THE PROPERTIES OF THE GENERALIZED HERON MEAN AND ITS DUAL
FORM

ZHI-HUA ZHANG, YU-DONG WU, AND AN-PING ZHAO

ABSTRACT. In this paper, we define the generalized Heron mean H,(a,b;k) and its dual form
hr(a,b; k), and obtain some propositions for the same means. In the final, an open problem is
posed.

1. INTRODUCTION AND DEFINITION

For positive numbers a, b, let

(1.1) G = G(a,b) = Vab;
a—>b
(1.2) L=Lab) = ma—mp °7Y
a, a = b;
(1.3) H = H(a,b) = atVabtb

3

These are respectively called the geometric, logarithmic, and Heron means.
In 2003, Zh.-G. Xiao and Zh.-H. Zhang [I] gave the generalization of Heron mean and its dual
form respectively as follows

?T‘\s

k
(1.4) H(a,b; k) Z

1=0

and

(1.5) h(a, b; k) Zakkil’bkil

where k is a natural number. Authors proved that H(a,b; k) is monotone decreasing function and
h(a,b; k) is monotone increasing function for k, and limg_, o H(a,b; k) = limg_ 40 h(a,b; k) =

L(a,b).
Let r be a real number, the r-order power mean (see [2]) is defined by
1
a” +b"\r
(1.6) M, = M,(a,b) = < 2 ) T

\/%, r=0.
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In [3], G. Jia and J.-D. Cao studied the power-type generalization of Heron mean

1
T

, r#0;
\/@, r=0;

+ (ab)’l‘/Q + b’l"

(1.7) H, = Hy(a,b) =

and obtained inequalities
(1.8) L<H,<M,,

where p > %,q p Furthermore p= 2,q = 3 are the best constants.
Combining (|1.7] and ( - two class of new means for two variables will be defined.

Definition 1.1. Leta > 0,b > 0, k is a natural number, and r is a real number, then the generalized
power-type Heron mean and its dual form are defined as follows

1
k+1za(k mbz’:] , T#0;

(1.9) H,(a,b;k) =
\/%, r=0;
and
k =
1 (k+1=i)r iy
(1.10) he(a,b; k) = [kzga o b'““] » 770

\/%, r=20.

According to DefinitionI.I] we easily find the following characteristic properties and two remarks
for Hy(a,b; k) and h(a,b.; k).

Proposition 1.1. If k is a natural number, and r is a real number, then

a) Hy(a,b;k) = H,(b,a; k), and hy(a,b; k) = h(b,a; k);
b) 1mH (a,b;k) = lim hr(a,b; k) = G(a,b);
) H,

c (a b;1) = (a b) r(a,b;2) = Hy(a,b), and hy(a,b;1) = G(a,b);

(
(
(

. ror %
(d) kErJrlooH r(a,bik) = kErJrloo hyr(a,b;k) = [L(a",b")]";
(e) a < Hy(a,b;k) < b, and a < hy(a,bjk) <b, if 0<a<b;
(f) Hy(a,b;k) = hy(a,b;k) = a if and only if a = b;
(

H,(ta,tb; k) = tH,(a,b; k), and h,(ta,tb; k) = th,(a,b;k), if t > 0.

f
g

)
)
Remark 1.1. Leta > 0,b > 0, k is a natural number, and r is a real number, then the generalized
power-type Heron mean H,(a,b; k) and its dual form h,(a,b; k) can be written that

(k+1)r (k+1)r P
@ r 2" ] r#0,a # b;
(1.11) Hy(a,b; k) = { [(k+1)(ak —bF)
Vab, r=0,a #b;

a, re Ra=0b;
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or
1 INERE
[/ rak + 1—:p)bE) dx] , 7#0,a#b
1.12 Ho(ab k)= Lo
- “ ) Vab, r=0,a#b
a, reRa=5b
and
kkrl bkk'rl %
+1 — bR+
[ R ] C r£0,a#b
(1.13) he(a,b:k) = { | —k(a” 57 —b7%T)
Vab, r=0,a4b
a, re R,a=b
or
1 T ™ —k—1 %
[/ (:m_le+(1fl‘)b_kT1) daz} , r#0,a#b;
1.14 ho(a, b k) = 4 L0
(119 (a0 = § L oy
@ reRa=0.

Remark 1.2. Let a > 0,b > 0, k is a natural number, then the following Detemple-Robertson
mean D,(a,b) (see [4]) and its dual form di(a,b) are respectively the special cases for H,(a,b;k)
and hi(a,b; k):

k
1 k—ipk
(1.15) Dy(a,b) = [Hy(a, b; k)]* = k+12%a v*,
or
aktl _ pktl
(1.16) Di(a,b) =< (k+ 1)(a—1b)’ as b
ak, a = b;
k .
(1.17) di(a,b) = [hppr(a, by k)P = =N gFH1-iph,
k
or
ab(ak — bk) 04 b
(1.18) di(a,b) =< k(a—10) ’ ’
aktt a=h.

In this paper, we obtain the monotonicity and logarithmic convexity of the generalized power-
type Heron mean H,(a,b; k) and its dual form h,(a,b; k). In the final, an open problem is posed.

2. LEMMAS

In order to prove the theorems of the next section, we require some lemmas in this section.
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Lemma 2.1. ([5,[6]) Let p,q be arbitrary real numbers, and a,b > 0. Then the extended mean
values

qg aP —bP 1/(p—q)
[p'a‘I—bq] , pq(p—q)(a—0b) #0;
1 aP — bP 1/p
L‘ma_mJ . pla—1b)#0,0=0;
(2.1) qu(a,b) — T
7 1 /a%\ a—0b
Vab (@a—b)#0,p=q=0;
% a=b.

are monotone increasing function with both p and q, or with both a and b; and are logarithmical
concave on (0, +00) with respect to either p or q, respectively; and logarithmical convex on (—o0,0)
with respect to either p or q, respectively.

Lemma 2.2. ([7]) Let p,q,u,v be arbitrary with p # q,u # v. Then the inequality

(2.2) E,(a,b) > E,,(a,b)

is satisfied for all a,b > 0,a # b if and only if

(2.3) p+qg>=u+tw,

and

(2.4) e(p,q) = e(u,v),

where
z—y)/In(z/y), for zy>0,x#y;

05) R (CET ) > 0,07
0, for zy = 0;

if either 0 < min{p, ¢, u,v} or max{p,q,u,v} < 0; and

(2.6) ewy)=(xz|—|y)/(—y) forz,yeRa#y,
if either min{p, ¢, u,v} < 0 < max{p, q,u,v}.

Lemma 2.3. ([2])Let a;,1 <i < n be real numbers with a; # a; for i # j, and
1
IR
—Zai , 0<|r < +oo;
n -
=1
LB
Hai”, r=0.
i=1

Then M,(a) is monotone increasing function for v, and f(r) = [M,.(a)]" is logarithmic convex
function with respect to r > 0.

(2'7) Mr(a) =

Lemma 2.4. ([8]) If by > by > --- > b, >0, % >%2>...> ‘g—: > 0. Then the function
(2.8) F,(a,b) = L1 i=1

1§ momnotone increasing one with respect to r.
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Lemma 2.5. If x > 1, and k is a fixed natural number. Then the functions

k N\F ket =
(2.9) fu() = (ZW) (Z o )
=0

and

k+1—i k+1 = k+2—i e
(2:10) zm /(3

both are monotone decreasing ones with respect to x € [1,400).

Proof. Calculating the derivative for fi(x) and gx(x) about z, respectively, we get

k+1

koo e =y
z) = [Z ii —21— 1)(xi_1 . ka_i)] k(k+1) (Z 2k z> (Z o z) ’

and

k

k... 1 k k1 k41 LE
_ [xz Z(l;‘ )(xi—l_ka—i)]/ (k—l—l ]€—|—2 (Zxk‘-i-l z) (Zxk-ﬂ z)

Since # > 1 and k is a fixed natural number, we find that 2'~' —22~% < 0, (1 <i < k), or f(z) <0

and g, (z) < 0, It is to see that the functions fx(z) and gi(x) both are monotone decreasing ones
with respect to z € [1,4+00). The proof of Lemm is completed. 1

3. MONOTONICITY AND LOGARITHMIC CONVEXITY

From Lemma2.1] and Lemma2.3] we easily prove the following Theoremf3.1] and Theorem[3.2]
respectively.

Theorem 3.1. If k is a fived natural number, then H,(a,b;k) and h,(a,b;k) both are monotone
increasing function with both a and b for fixzed real numbers r, or with r for fixzed positive numbers a
and b; and are logarithmical concave on (0,400), and logarithmical convex on (—oo,0) with respect
tor.

Theorem 3.2. Assume a and b are fixed positive numbers, and k is a fized natural number, then
[H,(a,b; k)" and [h,(a,b; k)]" both are logarithmic convex function for r > 0.

Theorem 3.3. [I] For any r > 0, we have that H,(a,b; k) is monotonic decreasing function, and
hy(a,b; k) is monotone increasing function with k.

Theorem 3.4. If by > by > 0 and a1/by > az/by > 0, then H,(ai,a2;k)/H,(b1,b2;k) and
hyr(a1,az2;k)/hy(b1,be; k) are monotone increasing functions with r on R.

Proof. According to Definition[I.1], we have

i *’l)"‘ 7,'r

1

(k—2)r r

3.1) H,(a1,a9; k) _ [Zal k Zbl by | , r#0;
. Hr(blabQ;k)

aiaz —
biby r=0.
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and

k (k+1—z)r ir (k+1—i)r ir .

. E+1 +1 ES E+1 .
(32) he(ar, a0 k) _ Zal /Z by by L om0
by (b1, ba; k) i=1

%il‘g, r = 0.
For b1 > by > 0 and al/bl az/bg > 0 we find

Q 1 k=2 2
(3.3) by>b,* bE >b,F b > > by >0,

and

k-1 1 k=2 2
al a1 k ag \ al k a2 a2
3.4 — 2> — — | =2— —) =Z---=2—=>0
(34 by (b1> <b2> <b1) (b2> b2
From Lemmﬂ combining ([3.1] . the proof of Theorem [3.4} ﬂ is completed.

Theorem 3.5. I[f0 <a <b< 5, then H.(a,b;k)/Hy(1—a,1—b; k) and h,(a,b; k)/h.(1—a,1—b; k)
are monotone increasing functions for r.

)

Proof. From 0 < a < b < %,

we get
a b
< -

(3.5) 0<l—a<1-0b, and0<1_a T3

Using Theorem3.4] we obtain Theorem [3.5] i
Theorem 3.6. If by =2 by > 0 and al/bl > ag/bg > 0, then (Dk(al,ag)/Dk(bl,bg))% and

(di(a1,a2)/dk (b1, bg))%ﬂ both are monotone increasing functions with k on N.
Proof. To prove (Dk(al,ag)/Dk(bl,bg))% is monotone increasing function with & on N, we only

want to prove that: if by > by > 0, a1/b1 > az/by > 0 and k is a natural number, then

1

k o k o % k+1 k+1 k+1
(36) (Z al{:—zalz/z bl{:—zb12> (Z a/{:—i—l i Z /Z bk’-l—l zbz> ,
1=0 =0

or
kL fa, kil k+1 61 k—i1F [kt by \ FH1-] F

3.7 — — .

oo 3] /[5G ] 50T
i=0 =0 =0

Taking x1 = Z—;, Ty = Z , we have z1 > x9 > 1, and inequality (3.7]) is equivalent to

k ' t ke ' == F k1 ' ==
(3.8) <Z xlfl> / (Z :L‘]erlZ) (Z xh ) / (Z ngrlZ) .
i=0 i=0 i=0
From Lemma2.5] we find (3.8) or (3.6).

By the same way, we can prove that (di(a1,a2)/dk(b1,b2))*+1
with k& on N. Thus, Theorenf3.6] is proved.

The above-hand of Theore is obtained by W.-L. Wang, G.-X. Li and J. Chen in 1988 (see
[9]). By the same way of the proof of Theorem3.5| we can obtain

is monotone increasing function

Theorem 3.7. If 0 < a < b< 3, then (Dy(a,b)/Dx(1—a, l—b))% and (hy(a,b)/hi(1—a, 1—b))%+l
both are monotone increasing functions for r.
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Remark 3.1. Let k — 400, from Propositionl.d] (d), we have
1
. lim h,(a,b;k) = lim H,(a,b;k) = [L(a",b")]" .
(3.9) i he(abik) = lim Hp(a,bik) = [L(a”, b")]

1
According to some theorems above, we immediately get some similar results with [L(a”™,b")]" :

(a) [L(a", b’”)]% are monotone increasing function with both a and b for fized real numbers r, or
with r for fixed positive numbers a and b; and are logarithmical concave on (0, +00) with respect to
r; and logarithmical conver on (—o0,0) with respect to r;

(b) Assume a and b are fized positive numbers, then L(a”™,b") is logarithmic convex function for
r>0;

(¢) If by = by > 0 and a1/by > az/by > 0, then [L(a{,ag)/L(b’i,bg)]% is monotone increasing
function with r on R;

(d) If0<a<b< 3, then [L(a",b")/L((1 —a)", (1 — b)r)]% is monotone increasing function for
reR.
4. SOME INEQUALITIES
Theorem 4.1. Let ky, ko are two fized natural numbers. If r > 0, we then have inequality
(4.1) hy(a,b; k1) < Hy(a,b; k2),
and inverse inequality holds if r < 0. With equality holding if and only if a = b.
Proof. If r > 0, from Remae that is equivalent to

1
kqir kir = (ko+1)r (ko+1)r =
ak1tl — pki+l a ke — b k2

k(@ BT R | | (ke + 1)(aP — bF2)

(4.2)

Setting p = (kz’,;zl)r, q= ;U= k’ffl, and v = — L, that (4.2)) become

(4.3) E,q(a,b) > E,,(a,b).
For ki, ko are two fixed natural numbers, that is easy to see that
(44) min{p>Q7uvv} - - : <0< max{p, Q7U>U}a
/61 +1

(k‘g + 2)1" (k‘l — 1)7‘
4. == = .
(4.5) p+q " > 1 u+v
and

ki1—1

(1.6 clpg) = > S )

where e(z,y) is defined as (2.6) of Lemma2.2]

Using Lemma2.2] and combining expression ([4.4)-(4.6), we can obtain (4.3), and immediately
follow that expression (4.1)) is true. Thus, the proof of Theore is completed. 1

By the same way , we can obtain
Theorem 4.2. Let k be a fized natural number. We then have inequality
(4.7) (di(a, )77 < (Di(a, b)),
with equality holding if and only if a = b.

Combining Theoremfd.1], Proposition.1] (d) and Theorem3.3] we get
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Corollary 4.1. If r; <1 <y, and ki, ks are two fized natural numbers, then we have
(4.8) hy,(a,b; k1) < L(a,b) < Hyy(a,b; ka),
with equalities holding if and only if a = b.

Remark 4.1. From those theorems of the last section, for some special cases with k or r, we can
obtain some inequalities.

In the final, we put forward an open problem
Open Problem 4.1. Prove that, if ki,ko are two fixed natural number, and p >

k1 q
k1+2°
(kg—;;f)p, 0<r< Z;ﬂ, then the following inequalities for the new bounds of the logarithmic mean

>

G(a,b) < hy(a,bs ko) < L(a,b) < Hy(a, b k1) < My(a,b).

hold, and the constants p = ﬁ,q = %, and r = % (ko > 1) are the best possible.
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