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Abstract. In this note, we show that the Riemann Hypothesis is true
in some special cases.

1. Introduction

The Riemann zeta-function is defined for Re(s) > 1 by

ζ(s) =
∞∑

n=1

1
ns

,

and extended by analytic continuation to the complex plan with one sin-
gularity at s = 1; in fact a simple pole with residues 1. The Riemann
hypothesis [1] states that the non-real zeros of the Riemann zeta-function
all lie on the line Re(s) = 1

2 . Now, let σ(n) denote the sum of positive
divisors of n; in 2002 Lagarias [3] showed that Riemann hypothesis holds if
and only if

(1) σ(n) ≤ Hn + eHn lnHn,

for every N, where Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n .

In this note we show that the inequality (1) holds, when n is a power of
a prime number and for some sufficiently large square free values of n; by
square free integer we mean one that in its factoring to primes, the power
of factors all are equal to 1.

2. Main Results

Let P be the set of all primes and Hn =
∑n

k=1 1/k. It is easy to see that

(2) Hn > lnn (n ∈ N).

Theorem 1. The inequality (1) holds for all n ∈ P.

Proof. Suppose p ∈ P and p ≥ 17. since 17 > ee, we have p ln ln p > p
and ln p > 1. Thus, ln p + p ln ln p > p + 1 = σ(p) and combining this with
(2) yields result for p ≥ 17. For p < 17, we obtain the result by a simple
calculation. �
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Theorem 2. The inequality (1) holds for all n = pa, in which p ∈ P and
a ∈ N.

Proof. We know that

(3) σ(pa) =
a∑

t=0

pt =
pa+1 − 1

p− 1
< 2pa,

and by (2) we have
Hpa > ln pa = a ln p.

So,

(4) Hpa + eHpa lnHpa > a ln p + pa ln ln pa.

For pa ≥ 1619 > e(e2), we have ln ln pa > 2 and a ln p > 0, so

pa(ln ln p− 2) + a ln p > 0,

combining this inequality with (3) and (4) yields (1) for n = pa ≥ 1619. For
pa ≤ 1618, if a = 1 then (1) holds by previous theorem. The other possi-
ble cases are: (a = 2, p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37), (a = 3, p =
2, 3, 5, 7, 11), (a = 4, p = 2, 3, 5), (a = 5, 6, p = 2, 3) and (a = 7, 8, 9, 10, p =
2), which in all of them, (1) follow by a simple calculation. �

Theorem 3. The inequality (1) holds for some sufficiently large square free
values of n.

Proof. Suppose n = p1p2 · · · pk in which pi ∈ P and 2 ≤ p1 < p2 < · · · < pk.
Since σ(n) = (p1 + 1)(p2 + 1) · · · (pk + 1) and

σ(n)
n

= (1 +
1
p1

)(1 +
1
p2

) · · · (1 +
1
pk

) < (1 +
1
2
)(1 +

1
3
) · · · (1 +

1
k
) =

k + 2
2

,

we obtain

σ(n) < (1 +
k

2
)n.

Now, for n > e(e1+ k
2 ) we yield ln ln n > 1+ k

2 and n ln lnn > (1+ k
2 )n > σ(n).

Combining this with relation (2) yields (1) for n > e(e1+ k
2 ) and n square free

with k distinct prime factors. �

Note 1. In the theorem 3, n = p1p2 · · · pk > k! > Γ(k) and so,

k < Γ−1(n).

Corollary 1. The inequality (1) holds for all n = pq, in which p, q ∈ P and
2 ≤ p < q.

Proof. For n > e(e2) or n ≥ 1619, use Theorem 3, and for n ≤ 1618 check it
by a computer. �

Corollary 2. For proving (1) for n = pqr, we should check it for n ≤ 195339
and the other cases yield by Theorem 3.
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Note 2. We guess that if we consider the ABC-conjecture [4](or [5]),
then we can yield the inequality (1) at least for all sufficiently large square
free integers and since the density of them is 6

π2 [2], we may yield that the
probability that the Riemann hypothesis be true is more that 60%.
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