RIEMANN HYPOTHESIS IN SPECIAL CASES

MEHDI HASSANI

Abstract. In this note, we show that the Riemann Hypothesis is true in some special cases.

1. Introduction

The Riemann zeta-function is defined for $\operatorname{Re}(s)>1$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

and extended by analytic continuation to the complex plan with one singularity at $s=1$; in fact a simple pole with residues 1 . The Riemann hypothesis [1] states that the non-real zeros of the Riemann zeta-function all lie on the line $\operatorname{Re}(s)=\frac{1}{2}$. Now, let $\sigma(n)$ denote the sum of positive divisors of n; in 2002 Lagarias [3] showed that Riemann hypothesis holds if and only if

$$
\begin{equation*}
\sigma(n) \leq H_{n}+e^{H_{n}} \ln H_{n} \tag{1}
\end{equation*}
$$

for every \mathbb{N}, where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
In this note we show that the inequality (1) holds, when n is a power of a prime number and for some sufficiently large square free values of n; by square free integer we mean one that in its factoring to primes, the power of factors all are equal to 1.

2. Main Results

Let \mathbb{P} be the set of all primes and $H_{n}=\sum_{k=1}^{n} 1 / k$. It is easy to see that

$$
\begin{equation*}
H_{n}>\ln n \quad(n \in \mathbb{N}) \tag{2}
\end{equation*}
$$

Theorem 1. The inequality (1) holds for all $n \in \mathbb{P}$.
Proof. Suppose $p \in \mathbb{P}$ and $p \geq 17$. since $17>e^{e}$, we have $p \ln \ln p>p$ and $\ln p>1$. Thus, $\ln p+p \ln \ln p>p+1=\sigma(p)$ and combining this with (2) yields result for $p \geq 17$. For $p<17$, we obtain the result by a simple calculation.

[^0]Theorem 2. The inequality (1) holds for all $n=p^{a}$, in which $p \in \mathbb{P}$ and $a \in \mathbb{N}$.

Proof. We know that

$$
\begin{equation*}
\sigma\left(p^{a}\right)=\sum_{t=0}^{a} p^{t}=\frac{p^{a+1}-1}{p-1}<2 p^{a}, \tag{3}
\end{equation*}
$$

and by (2) we have

$$
H_{p^{a}}>\ln p^{a}=a \ln p .
$$

So,

$$
\begin{equation*}
H_{p^{a}}+e^{H_{p^{a}}} \ln H_{p^{a}}>a \ln p+p^{a} \ln \ln p^{a} . \tag{4}
\end{equation*}
$$

For $p^{a} \geq 1619>e^{\left(e^{2}\right)}$, we have $\ln \ln p^{a}>2$ and $a \ln p>0$, so

$$
p^{a}(\ln \ln p-2)+a \ln p>0,
$$

combining this inequality with (3) and (4) yields (1) for $n=p^{a} \geq 1619$. For $p^{a} \leq 1618$, if $a=1$ then (1) holds by previous theorem. The other possible cases are: $(a=2, p=2,3,5,7,11,13,17,19,23,29,31,37),(a=3, p=$ $2,3,5,7,11),(a=4, p=2,3,5),(a=5,6, p=2,3)$ and $(a=7,8,9,10, p=$ 2), which in all of them, (1) follow by a simple calculation.

Theorem 3. The inequality (1) holds for some sufficiently large square free values of n.

Proof. Suppose $n=p_{1} p_{2} \cdots p_{k}$ in which $p_{i} \in \mathbb{P}$ and $2 \leq p_{1}<p_{2}<\cdots<p_{k}$. Since $\sigma(n)=\left(p_{1}+1\right)\left(p_{2}+1\right) \cdots\left(p_{k}+1\right)$ and
$\frac{\sigma(n)}{n}=\left(1+\frac{1}{p_{1}}\right)\left(1+\frac{1}{p_{2}}\right) \cdots\left(1+\frac{1}{p_{k}}\right)<\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \cdots\left(1+\frac{1}{k}\right)=\frac{k+2}{2}$,
we obtain

$$
\sigma(n)<\left(1+\frac{k}{2}\right) n
$$

Now, for $n>e^{\left(e^{1+\frac{k}{2}}\right)}$ we yield $\ln \ln n>1+\frac{k}{2}$ and $n \ln \ln n>\left(1+\frac{k}{2}\right) n>\sigma(n)$. Combining this with relation (2) yields (1) for $n>e^{\left(e^{1+\frac{k}{2}}\right)}$ and n square free with k distinct prime factors.

Note 1. In the theorem 3, $n=p_{1} p_{2} \cdots p_{k}>k!>\Gamma(k)$ and so,

$$
k<\Gamma^{-1}(n)
$$

Corollary 1. The inequality (1) holds for all $n=p q$, in which $p, q \in \mathbb{P}$ and $2 \leq p<q$.
Proof. For $n>e^{\left(e^{2}\right)}$ or $n \geq 1619$, use Theorem 3, and for $n \leq 1618$ check it by a computer.

Corollary 2. For proving (1) for $n=p q r$, we should check it for $n \leq 195339$ and the other cases yield by Theorem 3.

Note 2. We guess that if we consider the ABC-conjecture [4](or [5]), then we can yield the inequality (1) at least for all sufficiently large square free integers and since the density of them is $\frac{6}{\pi^{2}}$ [2], we may yield that the probability that the Riemann hypothesis be true is more that 60%.

References

[1] J.B. Conrey, The Riemann Hypothesis, Notices of the AMS, 51(2003)341-353.
[2] M. Hassani, "Self Sharpening Inequality", RGMIA Research Report Collection, 6(4), Article 1, 2003.
[3] J. Lagarias, An Elementary Problem Equivalent to the Riemann Hypothesis, Amer. Math. Monthly, 109(2002)534-543.
[4] http://mathworld.wolfram.com/abcConjecture.html
[5] http://www.math.unicaen.fr/ nitaj/abc.html
Institute for Advanced Studies in Basic Siences
E-mail address: mhassani@iasbs.ac.ir

[^0]: 1991 Mathematics Subject Classification. 11M26, 11S40, 11A41, 62G07.
 Key words and phrases. Riemann Hypothesis, Zeta-function, Primes, Density, ABC conjecture.

