THE NEW BOUNDS OF THE LOGARITHMIC MEAN

ZHI-HUA ZHANG AND YU-DONG WU

Abstract

In this paper, using the generalized power-type Heron mean and its dual form, we establish the new bounds of the logarithmic mean $$
G(a, b) \leqslant h_{r}\left(a, b ; k_{2}\right) \leqslant L(a, b) \leqslant H_{p}\left(a, b ; k_{1}\right) \leqslant M_{q}(a, b) .
$$

Furthermore, the constants $p=\frac{k_{1}}{k_{1}+2}, q=\frac{1}{3}$, and $r=\frac{k_{2}+1}{k_{2}-1}\left(k_{2}>1\right)$ are the best possible.

1. Introduction

For positive numbers a, b, let

$$
\begin{align*}
& A=A(a, b)=\frac{a+b}{2} ; \tag{1.1}\\
& G=G(a, b)=\sqrt{a b} ; \tag{1.2}\\
& L=L(a, b)= \begin{cases}\frac{a-b}{\ln a-\ln b}, & a \neq b ; \\
a, & a=b ;\end{cases} \tag{1.3}\\
& H=H(a, b)=\frac{a+\sqrt{a b}+b}{3} . \tag{1.4}
\end{align*}
$$

These are respectively called the arithmetic, geometric, logarithmic, and Heron means.
Let r be a real number, the r-order power mean (see [1]) is defined by

$$
M_{r}=M_{r}(a, b)= \begin{cases}\left(\frac{a^{r}+b^{r}}{2}\right)^{\frac{1}{r}}, & r \neq 0 \tag{1.5}\\ \sqrt{a b}, & r=0\end{cases}
$$

The well-known T.-P. Lin inequality (see also [1]) is stated as

$$
\begin{equation*}
G \leqslant L \leqslant M_{\frac{1}{3}} \tag{1.6}
\end{equation*}
$$

In 1993, the following interpolation inequalities are summarized and stated by J.-Ch. Kuang in [1]

$$
\begin{equation*}
G \leqslant L \leqslant M_{\frac{1}{3}} \leqslant M_{\frac{1}{2}} \leqslant H \leqslant M_{\frac{2}{3}} \leqslant A \tag{1.7}
\end{equation*}
$$

In [2], G. Jia and J.-D. Cao studied the power-type generalization of Heron mean

$$
H_{r}=H_{p}(a, b)= \begin{cases}{\left[\frac{a^{r}+(a b)^{r / 2}+b^{r}}{3}\right]^{\frac{1}{r}},} & r \neq 0 \tag{1.8}\\ \sqrt{a b}, & r=0\end{cases}
$$

[^0]and obtained inequalities
\[

$$
\begin{equation*}
L \leqslant H_{p} \leqslant M_{q}, \tag{1.9}
\end{equation*}
$$

\]

where $p \geqslant \frac{1}{2}, q \geqslant \frac{2}{3} p$. Furthermore, $p=\frac{1}{2}, q=\frac{1}{3}$ are the best constants.
In 2003, Zh.-G. Xiao and Zh.-H. Zhang [3] gave another generalization of Heron mean and its dual form respectively as follows

$$
\begin{equation*}
H(a, b ; k)=\frac{1}{k+1} \sum_{i=0}^{k} a^{\frac{k-i}{k}} b^{\frac{i}{k}}, \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
h(a, b ; k)=\frac{1}{k} \sum_{i=1}^{k} a^{\frac{k+1-i}{k+1}} b^{\frac{i}{k+1}}, \tag{1.11}
\end{equation*}
$$

where k is a natural number. Authors proved that $H(a, b ; k)$ is monotone decreasing function and $h(a, b ; k)$ is monotone increasing function for k, and $\lim _{k \rightarrow+\infty} H(a, b ; k)=\lim _{k \rightarrow+\infty} h(a, b ; k)=$ $L(a, b)$.

Combining (1.8), 1.10) and (1.11), in [5], two class of new means for two variables are defined. Let $a>0, b>0, k$ is a natural number, and r is a real number, then the generalized power-type Heron mean and its dual form are defined as follows

$$
H_{r}(a, b ; k)= \begin{cases}{\left[\frac{1}{k+1} \sum_{i=0}^{k} a^{\frac{(k-i) r}{k}} b^{\frac{i r}{k}}\right]^{\frac{1}{r}},} & r \neq 0 \tag{1.12}\\ \sqrt{a b}, & r=0\end{cases}
$$

and

$$
h_{r}(a, b ; k)= \begin{cases}{\left[\frac{1}{k} \sum_{i=1}^{k} a^{\frac{(k+1-i) r}{k+1}} b^{\frac{i r}{k+1}}\right]^{\frac{1}{r}},} & r \neq 0 \tag{1.13}\\ \sqrt{a b}, & r=0\end{cases}
$$

In the end [5], authors put the following:
Open problem: Prove that, if k_{1}, k_{2} are two fixed natural number, and $p \geqslant \frac{k_{1}}{k_{1}+2}, q \geqslant \frac{\left(k_{1}+2\right) p}{3 k_{1}}, 0 \leqslant$ $r \leqslant \frac{k_{2}+1}{k_{2}-1}$, then the following inequalities for the new bounds of the logarithmic mean

$$
\begin{equation*}
G(a, b) \leqslant h_{r}\left(a, b ; k_{2}\right) \leqslant L(a, b) \leqslant H_{p}\left(a, b ; k_{1}\right) \leqslant M_{q}(a, b) . \tag{1.14}
\end{equation*}
$$

hold, and the constants $p=\frac{k_{1}}{k_{1}+2}, q=\frac{1}{3}$, and $r=\frac{k_{2}+1}{k_{2}-1}\left(k_{2}>1\right)$ are the best possible.
In this paper, we solve the open problem above.

2. Lemmas

In order to prove the theorem of the next section, we require some lemmas in this section.
Lemma 2.1. Let $a>0, b>0, k$ is a natural number, and r is a real number, then the generalized power-type Heron mean $H_{r}(a, b ; k)$ and its dual form $h_{r}(a, b ; k)$ can be written that

$$
H_{r}(a, b ; k)= \begin{cases}{\left[\frac{a^{\frac{(k+1) r}{k}}-b^{\frac{(k+1) r}{k}}}{(k+1)\left(a^{\frac{r}{k}}-b^{\frac{r}{k}}\right)}\right]^{\frac{1}{r}},} & r \neq 0, a \neq b ; \tag{2.1}\\ \sqrt{a b}, & r=0, a \neq b \\ a, & r \in R, a=b\end{cases}
$$

and

$$
h_{r}(a, b ; k)= \begin{cases}{\left[\frac{a^{\frac{k r}{k+1}}-b^{\frac{k r}{k+1}}}{-k\left(a^{-\frac{r}{k+1}}-b^{-\frac{r}{k+1}}\right)}\right]^{\frac{1}{r}},} & r \neq 0, a \neq b \tag{2.2}\\ \sqrt{a b}, & r=0, a \neq b \\ a, & r \in R, a=b\end{cases}
$$

Lemma 2.2. If k is a fixed natural number, then $H_{r}(a, b ; k)$ and $h_{r}(a, b ; k)$ is monotone increasing function with r for fixed positive numbers a and b.

Lemma 2.3. [3] For any $r>0$, we have that $H_{r}(a, b ; k)$ is monotonic decreasing function, and $h_{r}(a, b ; k)$ is monotone increasing function with k.

Lemma 2.4. ([4]) Let p, q, u, v be arbitrary with $p \neq q, u \neq v$, and

$$
E_{p, q}(a, b)= \begin{cases}{\left[\frac{q}{p} \cdot \frac{a^{p}-b^{p}}{a^{q}-b^{q}}\right]^{1 /(p-q)},} & p q(p-q)(a-b) \neq 0 \tag{2.3}\\ {\left[\frac{1}{p} \cdot \frac{a^{p}-b^{p}}{\ln a-\ln b}\right]^{1 / p},} & p(a-b) \neq 0, q=0 \\ \frac{1}{e}\left(\frac{a^{a}}{b^{b}}\right)^{\frac{1}{a-b}}, & p(a-b) \neq 0, p=q ; \\ \sqrt{a b}, & (a-b) \neq 0, p=q=0 \\ a, & a=b\end{cases}
$$

Then the inequality

$$
\begin{equation*}
E_{p, q}(a, b) \geqslant E_{u, v}(a, b) \tag{2.4}
\end{equation*}
$$

is satisfied for all $a, b>0, a \neq b$ if and only if

$$
\begin{equation*}
p+q \geqslant u+v \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
e(p, q) \geqslant e(u, v) \tag{2.6}
\end{equation*}
$$

where

$$
e(x, y)= \begin{cases}(x-y) / \ln (x / y), & \text { for } x y>0, x \neq y \tag{2.7}\\ 0, & \text { for } x y=0\end{cases}
$$

if either $0 \leqslant \min \{p, q, u, v\}$ or $\max \{p, q, u, v\} \leqslant 0$; and

$$
\begin{equation*}
e(x, y)=(|x|-|y|) /(x-y), \text { for } x, y \in \mathrm{R}, x \neq y \tag{2.8}
\end{equation*}
$$

if either $\min \{p, q, u, v\}<0<\max \{p, q, u, v\}$.
Lemma 2.5. If k is a natural number. Then

$$
\begin{equation*}
(k+2)^{k(k+3)} \geqslant(k+1)^{(k+1)(k+2)} \tag{2.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{k}{(k+2) \ln (k+1)} \geqslant \frac{k+1}{(k+3) \ln (k+2)} \tag{2.10}
\end{equation*}
$$

Proof. When $k=1,2$, we have $(1+2)^{1 \cdot(1+3)}=81>64=(1+1)^{(1+1)(1+2)}$, and

$$
(2+2)^{2 \cdot(2+3)}=1048576>531441=(2+1)^{(2+1)(2+2)}
$$

respectively. i.e. 2.9 or 2.10 holds.
If $k \geqslant 3$, then we have

$$
\begin{equation*}
\frac{k^{3}}{6} \geqslant \frac{k^{2}}{2}, \frac{k^{4}}{24} \geqslant k \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
k(k+3)-i \geqslant k(k+1), 1 \leqslant i \leqslant 3 \tag{2.12}
\end{equation*}
$$

Using the binomial theorem, we obtain

$$
\begin{align*}
\left(1+\frac{1}{k+1}\right)^{k(k+3)} & =1+\frac{k(k+3)}{k+1}+\frac{k(k+3)[k(k+3)-1]}{2(k+1)^{2}} \tag{2.13}\\
& +\frac{k(k+3)[k(k+3)-1][k(k+3)-2]}{6(k+1)^{3}} \\
& +\frac{k(k+3)[k(k+3)-1][k(k+3)-2][k(k+3)-3]}{24(k+1)^{4}}+\cdots
\end{align*}
$$

From (2.11)-(2.13), we get

$$
\begin{align*}
\left(1+\frac{1}{k+1}\right)^{k(k+3)} & >1+k+\frac{k^{2}}{2}+\frac{k^{3}}{6}+\frac{k^{4}}{24} \tag{2.14}\\
& \geqslant 1+k+\frac{k^{2}}{2}+\frac{k^{2}}{2}+k=1+2 k+k^{2}=(k+1)^{2}
\end{align*}
$$

Rearranging (2.14) we immediately find 2.9 or 2.10 . The proof of Lemma 2.5 is completed.
Lemma 2.6. For fixed positive numbers a and $b, H_{\frac{k}{k+2}}(a, b ; k)$ is monotonic decreasing function and $h_{\frac{k+1}{k-1}}(a, b ; k)$ is monotone increasing function with k.

Proof. Firstly, from Leema 2.1 , the proof of monotone decreasing for $H_{\frac{k}{k+2}}(a, b ; k)$ is equivalent to the inequality

$$
\begin{equation*}
\left[\frac{a^{\frac{k+1}{k+2}}-b^{\frac{k+1}{k+2}}}{(k+1)\left(a^{\frac{1}{k+2}}-b^{\frac{1}{k+2}}\right)}\right]^{\frac{k+2}{k}} \geqslant\left[\frac{a^{\frac{k+2}{k+3}}-b^{\frac{k+2}{k+3}}}{(k+2)\left(a^{\frac{1}{k+3}}-b^{\frac{1}{k+3}}\right)}\right]^{\frac{k+3}{k+1}} \tag{2.15}
\end{equation*}
$$

where k is a natural number.
Setting $p_{1}=\frac{k+1}{k+2}, q_{1}=\frac{1}{k+2}, u_{1}=\frac{k+2}{k+3}$, and $v_{1}=\frac{1}{k+3}$, that 2.15 become

$$
\begin{equation*}
E_{p_{1}, q_{1}}(a, b) \geqslant E_{u_{1}, v_{1}}(a, b) \tag{2.16}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\min \left\{p_{1}, q_{1}, u_{1}, v_{1}\right\}=\frac{1}{k+3}>0 \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}+q_{1}=1=u_{1}+v_{1} \tag{2.18}
\end{equation*}
$$

From Lemma 2.5, we find that

$$
\begin{equation*}
e\left(p_{1}, q_{1}\right)=\frac{k}{(k+2) \ln (k+1)} \geqslant \frac{k+1}{(k+3) \ln (k+2)}=e\left(u_{1}, v_{1}\right) \tag{2.19}
\end{equation*}
$$

where $e(x, y)$ is defined as 2.7) of Lemma2.4.

Using Lemme2.4, and combining expression (2.17)-(2.19), we can obtain 2.16), and immediately follow that expression 2.15 is true. Thus, the proof of monotone decreasing for $H_{\frac{k}{k+2}}(a, b ; k)$ is completed.

We secondly prove that $h_{\frac{k+1}{k-1}}(a, b ; k)$ is monotone increasing function with k, it is to prove the inequality

$$
\begin{equation*}
\left[\frac{a^{\frac{k}{k-1}}-b^{\frac{k}{k-1}}}{-k\left(a^{-\frac{1}{k-1}}-b^{-\frac{1}{k-1}}\right)}\right]^{\frac{k-1}{k+1}} \leqslant\left[\frac{a^{\frac{k+1}{k}}-b^{\frac{k+1}{k}}}{-(k+1)\left(a^{-\frac{1}{k}}-b^{-\frac{1}{k}}\right)}\right]^{\frac{k}{k+2}} \tag{2.20}
\end{equation*}
$$

holding, where k is a natural number.
Taking $p_{2}=\frac{k+1}{k}, q_{2}=-\frac{1}{k}, u_{2}=\frac{k}{k-1}$, and $v_{2}=-\frac{1}{k-1}$, that 2.20 is

$$
\begin{equation*}
E_{u_{2}, v_{2}}(a, b) \leqslant E_{p_{2}, q_{2}}(a, b) \tag{2.21}
\end{equation*}
$$

We easily know that

$$
\begin{gather*}
\min \left\{p_{2}, q_{2}, u_{2}, v_{2}\right\}=-\frac{1}{k-1}<0<\frac{k}{k-1}=\max \left\{p_{2}, q_{2}, u_{2}, v_{2}\right\} \tag{2.22}\\
p_{2}+q_{2}=1=u_{2}+v_{2} \tag{2.23}
\end{gather*}
$$

and

$$
\begin{equation*}
e\left(p_{2}, q_{2}\right)=\frac{k}{k+2} \geqslant \frac{k-1}{k+1}=e\left(u_{2}, v_{2}\right) \tag{2.24}
\end{equation*}
$$

where $e(x, y)$ is defined as 2.8 of Lemma 2.4 .
Using Lemma 2.4, and combining expression $(2.22)-(2.24)$, we similarity have (2.21).
Therefore, Theorem 2.6 is proved.

3. The New Bounds of the Logarithmic Mean

The following inequalities for the new bounds of the logarithmic mean are interesting.
Theorem 3.1. Let k_{1}, k_{2} are two fixed natural number, and $p \geqslant \frac{k_{1}}{k_{1}+2}, q \geqslant \frac{\left(k_{1}+2\right) p}{3 k_{1}}, 0 \leqslant r \leqslant \frac{k_{2}+1}{k_{2}-1}$, we then have inequalities

$$
\begin{equation*}
G(a, b) \leqslant h_{r}\left(a, b ; k_{2}\right) \leqslant L(a, b) \leqslant H_{p}\left(a, b ; k_{1}\right) \leqslant M_{q}(a, b) \tag{3.1}
\end{equation*}
$$

Furthermore, $p=\frac{k_{1}}{k_{1}+2}, q=\frac{1}{3}$, and $r=\frac{k_{2}+1}{k_{2}-1}\left(k_{2}>1\right)$ are the best constants for (3.1). With equalities holding if and only if $a=b$.
Proof. We first prove, for $p=\frac{k_{1}}{k_{1}+2}, q=\frac{1}{3}$, and $r=\frac{k_{2}+1}{k_{2}-1}\left(k_{2}>1\right)$, that (3.1) is true.
Using Lemma2.6, we have

$$
\begin{equation*}
H_{\frac{i_{1}}{i_{1}+2}}\left(a, b ; i_{1}\right) \leqslant H_{\frac{k_{1}}{k_{1}+2}}\left(a, b ; k_{1}\right) \leqslant H_{\frac{j_{1}}{j_{1}+2}}\left(a, b ; j_{1}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{\frac{j_{2}+1}{j_{2}-1}}\left(a, b ; j_{2}\right) \leqslant h_{\frac{k_{2}+1}{k_{2}-1}}\left(a, b ; k_{2}\right) \leqslant h_{\frac{i_{2}+1}{i_{2}-1}}\left(a, b ; i_{2}\right) \tag{3.3}
\end{equation*}
$$

where i_{t}, j_{t}, k_{t} are three positive natural numbers which satisfy $j_{t} \leqslant k_{t} \leqslant i_{t}(t=1,2)$.
Let $i_{t} \rightarrow \infty$, and $j_{t}=1, t=1,2$, from Proposition 1.1 of (5), those (3.2) and (3.3) are respectively

$$
\begin{equation*}
L(a, b) \leqslant H_{\frac{k_{1}}{k_{1}+2}}\left(a, b ; k_{1}\right) \leqslant M_{\frac{1}{3}}(a, b) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
G(a, b) \leqslant h_{\frac{k_{2}+1}{k_{2}-1}}\left(a, b ; k_{2}\right) \leqslant L(a, b) \tag{3.5}
\end{equation*}
$$

For $q \geqslant \frac{\left(k_{1}+2\right) p}{3 k_{1}}>0$, and altering $a \rightarrow a^{\frac{\left(k_{1}+2\right) p}{k_{1}}}, b \rightarrow b^{\frac{\left(k_{1}+2\right) p}{k_{1}}}$, from the right inequality of (3.4), and Lemme2.2, we get

$$
\begin{equation*}
H_{p}\left(a, b ; k_{1}\right) \leqslant M_{q}(a, b) . \tag{3.6}
\end{equation*}
$$

Also, for $0 \leqslant r \leqslant \frac{k_{2}+1}{k_{2}-1}$, we similarity obtain

$$
\begin{equation*}
G(a, b) \leqslant h_{r}\left(a, b ; k_{2}\right) . \tag{3.7}
\end{equation*}
$$

Using Lemma 2.2, combining (3.4)-(3.7), we can conclude that

$$
\begin{equation*}
G(a, b) \leqslant h_{r}\left(a, b ; k_{2}\right) \leqslant h_{\frac{k_{2}+1}{k_{2}-1}}\left(a, b ; k_{2}\right) \leqslant L(a, b) \leqslant H_{\frac{k_{1}}{k_{1}+2}}\left(a, b ; k_{1}\right) \leqslant H_{p}\left(a, b ; k_{1}\right) \leqslant M_{q}(a, b), \tag{3.8}
\end{equation*}
$$

where $p \geqslant \frac{k_{1}}{k_{1}+2}, q \geqslant \frac{\left(k_{1}+2\right) p}{3 k_{1}}$ and $0 \leqslant r \leqslant \frac{k_{2}+1}{k_{2}-1}$.
Next, we prove that $p=\frac{k_{1}}{k_{1}+2}, q=\frac{1}{3}$, and $r=\frac{k_{2}+1}{k_{2}-1}\left(k_{2}>1\right)$ are the best constants for (3.1). Assume the following inequalities have holden for any $x>1$:

$$
\begin{equation*}
G(x, 1) \leqslant h_{r}\left(x, 1 ; k_{2}\right) \leqslant L(x, 1) \leqslant H_{p}\left(x, 1 ; k_{1}\right) \leqslant M_{q}(x, 1) . \tag{3.9}
\end{equation*}
$$

There is no harm in supposing $1<x \leqslant 2$ (In fact, if $n<x \leqslant n+1$, we can take $x=t+n$, where n is a positive integer). Setting $x=t+1$, applying Taylor's Theorem to the functions $G(x, 1), L(x, 1), H_{p}\left(x, 1 ; k_{1}\right), h_{r}\left(x, 1 ; k_{2}\right)$ and $M_{q}(x, 1)$, we have

$$
\begin{gather*}
G(x, 1)=G(t+1,1)=1+\frac{1}{2} t-\frac{1}{8} t^{2}+\cdots, \tag{3.10}\\
L(x, 1)=L(t+1,1)=1+\frac{1}{2} t-\frac{1}{12} t^{2}+\cdots, \tag{3.11}\\
H_{p}\left(x, 1 ; k_{1}\right)=H_{p}\left(t+1,1 ; k_{1}\right)=1+\frac{1}{2} t+\frac{\left(k_{1}+2\right) p-3 k_{1}}{24 k_{1}} t^{2}+\cdots, \tag{3.12}\\
h_{r}\left(x, 1 ; k_{2}\right)=h_{r}\left(t+1,1 ; k_{2}\right)=1+\frac{1}{2} t+\frac{\left(k_{2}-1\right) r-3\left(k_{2}+1\right)}{24\left(k_{2}+1\right)} t^{2}+\cdots, \tag{3.13}
\end{gather*}
$$

and

$$
\begin{equation*}
M_{q}(x, 1)=M_{q}(t+1,1)=1+\frac{1}{2} t+\frac{q-1}{8} t^{2}+\cdots . \tag{3.14}
\end{equation*}
$$

With simple manipulations (3.10)-(3.14), together with (3.9), yield

$$
\begin{equation*}
-\frac{1}{8} \leqslant \frac{\left(k_{2}-1\right) r-3\left(k_{2}+1\right)}{24\left(k_{2}+1\right)} \leqslant-\frac{1}{12} \leqslant \frac{\left(k_{1}+2\right) p-3 k_{1}}{24 k_{1}} \leqslant \frac{q-1}{8} . \tag{3.15}
\end{equation*}
$$

From (3.15), it immediately follows that

$$
p \geqslant \frac{k_{1}}{k_{1}+2}, q \geqslant \frac{\left(k_{1}+2\right) p}{3 k_{1}}, \text { and } 0 \leqslant \mathrm{r} \leqslant \frac{\mathrm{k}_{2}+1}{\mathrm{k}_{2}-1} .
$$

We then have, by virtue of Lemma 2.2, that $p=\frac{k_{1}}{k_{1}+2}, q=\frac{1}{3}$, and $r=\frac{k_{2}+1}{k_{2}-1}\left(k_{2}>1\right)$ are the best constants for (3.1).

The condition of these equalities holding is obvious. The proof of Theorem 3.1 is completed.

References

[1] J.-Ch. Kuang, Applied Inequalities, Hunan Eduation Press, 2nd. Ed., 1993. (Chinese)
[2] G. Jia and J.-D. Cao, A New Upper Bound of the Logarithmic Mean. J. Ineq. Pure \& Appl. Math., 4(4) (2003), Article 80. http://jipam.vu.edu.au/v4n4/088_03.pdf.
[3] Zh.-G. Xiao and Zh.-H. Zhang, The Inequalities $G \leqslant L \leqslant I \leqslant A$ in n Variables, J. Ineq. Pure \& Appl. Math., 4(2) (2003), Article 39. http://jipam.vu.edu.au/v4n2/110_02.pdf
[4] Zs. Páles, Inequalities for Differences of Powers, J. Math. Anal. \& Appl., 131 (1988), 271-281.
[5] Zh.-H. Zhang and Y.-D. Wu, The Properties of the Generalized Heron Mean and its Dual Form, RGMIA Resarch Report Collection, $\mathbf{7}(?)$ (2004), Article ?. http://rgmia.vu.edu.au.
(Zh.-H. Zhang) Zixing Educational Research Section, Chenzhou, Hunan 423400,P.R.China.
E-mail address: zxzh1234@163.com
(Y.-D. Wu) Xinchang Middle School, Xinchang, Zhejiang 312500, P.R.China.

E-mail address: zjxcwyd@tom.com

[^0]: Date: March 31, 2004.
 1991 Mathematics Subject Classification. Primary 26D15, 26D10.
 Key words and phrases. Heron mean; Inequality; Logarithmic Mean; Bound.
 The authors would like to thank professor Wan-lan Wang and the anonymous referee for some valuable suggestions which have improved the final version of this paper.

 This paper was typeset using $\mathcal{A} \mathcal{M}$ - $-\mathrm{ET}_{\mathrm{EX}}$.

