} \leqslant \left(\sum_{i=0}^{k} x_2^{k-i}\right)^{\frac{1}{k}} / \left(\sum_{i=0}^{k+1} x_2^{k+1-i}\right)^{\frac{1}{k+1}}$$

From Lemma 2.5, we find (3.8) or (3.6).

By the same way, we can prove that $(d_k(a_1, a_2)/d_k(b_1, b_2))^{\frac{1}{k+1}}$ is monotone increasing function with k on **N**. Thus, Theorem3.6 is proved.

The above-hand of Theorem3.6 is obtained by W.-L. Wang, G.-X. Li and J. Chen in 1988 (see [9]). By the same way of the proof of Theorem3.5, we can obtain

Theorem 3.7. If $0 < a \le b \le \frac{1}{2}$, then $(D_k(a,b)/D_k(1-a,1-b))^{\frac{1}{k}}$ and $(h_k(a,b)/h_k(1-a,1-b))^{\frac{1}{k+1}}$ both are monotone increasing functions for r.

Remark 3.1. Let $k \to +\infty$, from Proposition 1.1 (d), we have

(3.9)
$$\lim_{k \to +\infty} h_r(a,b;k) = \lim_{k \to +\infty} H_r(a,b;k) = [L(a^r,b^r)]^{\frac{1}{r}}.$$

According to some theorems above, we immediately get some similar results with $[L(a^r, b^r)]^{\frac{1}{r}}$:

(a) $[L(a^r, b^r)]^{\frac{1}{r}}$ are monotone increasing function with both a and b for fixed real numbers r, or with r for fixed positive numbers a and b; and are logarithmical concave on $(0, +\infty)$ with respect to r; and logarithmical convex on $(-\infty, 0)$ with respect to r;

(b) Assume a and b are fixed positive numbers, then $L(a^r, b^r)$ is logarithmic convex function for r > 0;

(c) If $b_1 \ge b_2 > 0$ and $a_1/b_1 \ge a_2/b_2 > 0$, then $[L(a_1^r, a_2^r)/L(b_1^r, b_2^r)]^{\frac{1}{r}}$ is monotone increasing function with r on \mathbf{R} ;

(d) If $0 < a \leq b \leq \frac{1}{2}$, then $[L(a^r, b^r)/L((1-a)^r, (1-b)^r)]^{\frac{1}{r}}$ is monotone increasing function for $r \in \mathbf{R}$.

4. Some Inequalities

Theorem 4.1. Let k_1, k_2 are two fixed natural numbers. If r > 0, we then have inequality

$$(4.1) h_r(a,b;k_1) \leqslant H_r(a,b;k_2),$$

and inverse inequality holds if r < 0. With equality holding if and only if a = b.

Proof. If r > 0, from Remaek1.1, that (4.1) is equivalent to

(4.2)
$$\left[\frac{a^{\frac{k_1r}{k_1+1}} - b^{\frac{k_1r}{k_1+1}}}{-k_1(a^{-\frac{r}{k_1+1}} - b^{-\frac{r}{k_1+1}})}\right]^{\frac{1}{r}} \leqslant \left[\frac{a^{\frac{(k_2+1)r}{k_2}} - b^{\frac{(k_2+1)r}{k_2}}}{(k_2+1)(a^{\frac{r}{k_2}} - b^{\frac{r}{k_2}})}\right]^{\frac{1}{r}}$$

Setting $p = \frac{(k_2+1)r}{k_2}, q = \frac{r}{k_2}, u = \frac{k_1r}{k_1+1}$, and $v = -\frac{r}{k_1+1}$, that (4.2) become (4.3) $E_{p,q}(a,b) \ge E_{u,v}(a,b).$

For k_1, k_2 are two fixed natural numbers, that is easy to see that

(4.4)
$$\min\{p, q, u, v\} = -\frac{r}{k_1 + 1} < 0 < \max\{p, q, u, v\},$$

(4.5)
$$p+q = \frac{(k_2+2)r}{k_2} > \frac{(k_1-1)r}{k_1+1} = u+v.$$

and

(4.6)
$$e(p,q) = r > \frac{(k_1 - 1)r}{k_1 + 1} = e(u,v),$$

where e(x, y) is defined as (2.6) of Lemma2.2.

Using Lemma2.2, and combining expression (4.4)-(4.6), we can obtain (4.3), and immediately follow that expression (4.1) is true. Thus, the proof of Theorem4.1 is completed.

By the same way, we can obtain

Theorem 4.2. Let k be a fixed natural number. We then have inequality

(4.7)
$$(d_k(a,b))^{\frac{1}{k+1}} \leqslant (D_k(a,b))^{\frac{1}{k}},$$

with equality holding if and only if a = b.

Combining Theorem 4.1, Proposition 1.1 (d) and Theorem 3.3, we get

Corollary 4.1. If $r_1 < 1 < r_2$, and k_1, k_2 are two fixed natural numbers, then we have

(4.8)
$$h_{r_1}(a,b;k_1) \leqslant L(a,b) \leqslant H_{r_2}(a,b;k_2),$$

with equalities holding if and only if a = b.

Remark 4.1. From those theorems of the last section, for some special cases with k or r, we can obtain some inequalities.

In the final, we put forward an open problem

Open Problem 4.1. Prove that, if k_1, k_2 are two fixed natural number, and $p \ge \frac{k_1}{k_1+2}, q \ge \frac{(k_1+2)p}{3k_1}, 0 \le r \le \frac{k_2+1}{k_2-1}$, then the following inequalities for the new bounds of the logarithmic mean

$$G(a,b) \leqslant h_r(a,b;k_2) \leqslant L(a,b) \leqslant H_p(a,b;k_1) \leqslant M_q(a,b).$$

hold, and the constants $p = \frac{k_1}{k_1+2}$, $q = \frac{1}{3}$, and $r = \frac{k_2+1}{k_2-1}$ ($k_2 > 1$) are the best possible.

References

- [1] Zh.-G. Xiao and Zh.-H. Zhang, The Inequalities $G \leq L \leq I \leq A$ in n Variables, J. Ineq. Pure & Appl. Math., 4(2) (2003), Article 39. http://jipam.vu.edu.au/v4n2/110_02.pdf
- [2] J.-Ch. Kuang, Applied Inequalities, Hunan Eduation Press, 2nd. Ed., 1993. (Chinese)
- [3] G. Jia and J.-D. Cao, A New Upper Bound of the Logarithmic Mean. J. Ineq. Pure & Appl. Math., 4(4) (2003), Article 80. http://jipam.vu.edu.au/v4n4/088_03.pdf.
- [4] D. W. Detemple and J. M. Robertson, On Generalized Symmetric Means of Two Varibles, Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No.634–672(1979), 236–238(MR, 81h:26014).
- [5] F. Qi, Logarithmic convexities of the Extended Mean Values, RGMIA Resarch Report Collection 5(2) (1999), Article5. http://rgmia.vu.edu.au.
- [6] E. Lenach and M. Sholander, Extended Mean Values, Amer. Math. Monthly 85 (1978), 84–90.
- [7] Zs. Páles, Inequalities for Differences of Powers, J. Math. Anal. & Appl., 131 (1988), 271-281.
- [8] A. W. Marsall, I. Olkin and F. Proschan, Monotonicty of Ratios of Means and other Applications of Majorization, In Inequalities, edited by O.Shisha. New York London 1967, 177–190.
- [9] W.-L. Wang, G.-X. Li and J. Chen, *Inequalities Involving Ratios of Means*, Journal of Chendu University of Science and Technology, 42 No.6 (1988), 83–88. (Chinese)

(Zh.-H. Zhang) ZIXING EDUCATIONAL RESEARCH SECTION, CHENZHOU, HUNAN 423400, P. R. CHINA. *E-mail address:* zxzh1234@163.com

(Y.-D. Wu) XINCHANG MIDDLE SCHOOL, XINCHANG, ZHEJIANG 312500, P. R. CHINA. *E-mail address:* zjxcwyd@tom.com

(An-P. Zhao) No.1 MIDDLE SCHOOL OF ZIXIN, CHENZHOU, HUNAN 423406, P. R. CHINA.