THE PROPERTIES OF THE GENERALIZED HERON MEAN AND ITS DUAL FORM

ZHI-HUA ZHANG, YU-DONG WU, AND AN-PING ZHAO

Abstract

In this paper, we define the generalized Heron mean $H_{r}(a, b ; k)$ and its dual form $h_{r}(a, b ; k)$, and obtain some propositions for the same means. In the final, an open problem is posed.

1. Introduction and Definition

For positive numbers a, b, let

$$
\begin{align*}
& G=G(a, b)=\sqrt{a b} ; \tag{1.1}\\
& L=L(a, b)= \begin{cases}\frac{a-b}{\ln a-\ln b}, & a \neq b ; \\
a, & a=b ;\end{cases} \tag{1.2}\\
& H=H(a, b)=\frac{a+\sqrt{a b}+b}{3} . \tag{1.3}
\end{align*}
$$

These are respectively called the geometric, logarithmic, and Heron means.
In 2003, Zh.-G. Xiao and Zh.-H. Zhang 1 gave the generalization of Heron mean and its dual form respectively as follows

$$
\begin{equation*}
H(a, b ; k)=\frac{1}{k+1} \sum_{i=0}^{k} a^{\frac{k-i}{k}} b^{\frac{i}{k}}, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
h(a, b ; k)=\frac{1}{k} \sum_{i=1}^{k} a^{\frac{k+1-i}{k+1}} b^{\frac{i}{k+1}}, \tag{1.5}
\end{equation*}
$$

where k is a natural number. Authors proved that $H(a, b ; k)$ is monotone decreasing function and $h(a, b ; k)$ is monotone increasing function for k, and $\lim _{k \rightarrow+\infty} H(a, b ; k)=\lim _{k \rightarrow+\infty} h(a, b ; k)=$ $L(a, b)$.

Let r be a real number, the r-order power mean (see [2]) is defined by

$$
M_{r}=M_{r}(a, b)= \begin{cases}\left(\frac{a^{r}+b^{r}}{2}\right)^{\frac{1}{r}}, & r \neq 0 \tag{1.6}\\ \sqrt{a b}, & r=0\end{cases}
$$

[^0]In [3], G. Jia and J.-D. Cao studied the power-type generalization of Heron mean

$$
H_{r}=H_{p}(a, b)= \begin{cases}{\left[\frac{a^{r}+(a b)^{r / 2}+b^{r}}{3}\right]^{\frac{1}{r}},} & r \neq 0 \tag{1.7}\\ \sqrt{a b}, & r=0\end{cases}
$$

and obtained inequalities

$$
\begin{equation*}
L \leqslant H_{p} \leqslant M_{q}, \tag{1.8}
\end{equation*}
$$

where $p \geqslant \frac{1}{2}, q \geqslant \frac{2}{3} p$. Furthermore, $p=\frac{1}{2}, q=\frac{1}{3}$ are the best constants.
Combining (1.7), (1.4) and (1.5), two class of new means for two variables will be defined.
Definition 1.1. Let $a>0, b>0, k$ is a natural number, and r is a real number, then the generalized power-type Heron mean and its dual form are defined as follows

$$
H_{r}(a, b ; k)= \begin{cases}{\left[\frac{1}{k+1} \sum_{i=0}^{k} a^{\frac{(k-i) r}{k}} b^{\frac{i r}{k}}\right]^{\frac{1}{r}},} & r \neq 0 \tag{1.9}\\ \sqrt{a b}, & r=0\end{cases}
$$

and

$$
h_{r}(a, b ; k)= \begin{cases}{\left[\frac{1}{k} \sum_{i=1}^{k} a^{\frac{(k+1-i) r}{k+1}} b^{\frac{i r}{k+1}}\right]^{\frac{1}{r}},} & r \neq 0 ; \tag{1.10}\\ \sqrt{a b}, & r=0 .\end{cases}
$$

According to Definition 1.1, we easily find the following characteristic properties and two remarks for $H_{r}(a, b ; k)$ and $h(a, b . ; k)$.

Proposition 1.1. If k is a natural number, and r is a real number, then
(a) $H_{r}(a, b ; k)=H_{r}(b, a ; k)$, and $h_{r}(a, b ; k)=h_{r}(b, a ; k) ;$
(b) $\lim _{r \rightarrow 0} H_{r}(a, b ; k)=\lim _{r \rightarrow 0} h_{r}(a, b ; k)=G(a, b)$;
(c) $H_{r}(a, b ; 1)=M_{r}(a, b), H_{r}(a, b ; 2)=H_{r}(a, b)$, and $h_{r}(a, b ; 1)=G(a, b)$;
(d) $\lim _{k \rightarrow+\infty} H_{r}(a, b ; k)=\lim _{k \rightarrow+\infty} h_{r}(a, b ; k)=\left[L\left(a^{r}, b^{r}\right)\right]^{\frac{1}{r}}$;
(e) $a \leqslant H_{r}(a, b ; k) \leqslant b$, and $a \leqslant h_{r}(a, b ; k) \leqslant b$, if $0<a<b$;
(f) $H_{r}(a, b ; k)=h_{r}(a, b ; k)=a$ if and only if $a=b$;
(g) $H_{r}(t a, t b ; k)=t H_{r}(a, b ; k)$, and $h_{r}(t a, t b ; k)=t h_{r}(a, b ; k)$, if $t>0$.

Remark 1.1. Let $a>0, b>0, k$ is a natural number, and r is a real number, then the generalized power-type Heron mean $H_{r}(a, b ; k)$ and its dual form $h_{r}(a, b ; k)$ can be written that

$$
H_{r}(a, b ; k)= \begin{cases}{\left[\frac{a^{\frac{(k+1) r}{k}}-b^{\frac{(k+1) r}{k}}}{(k+1)\left(a^{\frac{r}{k}}-b^{\frac{r}{k}}\right)}\right]^{\frac{1}{r}},} & r \neq 0, a \neq b ; \tag{1.11}\\ \sqrt{a b}, & r=0, a \neq b ; \\ a, & r \in R, a=b ;\end{cases}
$$

or

$$
H_{r}(a, b ; k)= \begin{cases}{\left[\int_{0}^{1}\left(x a^{\frac{r}{k}}+(1-x) b^{\frac{r}{k}}\right)^{k} d x\right]^{\frac{1}{r}},} & r \neq 0, a \neq b ; \tag{1.1.}\\ \sqrt{a b}, & r=0, a \neq b ; \\ a, & r \in R, a=b\end{cases}
$$

and

$$
h_{r}(a, b ; k)= \begin{cases}{\left[\frac{a^{\frac{k r}{k+1}}-b^{\frac{k r}{k+1}}}{-k\left(a^{-\frac{r}{k+1}}-b^{-\frac{r}{k+1}}\right)}\right]^{\frac{1}{r}},} & r \neq 0, a \neq b ; \tag{1.13}\\ \sqrt{a b}, & r=0, a \neq b ; \\ a, & r \in R, a=b ;\end{cases}
$$

or

$$
h_{r}(a, b ; k)= \begin{cases}{\left[\int_{0}^{1}\left(x a^{-\frac{r}{k+1}}+(1-x) b^{-\frac{r}{k+1}}\right)^{-k-1} d x\right]^{\frac{1}{r}},} & r \neq 0, a \neq b \tag{1.14}\\ \sqrt{a b}, & r=0, a \neq b \\ a, & r \in R, a=b\end{cases}
$$

Remark 1.2. Let $a>0, b>0, k$ is a natural number, then the following Detemple-Robertson mean $D_{r}(a, b)$ (see [4]) and its dual form $d_{k}(a, b)$ are respectively the special cases for $H_{r}(a, b ; k)$ and $h_{k}(a, b ; k)$:

$$
\begin{equation*}
D_{k}(a, b)=\left[H_{k}(a, b ; k)\right]^{k}=\frac{1}{k+1} \sum_{i=0}^{k} a^{k-i} b^{k}, \tag{1.15}
\end{equation*}
$$

or

$$
\begin{gather*}
D_{k}(a, b)= \begin{cases}\frac{a^{k+1}-b^{k+1}}{(k+1)(a-b)}, & a \neq b ; \\
a^{k}, & a=b ;\end{cases} \tag{1.16}\\
d_{k}(a, b)=\left[h_{k+1}(a, b ; k)\right]^{k+1}=\frac{1}{k} \sum_{i=1}^{k} a^{k+1-i} b^{k}, \tag{1.17}
\end{gather*}
$$

or

$$
d_{k}(a, b)= \begin{cases}\frac{a b\left(a^{k}-b^{k}\right)}{k(a-b)}, & a \neq b \tag{1.18}\\ a^{k+1}, & a=b\end{cases}
$$

In this paper, we obtain the monotonicity and logarithmic convexity of the generalized powertype Heron mean $H_{r}(a, b ; k)$ and its dual form $h_{r}(a, b ; k)$. In the final, an open problem is posed.

2. Lemmas

In order to prove the theorems of the next section, we require some lemmas in this section.

Lemma 2.1. ([5],[6) Let p, q be arbitrary real numbers, and $a, b>0$. Then the extended mean values

$$
E_{p, q}(a, b)= \begin{cases}{\left[\frac{q}{p} \cdot \frac{a^{p}-b^{p}}{a^{q}-b^{q}}\right]^{1 /(p-q)},} & p q(p-q)(a-b) \neq 0 \tag{2.1}\\ {\left[\frac{1}{p} \cdot \frac{a^{p}-b^{p}}{\ln a-\ln b}\right]^{1 / p},} & p(a-b) \neq 0, q=0 \\ \frac{1}{e}\left(\frac{a^{a}}{b^{b}}\right)^{\frac{1}{a-b}}, & p(a-b) \neq 0, p=q ; \\ \sqrt{a b}, & (a-b) \neq 0, p=q=0 \\ a, & a=b .\end{cases}
$$

are monotone increasing function with both p and q, or with both a and b; and are logarithmical concave on $(0,+\infty)$ with respect to either p or q, respectively; and logarithmical convex on $(-\infty, 0)$ with respect to either p or q, respectively.

Lemma 2.2. (7]) Let p, q, u, v be arbitrary with $p \neq q, u \neq v$. Then the inequality

$$
\begin{equation*}
E_{p, q}(a, b) \geqslant E_{u, v}(a, b) \tag{2.2}
\end{equation*}
$$

is satisfied for all $a, b>0, a \neq b$ if and only if

$$
\begin{equation*}
p+q \geqslant u+v \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
e(p, q) \geqslant e(u, v) \tag{2.4}
\end{equation*}
$$

where

$$
e(x, y)= \begin{cases}(x-y) / \ln (x / y), & \text { for } x y>0, x \neq y \tag{2.5}\\ 0, & \text { for } x y=0\end{cases}
$$

if either $0 \leqslant \min \{p, q, u, v\}$ or $\max \{p, q, u, v\} \leqslant 0$; and

$$
\begin{equation*}
e(x, y)=(|x|-|y|) /(x-y), \text { for } x, y \in \mathbf{R}, x \neq y \tag{2.6}
\end{equation*}
$$

if either $\min \{p, q, u, v\}<0<\max \{p, q, u, v\}$.
Lemma 2.3. ([2])Let $a_{i}, 1 \leqslant i \leqslant n$ be real numbers with $a_{i} \neq a_{j}$ for $i \neq j$, and

$$
M_{r}(a)= \begin{cases}{\left[\frac{1}{n} \sum_{i=1}^{n} a_{i}^{r}\right]^{\frac{1}{r}},} & 0<|r|<+\infty ; \tag{2.7}\\ \prod_{i=1}^{n} a_{i}^{\frac{1}{n}}, & r=0 .\end{cases}
$$

Then $M_{r}(a)$ is monotone increasing function for r, and $f(r)=\left[M_{r}(a)\right]^{r}$ is logarithmic convex function with respect to $r>0$.

Lemma 2.4. ([8]) If $b_{1} \geqslant b_{2} \geqslant \cdots \geqslant b_{n}>0, \frac{a_{1}}{b_{1}} \geqslant \frac{a_{2}}{b_{2}} \geqslant \cdots \geqslant \frac{a_{n}}{b_{n}}>0$. Then the function

$$
F_{r}(a, b)= \begin{cases}{\left[\sum_{i=1}^{n} a_{i}^{r} / \sum_{i=1}^{n} b_{i}^{r}\right]^{\frac{1}{r}},} & r \neq 0 \tag{2.8}\\ \left(\prod_{i=1}^{n} \frac{a_{i}}{b_{i}}\right)^{1 / n}, & r=0\end{cases}
$$

is monotone increasing one with respect to r.

Lemma 2.5. If $x \geqslant 1$, and k is a fixed natural number. Then the functions

$$
\begin{equation*}
f_{k}(x)=\left(\sum_{i=0}^{k} x^{k-i}\right)^{\frac{1}{k}} /\left(\sum_{i=0}^{k+1} x^{k+1-i}\right)^{\frac{1}{k+1}} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{k}(x)=\left(\sum_{i=1}^{k} x^{k+1-i}\right)^{\frac{1}{k+1}} /\left(\sum_{i=1}^{k+1} x^{k+2-i}\right)^{\frac{1}{k+2}} \tag{2.10}
\end{equation*}
$$

both are monotone decreasing ones with respect to $x \in[1,+\infty)$.
Proof. Calculating the derivative for $f_{k}(x)$ and $g_{k}(x)$ about x, respectively, we get

$$
f_{k}^{\prime}(x)=\left[\sum_{i=1}^{k} \frac{i(i+1)}{2}\left(x^{i-1}-x^{2 k-i}\right)\right] /\left[k(k+1)\left(\sum_{i=0}^{k} x^{k-i}\right)^{\frac{k-1}{k}}\left(\sum_{i=0}^{k+1} x^{k+1-i}\right)^{\frac{k+2}{k+1}}\right]
$$

and

$$
g_{k}^{\prime}(x)=\left[x \sum_{i=1}^{k} \frac{i(i+1)}{2}\left(x^{i-1}-x^{2 k-i}\right)\right] /\left[(k+1)(k+2)\left(\sum_{i=1}^{k} x^{k+1-i}\right)^{\frac{k}{k+1}}\left(\sum_{i=1}^{k+1} x^{k+2-i}\right)^{\frac{k+3}{k+2}}\right]
$$

Since $x \geqslant 1$ and k is a fixed natural number, we find that $x^{i-1}-x^{2 k-i} \leqslant 0,(1 \leqslant i \leqslant k)$, or $f_{k}^{\prime}(x) \leqslant 0$ and $g_{k}^{\prime}(x) \leqslant 0$, It is to see that the functions $f_{k}(x)$ and $g_{k}(x)$ both are monotone decreasing ones with respect to $x \in[1,+\infty)$. The proof of Lemma 2.5 is completed.

3. Monotonicity and Logarithmic Convexity

From Lemma2.1 and Lemma2.3, we easily prove the following Theorem 3.1 and Theorem 3.2 , respectively.

Theorem 3.1. If k is a fixed natural number, then $H_{r}(a, b ; k)$ and $h_{r}(a, b ; k)$ both are monotone increasing function with both a and b for fixed real numbers r, or with r for fixed positive numbers a and b; and are logarithmical concave on $(0,+\infty)$, and logarithmical convex on $(-\infty, 0)$ with respect to r.

Theorem 3.2. Assume a and b are fixed positive numbers, and k is a fixed natural number, then $\left[H_{r}(a, b ; k)\right]^{r}$ and $\left[h_{r}(a, b ; k)\right]^{r}$ both are logarithmic convex function for $r>0$.

Theorem 3.3. [1] For any $r>0$, we have that $H_{r}(a, b ; k)$ is monotonic decreasing function, and $h_{r}(a, b ; k)$ is monotone increasing function with k.

Theorem 3.4. If $b_{1} \geqslant b_{2}>0$ and $a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$, then $H_{r}\left(a_{1}, a_{2} ; k\right) / H_{r}\left(b_{1}, b_{2} ; k\right)$ and $h_{r}\left(a_{1}, a_{2} ; k\right) / h_{r}\left(b_{1}, b_{2} ; k\right)$ are monotone increasing functions with r on \mathbf{R}.

Proof. According to Definition 1.1, we have

$$
\frac{H_{r}\left(a_{1}, a_{2} ; k\right)}{H_{r}\left(b_{1}, b_{2} ; k\right)}= \begin{cases}{\left[\sum_{i=0}^{k} a_{1}^{\frac{(k-i) r}{k}} a_{2}^{\frac{i r}{k}} / \sum_{i=0}^{k} b_{1}^{\frac{(k-i) r}{k}} b_{2}^{\frac{i r}{k}}\right]^{\frac{1}{r}},} & r \neq 0 \tag{3.1}\\ \sqrt{\frac{a_{1} a_{2}}{b_{1} b_{2}}}, & r=0\end{cases}
$$

and

$$
\frac{h_{r}\left(a_{1}, a_{2} ; k\right)}{h_{r}\left(b_{1}, b_{2} ; k\right)}= \begin{cases}{\left[\sum_{i=1}^{k} a_{1}^{\frac{(k+1-i) r}{k+1}} a_{2}^{\frac{i r}{k+1}} / \sum_{i=1}^{k} b_{1}^{\frac{(k+1-i) r}{k+1}} b_{2}^{\frac{i r}{k+1}}\right]^{\frac{1}{r}},} & r \neq 0 \tag{3.2}\\ \sqrt{\frac{a_{1} a_{2}}{b_{1} b_{2}}}, & r=0\end{cases}
$$

For $b_{1} \geqslant b_{2}>0$ and $a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$, we find

$$
\begin{equation*}
b_{1} \geqslant b_{1}^{\frac{k-1}{k}} b_{2}^{\frac{1}{k}} \geqslant b_{1}^{\frac{k-2}{k}} b_{2}^{\frac{2}{k}} \geqslant \cdots \geqslant b_{2}>0, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{1}}{b_{1}} \geqslant\left(\frac{a_{1}}{b_{1}}\right)^{\frac{k-1}{k}}\left(\frac{a_{2}}{b_{2}}\right)^{\frac{1}{k}} \geqslant\left(\frac{a_{1}}{b_{1}}\right)^{\frac{k-2}{k}}\left(\frac{a_{2}}{b_{2}}\right)^{\frac{2}{k}} \geqslant \cdots \geqslant \frac{a_{2}}{b_{2}}>0 . \tag{3.4}
\end{equation*}
$$

From Lemma 2.4, combining (3.1)-(3.4), the proof of Theorem 3.4 is completed.
Theorem 3.5. If $0<a \leqslant b \leqslant \frac{1}{2}$, then $H_{r}(a, b ; k) / H_{r}(1-a, 1-b ; k)$ and $h_{r}(a, b ; k) / h_{r}(1-a, 1-b ; k)$ are monotone increasing functions for r.
Proof. From $0<a \leqslant b \leqslant \frac{1}{2}$, we get

$$
\begin{equation*}
0<1-a \leqslant 1-b, \text { and } 0<\frac{a}{1-a} \leqslant \frac{b}{1-b} . \tag{3.5}
\end{equation*}
$$

Using Theorem 3.4 , we obtain Theorem 3.5.
Theorem 3.6. If $b_{1} \geqslant b_{2}>0$ and $a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$, then $\left(D_{k}\left(a_{1}, a_{2}\right) / D_{k}\left(b_{1}, b_{2}\right)\right)^{\frac{1}{k}}$ and $\left(d_{k}\left(a_{1}, a_{2}\right) / d_{k}\left(b_{1}, b_{2}\right)\right)^{\frac{1}{k+1}}$ both are monotone increasing functions with k on \mathbf{N}.
Proof. To prove $\left(D_{k}\left(a_{1}, a_{2}\right) / D_{k}\left(b_{1}, b_{2}\right)\right)^{\frac{1}{k}}$ is monotone increasing function with k on \mathbf{N}, we only want to prove that: if $b_{1} \geqslant b_{2}>0, a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$ and k is a natural number, then

$$
\begin{equation*}
\left(\sum_{i=0}^{k} a_{1}^{k-i} a_{2}^{i} / \sum_{i=0}^{k} b_{1}^{k-i} b_{2}^{i}\right)^{\frac{1}{k}} \leqslant\left(\sum_{i=0}^{k+1} a_{1}^{k+1-i} a_{2}^{i} / \sum_{i=0}^{k+1} b_{1}^{k+1-i} b_{2}^{i}\right)^{\frac{1}{k+1}} \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[\sum_{i=0}^{k}\left(\frac{a_{1}}{a_{2}}\right)^{k-i}\right]^{\frac{1}{k}} /\left[\sum_{i=0}^{k+1}\left(\frac{a_{1}}{a_{2}}\right)^{k+1-i}\right]^{\frac{1}{k+1}} \leqslant\left[\sum_{i=0}^{k}\left(\frac{b_{1}}{b_{2}}\right)^{k-i}\right]^{\frac{1}{k}} /\left[\sum_{i=0}^{k+1}\left(\left(\frac{b_{1}}{b_{2}}\right)^{k+1-i}\right]^{\frac{1}{k+1}} .\right. \tag{3.7}
\end{equation*}
$$

Taking $x_{1}=\frac{a_{1}}{a_{2}}, x_{2}=\frac{b_{1}}{b_{2}}$, we have $x_{1} \geqslant x_{2} \geqslant 1$, and inequality (3.7) is equivalent to

$$
\begin{equation*}
\left(\sum_{i=0}^{k} x_{1}^{k-i}\right)^{\frac{1}{k}} /\left(\sum_{i=0}^{k+1} x_{1}^{k+1-i}\right)^{\frac{1}{k+1}} \leqslant\left(\sum_{i=0}^{k} x_{2}^{k-i}\right)^{\frac{1}{k}} /\left(\sum_{i=0}^{k+1} x_{2}^{k+1-i}\right)^{\frac{1}{k+1}} \tag{3.8}
\end{equation*}
$$

From Lemma2.5, we find (3.8) or (3.6).
By the same way, we can prove that $\left(d_{k}\left(a_{1}, a_{2}\right) / d_{k}\left(b_{1}, b_{2}\right)\right)^{\frac{1}{k+1}}$ is monotone increasing function with k on \mathbf{N}. Thus, Theorem 3.6 is proved.

The above-hand of Theorem 3.6 is obtained by W.-L. Wang, G.-X. Li and J. Chen in 1988 (see [9]). By the same way of the proof of Theorem3.5, we can obtain
Theorem 3.7. If $0<a \leqslant b \leqslant \frac{1}{2}$, then $\left(D_{k}(a, b) / D_{k}(1-a, 1-b)\right)^{\frac{1}{k}}$ and $\left(h_{k}(a, b) / h_{k}(1-a, 1-b)\right)^{\frac{1}{k+1}}$ both are monotone increasing functions for r.

Remark 3.1. Let $k \rightarrow+\infty$, from Proposition 1.1 (d), we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} h_{r}(a, b ; k)=\lim _{k \rightarrow+\infty} H_{r}(a, b ; k)=\left[L\left(a^{r}, b^{r}\right)\right]^{\frac{1}{r}} . \tag{3.9}
\end{equation*}
$$

According to some theorems above, we immediately get some similar results with $\left[L\left(a^{r}, b^{r}\right)\right]^{\frac{1}{r}}$:
(a) $\left[L\left(a^{r}, b^{r}\right)\right]^{\frac{1}{r}}$ are monotone increasing function with both a and b for fixed real numbers r, or with r for fixed positive numbers a and b; and are logarithmical concave on $(0,+\infty)$ with respect to r; and logarithmical convex on $(-\infty, 0)$ with respect to r;
(b) Assume a and b are fixed positive numbers, then $L\left(a^{r}, b^{r}\right)$ is logarithmic convex function for $r>0$;
(c) If $b_{1} \geqslant b_{2}>0$ and $a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$, then $\left[L\left(a_{1}^{r}, a_{2}^{r}\right) / L\left(b_{1}^{r}, b_{2}^{r}\right)\right]^{\frac{1}{r}}$ is monotone increasing function with r on \mathbf{R};
(d) If $0<a \leqslant b \leqslant \frac{1}{2}$, then $\left[L\left(a^{r}, b^{r}\right) / L\left((1-a)^{r},(1-b)^{r}\right)\right]^{\frac{1}{r}}$ is monotone increasing function for $r \in \mathbf{R}$.

4. Some Inequalities

Theorem 4.1. Let k_{1}, k_{2} are two fixed natural numbers. If $r>0$, we then have inequality

$$
\begin{equation*}
h_{r}\left(a, b ; k_{1}\right) \leqslant H_{r}\left(a, b ; k_{2}\right), \tag{4.1}
\end{equation*}
$$

and inverse inequality holds if $r<0$. With equality holding if and only if $a=b$.
Proof. If $r>0$, from Remaek 1.1, that (4.1) is equivalent to

$$
\begin{equation*}
\left[\frac{a^{\frac{k_{1} r}{k_{1}+1}}-b^{\frac{k_{1} r}{k_{1}+1}}}{-k_{1}\left(a^{-\frac{r}{k_{1}+1}}-b^{-\frac{r}{k_{1}+1}}\right)}\right]^{\frac{1}{r}} \leqslant\left[\frac{a^{\frac{\left(k_{2}+1\right) r}{k_{2}}}-b^{\frac{\left(k_{2}+1\right) r}{k_{2}}}}{\left(k_{2}+1\right)\left(a^{\frac{r}{k_{2}}}-b^{\frac{r}{k_{2}}}\right)}\right]^{\frac{1}{r}} . \tag{4.2}
\end{equation*}
$$

Setting $p=\frac{\left(k_{2}+1\right) r}{k_{2}}, q=\frac{r}{k_{2}}, u=\frac{k_{1} r}{k_{1}+1}$, and $v=-\frac{r}{k_{1}+1}$, that (4.2) become

$$
\begin{equation*}
E_{p, q}(a, b) \geqslant E_{u, v}(a, b) . \tag{4.3}
\end{equation*}
$$

For k_{1}, k_{2} are two fixed natural numbers, that is easy to see that

$$
\begin{gather*}
\min \{p, q, u, v\}=-\frac{r}{k_{1}+1}<0<\max \{p, q, u, v\}, \tag{4.4}\\
p+q=\frac{\left(k_{2}+2\right) r}{k_{2}}>\frac{\left(k_{1}-1\right) r}{k_{1}+1}=u+v . \tag{4.5}
\end{gather*}
$$

and

$$
\begin{equation*}
e(p, q)=r>\frac{\left(k_{1}-1\right) r}{k_{1}+1}=e(u, v), \tag{4.6}
\end{equation*}
$$

where $e(x, y)$ is defined as $\sqrt{2.6}$) of Lemma 2.2 .
Using Lemma 2.2, and combining expression (4.4)-(4.6), we can obtain (4.3), and immediately follow that expression (4.1) is true. Thus, the proof of Theorem4.1 is completed.

By the same way, we can obtain
Theorem 4.2. Let k be a fixed natural number. We then have inequality

$$
\begin{equation*}
\left(d_{k}(a, b)\right)^{\frac{1}{k+1}} \leqslant\left(D_{k}(a, b)\right)^{\frac{1}{k}}, \tag{4.7}
\end{equation*}
$$

with equality holding if and only if $a=b$.
Combining Theorem4.1, Proposition 1.1 (d) and Theorem3.3, we get

Corollary 4.1. If $r_{1}<1<r_{2}$, and k_{1}, k_{2} are two fixed natural numbers, then we have

$$
\begin{equation*}
h_{r_{1}}\left(a, b ; k_{1}\right) \leqslant L(a, b) \leqslant H_{r_{2}}\left(a, b ; k_{2}\right) \tag{4.8}
\end{equation*}
$$

with equalities holding if and only if $a=b$.
Remark 4.1. From those theorems of the last section, for some special cases with k or r, we can obtain some inequalities.

In the final, we put forward an open problem
Open Problem 4.1. Prove that, if k_{1}, k_{2} are two fixed natural number, and $p \geqslant \frac{k_{1}}{k_{1}+2}, q \geqslant$ $\frac{\left(k_{1}+2\right) p}{3 k_{1}}, 0 \leqslant r \leqslant \frac{k_{2}+1}{k_{2}-1}$, then the following inequalities for the new bounds of the logarithmic mean

$$
G(a, b) \leqslant h_{r}\left(a, b ; k_{2}\right) \leqslant L(a, b) \leqslant H_{p}\left(a, b ; k_{1}\right) \leqslant M_{q}(a, b)
$$

hold, and the constants $p=\frac{k_{1}}{k_{1}+2}, q=\frac{1}{3}$, and $r=\frac{k_{2}+1}{k_{2}-1}\left(k_{2}>1\right)$ are the best possible.

References

[1] Zh.-G. Xiao and Zh.-H. Zhang, The Inequalities $G \leqslant L \leqslant I \leqslant A$ in n Variables, J. Ineq. Pure \& Appl. Math., 4(2) (2003), Article 39. http://jipam.vu.edu.au/v4n2/110_02.pdf
[2] J.-Ch. Kuang, Applied Inequalities, Hunan Eduation Press, 2nd. Ed., 1993. (Chinese)
[3] G. Jia and J.-D. Cao, A New Upper Bound of the Logarithmic Mean. J. Ineq. Pure \& Appl. Math., 4(4) (2003), Article 80. http://jipam.vu.edu.au/v4n4/088_03.pdf.
[4] D. W. Detemple and J. M. Robertson, On Generalized Symmetric Means of Two Varibles, Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No.634-672(1979), 236-238(MR, 81h:26014).
[5] F. Qi, Logarithmic convexities of the Extended Mean Values, RGMIA Resarch Report Collection 5(2) (1999), Article5. http://rgmia.vu.edu.au.
[6] E. Lenach and M. Sholander, Extended Mean Values, Amer. Math. Monthly 85 (1978), 84-90.
[7] Zs. Páles, Inequalities for Differences of Powers, J. Math. Anal. \& Appl., 131 (1988), 271-281.
[8] A. W. Marsall, I. Olkin and F. Proschan, Monotonicty of Ratios of Means and other Applications of Majorization, In Inequalities, edited by O.Shisha. New York London 1967, 177-190.
[9] W.-L. Wang, G.-X. Li and J. Chen, Inequalities Involving Ratios of Means, Journal of Chendu University of Science and Technology, 42 No. 6 (1988), 83-88. (Chinese)
(Zh.-H. Zhang) Zixing Educational Research Section, Chenzhou, Hunan 423400, P. R. China. E-mail address: zxzh1234@163.com
(Y.-D. Wu) Xinchang Middle School, Xinchang, Zhejiang 312500, P. R. China.

E-mail address: zjxcwyd@tom.com
(An-P. Zhao) No. 1 Middle School of Zixin, Chenzhou, Hunan 423406, P. R. China.

[^0]: Date: March 31, 2004.
 1991 Mathematics Subject Classification. Primary 26D15, 26D10.
 Key words and phrases. Heron mean; Inequality; Monotonicity; Logarithmic Convexity; Proposition.
 The authors would like to thank professor Wan-lan Wang and the anonymous referee for some valuable suggestions which have improved the final version of this paper.

 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{ET} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

