SOME MITROVIC TYPE TRIGONOMETRIC INEQUALITIES

ZHI-HUA ZHANG, QING SONG, AND SHU-QIONG LI

AbStract. In this short note, we give some parameter trigonometric inequalities.

1. Introduction

In 1967, Z.Mitrovic [1] obtained the following inequality for the parameter form of the triangle:
Theorem 1.1. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cos A+\lambda(\cos B+\cos C) \leqslant 1+\frac{\lambda^{2}}{2} \tag{1.1}
\end{equation*}
$$

with equality holding if and only if $0<\lambda<2$, and $B=C=\frac{\pi}{2}-\arccos \frac{\lambda}{2}$.
Inequality (1.1) is called Mitrovic's inequality. In this short note, we give some new results on Mitrovic type inequality for the triangle.

2. Some Results for the Sine and Cosine

In this part, we will give some Mitrovic type inequalities for the sine and cosine on the triangle.
Theorem 2.1. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cos 2 A+\lambda(\sin 2 B+\sin 2 C) \leqslant 1+\frac{\lambda^{2}}{2} \tag{2.1}
\end{equation*}
$$

with equality holding if and only if $0 \leqslant \lambda \leqslant 2$, and $B=C=\frac{\pi}{2}-\frac{1}{2} \arcsin \frac{\lambda}{2}$.
Proof. Utilizing the facts that

$$
\sin 2 B+\sin 2 C=2 \sin (B+C) \cos (B-C)=2 \sin A \cos (B-C),
$$

and

$$
\cos 2 A=1+2 \cos ^{2} A,
$$

we obtain

$$
\begin{aligned}
\cos 2 A+\lambda(\sin 2 B+\sin 2 C) & =\cos 2 A+2 \lambda \sin A \cos (B-C) \\
& \leqslant \cos 2 A+2|\lambda| \sin A \\
& =-2\left(\sin A-\frac{|\lambda|}{2}\right)^{2}+1+\frac{\lambda^{2}}{2} \\
& \leqslant 1+\frac{\lambda^{2}}{2}
\end{aligned}
$$

with equality holding if and only if $B=C,|\lambda|=\lambda$, and $\sin A=\frac{|\lambda|}{2}$, these are $0 \leqslant \lambda \leqslant 2$, and $B=C=\frac{\pi}{2}-\frac{1}{2} \arcsin \frac{\lambda}{2}$.

Date: March 31, 2004.
1991 Mathematics Subject Classification. Primary 26D15.
Key words and phrases. Mitrovic's inequality, triangle, parameter, sine, cosine, tangent.
This paper was typeset using $\mathcal{A} \mathcal{M}^{\mathcal{S}}$-ETEX.

Corollary 2.1. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cos A+\lambda(\sin B+\sin C) \leqslant 1+\frac{\lambda^{2}}{2} \tag{2.2}
\end{equation*}
$$

with equality holding if and only if $0 \leqslant \lambda \leqslant 2$, and $B=C=\arcsin \frac{\lambda}{2}$.
Corollary 2.2. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cos 2 A+\sqrt{3}(\sin 2 B+\sin 2 C) \leqslant \frac{5}{2} \tag{2.3}
\end{equation*}
$$

with equality holding if and only if the triangle $A B C$ is the equilateral one or $B=C=\frac{\pi}{6}$.
Theorem 2.2. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cos A+\lambda(\sin 2 B+\sin 2 C) \leqslant \sqrt{1+4 \lambda^{2}} \tag{2.4}
\end{equation*}
$$

with equality holding if and only if $0<\lambda$, and $B=C=\frac{\pi}{2}-\frac{1}{2} \arccos \frac{1}{\sqrt{1+4 \lambda^{2}}}$.
Proof. By using the facts that

$$
\sin 2 B+\sin 2 C=2 \sin (B+C) \cos (B-C)=2 \sin A \cos (B-C)
$$

and Cauchy inequality, we obtain

$$
\begin{aligned}
\cos A+\lambda(\sin 2 B+\sin 2 C) & =\cos A+2 \lambda \sin A \cos (B-C) \\
& \leqslant \cos A+2|\lambda| \sin A \\
& \leqslant \sqrt{1+4 \lambda^{2}}
\end{aligned}
$$

with equality holding if and only if $B=C$ and $\frac{1}{\cos A}=\frac{2|\lambda|}{\sin A}$, these are $0<\lambda$, and $B=C=$ $\frac{\pi}{2}-\frac{1}{2} \arccos \frac{1}{\sqrt{1+4 \lambda^{2}}}$. The proof of inequality 2.4 is completed.
Corollary 2.3. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\sin \frac{A}{2}+\lambda(\sin B+\sin C) \leqslant \sqrt{1+4 \lambda^{2}} \tag{2.5}
\end{equation*}
$$

with equality holding if and only if $0<\lambda$, and $B=C=\arccos \frac{1}{\sqrt{1+4 \lambda^{2}}}$.
The proof of the following theorems and corollaries will be left to the readers.
Theorem 2.3. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\sin A+\lambda(\cos 2 B+\cos 2 C) \leqslant \sqrt{1+4 \lambda^{2}} \tag{2.6}
\end{equation*}
$$

with equality holding if and only if $0<\lambda$, and $B=C=\frac{1}{2} \arccos \frac{1}{\sqrt{1+4 \lambda^{2}}}$ or $0 \geqslant \lambda$, and $B=C=$ $\frac{\pi}{2}-\frac{1}{2} \arccos \frac{1}{\sqrt{1+4 \lambda^{2}}}$.
Corollary 2.4. In every triangle $A B C$, and real number λ, we have

$$
\begin{equation*}
\cos \frac{A}{2}+\lambda(\cos B+\cos C) \leqslant \sqrt{1+4 \lambda^{2}} \tag{2.7}
\end{equation*}
$$

with equality holding if and only if $0<\lambda$, and $B=C=\arccos \frac{1}{\sqrt{1+4 \lambda^{2}}}$.
Theorem 2.4. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\sin ^{2} A+\lambda\left(\sin ^{2} B+\sin ^{2} C\right) \leqslant 1+\lambda+\frac{\lambda^{2}}{4} \tag{2.8}
\end{equation*}
$$

with equality holding if and only if $0<\lambda<2$, and $B=C=\frac{\pi}{2}-\frac{1}{2} \arccos \frac{\lambda}{2}$.

Corollary 2.5. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\sin ^{2} A+\lambda(\sin B \sin C) \leqslant 1+\frac{\lambda}{2}+\frac{\lambda^{2}}{16} \tag{2.9}
\end{equation*}
$$

with equality holding if and only if $0 \leqslant \lambda<4$, and $B=C=\frac{\pi}{2}-\frac{1}{2} \arccos \frac{\lambda}{4}$.
Remark 2.1. When $\lambda=1$, inequality (2.9) become Berkolajko's inequality [2]:

$$
\begin{equation*}
\sin ^{2} A+\sin B \sin C \leqslant \frac{25}{16} \tag{2.10}
\end{equation*}
$$

Corollary 2.6. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cos ^{2} A+\lambda\left(\cos ^{2} B+\cos ^{2} C\right) \geqslant \lambda-\frac{\lambda^{2}}{4} \tag{2.11}
\end{equation*}
$$

with equality holding if and only if $0 \leqslant \lambda<2$, and $B=C=\frac{\pi}{2}-\frac{1}{2} \arccos \frac{\lambda}{2}$.
Corollary 2.7. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cos ^{2} \frac{A}{2}+\lambda\left(\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}\right) \geqslant \lambda-\frac{\lambda^{2}}{4} \tag{2.12}
\end{equation*}
$$

with equality holding if and only if $0<\lambda<2$, and $B=C=\arccos \frac{\lambda}{2}$.
Theorem 2.5. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\sin ^{2} A+\lambda\left(\cos ^{2} B+\cos ^{2} C\right) \leqslant 1+\lambda+\frac{\lambda^{2}}{4} \tag{2.13}
\end{equation*}
$$

with equality holding if and only if $0<\lambda<2$, and $B=C=\frac{1}{2} \arccos \frac{\lambda}{2}$.
Corollary 2.8. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\sin ^{2} A+\lambda(\cos B \cos C) \leqslant 1+\frac{\lambda}{2}+\frac{\lambda^{2}}{16} \tag{2.14}
\end{equation*}
$$

with equality holding if and only if $0 \leqslant \lambda<4$, and $B=C=\frac{1}{2} \arccos \frac{\lambda}{4}$.
Corollary 2.9. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cos ^{2} A+\lambda\left(\sin ^{2} B+\sin ^{2} C\right) \geqslant \lambda-\frac{\lambda^{2}}{4} \tag{2.15}
\end{equation*}
$$

with equality holding if and only if $0<\lambda<2$, and $B=C=\frac{1}{2} \arccos \frac{\lambda}{2}$.
Theorem 2.6. If λ is a real number, then in every triangle $A B C$, we have

$$
\begin{equation*}
\sin A+\lambda(\sin B+\sin C) \leqslant \frac{1}{8}\left(\lambda \sqrt{\lambda^{2}+8}-\lambda^{2}+4\right) \sqrt{2 \lambda \sqrt{\lambda^{2}+8}+2 \lambda^{2}+4} \tag{2.16}
\end{equation*}
$$

with equality holding if and only if $0<\lambda$, and $B=C=\arccos \frac{\lambda \sqrt{\lambda^{2}+8}-\lambda^{2}}{4}$.

3. The Inequalities for the Tangent and Cotangent

Theorem 3.1. Let $\lambda>0$, then in every triangle $A B C$, we have

$$
\begin{equation*}
\tan \frac{A}{2}+\lambda(\tan B+\tan C) \geqslant 2 \sqrt{2 \lambda} \tag{3.1}
\end{equation*}
$$

with equality holding if and only if $B=C=\arctan \sqrt{2 \lambda}$.

Proof. From the fact that

$$
\tan B+\tan C=\frac{2 \sin A}{\cos (B-C)-\cos A} \geqslant \frac{2 \sin A}{1-\cos A}=2 \cot \frac{A}{2},
$$

we get

$$
\tan \frac{A}{2}+\lambda(\tan B+\tan C) \geqslant \tan \frac{A}{2}+2 \lambda \cot \frac{A}{2} \geqslant 2 \sqrt{2 \lambda},
$$

with equality holding if and only if $B=C$, and
By the same way, we obtain
Theorem 3.2. Let $\lambda>0$, then in every triangle $A B C$, we have

$$
\begin{equation*}
\cot \frac{A}{2}+\lambda(\cot B+\cot C) \geqslant 2 \sqrt{2 \lambda} \tag{3.2}
\end{equation*}
$$

with equality holding if and only if $B=C=\arctan \sqrt{2 \lambda}$.

4. Some Weighted Inequalities

Wolstenholme's inequality (4.1) [1] is a well-known weighted inequality for the triangle:
Theorem 4.1. Let x, y, z are three real numbers, then in every triangle $A B C$, we have

$$
\begin{equation*}
2 y z \cos A+2 z x \cos B+2 x y \cos C \leqslant x^{2}+y^{2}+z^{2} \tag{4.1}
\end{equation*}
$$

with equality holding if and only if $x: y: z=\sin A: \sin B: \sin C$.
Theorem 4.2. Let x, y, z are three real numbers for $x y z>0$, and $u, v, w>0$, then in every triangle we have the inequality

$$
\begin{equation*}
x \sin A+y \sin B+z \sin C \leq \frac{1}{2}\left(\frac{y z}{x} u+\frac{z x}{y} v+\frac{x y}{z} w\right) \sqrt{\frac{u+v+w}{u v w}} \tag{4.2}
\end{equation*}
$$

with both equalities holding if and only if $x \cos A=y \cos B=z \cos C$ and $u \cot A=v \cot B=$ $w \cot C$.

Proof. Let $x=x_{2} x_{3}, y=x_{3} x_{1}$, and $z=x_{1} x_{2}$, then we have

$$
\begin{align*}
x \sin A & +y \sin B+z \sin C=\frac{x_{2} x_{3} \cos \left(\pi-A-\theta_{1}\right)}{\sin \theta_{1}}+\frac{x_{3} x_{1} \cos \left(\pi-B-\theta_{2}\right)}{\sin \theta_{2}} \tag{4.3}\\
& +\frac{x_{2} x_{3} \cos \left(\pi-C-\theta_{3}\right)}{\sin \theta_{3}}+x_{2} x_{3} \cot \theta_{1} \cos A+x_{3} x_{1} \cot \theta_{2} \cos B+x_{1} x_{2} \cot \theta_{3} \cos C
\end{align*}
$$

where $\theta_{1}, \theta_{2}, \theta_{3}>0$ for $\theta_{1}+\theta_{2}+\theta_{3}=\pi$.
Utilizing the fact that

$$
\begin{equation*}
\tan \theta_{1}+\tan \theta_{2}+\tan \theta_{3}=\tan \theta_{1} \tan \theta_{2} \tan \theta_{3}, \tag{4.4}
\end{equation*}
$$

we can set

$$
\begin{equation*}
\tan \theta_{1}=\lambda \sqrt{\frac{\lambda+\mu+\nu}{\lambda \mu \nu}}, \tan \theta_{2}=\mu \sqrt{\frac{\lambda+\mu+\nu}{\lambda \mu \nu}}, \tan \theta_{3}=\nu \sqrt{\frac{\lambda+\mu+\nu}{\lambda \mu \nu}} \tag{4.5}
\end{equation*}
$$

From Theorem4.1, we easily obtain

$$
\begin{align*}
& \frac{x_{2} x_{3} \cos \left(\pi-A-\theta_{1}\right)}{\sin \theta_{1}}+\frac{x_{3} x_{1} \cos \left(\pi-B-\theta_{2}\right)}{\sin \theta_{2}}+\frac{x_{2} x_{3} \cos \left(\pi-C-\theta_{3}\right)}{\sin \theta_{3}} \tag{4.6}\\
& \leqslant \frac{1}{2}\left[\left(x_{2}^{2}+x_{3}^{2}\right) \cot \theta_{1}+\left(x_{3}^{2}+x_{1}^{2}\right) \cot \theta_{2}+\left(x_{1}^{2}+x_{2}^{2}\right) \cot \theta_{3}\right]
\end{align*}
$$

and

$$
\begin{align*}
& x_{2} x_{3} \cot \theta_{1} \cos A+x_{3} x_{1} \cot \theta_{2} \cos B+x_{1} x_{2} \cot \theta_{3} \cos C \tag{4.7}\\
& \leqslant \frac{1}{2} \cot \theta_{1} \cot \theta_{2} \cot \theta_{3}\left(x_{1}^{2} \tan ^{2} \theta_{1}+x_{2}^{2} \tan ^{2} \theta+x_{3}^{2} \tan ^{2} \theta\right) .
\end{align*}
$$

From (4.4), we find also that

$$
\begin{align*}
& \frac{1}{2}\left[\left(x_{2}^{2}+x_{3}^{2}\right) \cot \theta_{1}+\left(x_{3}^{2}+x_{1}^{2}\right) \cot \theta_{2}+\left(x_{1}^{2}+x_{2}^{2}\right) \cot \theta_{3}\right] \tag{4.8}\\
& +\frac{1}{2} \cot \theta_{1} \cot \theta_{2} \cot \theta_{3}\left(x_{1}^{2} \tan ^{2} \theta_{1}+x_{2}^{2} \tan ^{2} \theta+x_{3}^{2} \tan ^{2} \theta\right) \\
& =\frac{1}{2}\left(x_{1}^{2} \tan \theta_{1}+x_{2}^{2} \tan \theta_{2}+x_{3} \tan \theta_{3}\right) .
\end{align*}
$$

Combining $x=x_{2} x_{3}, y=x_{3} x_{1}, z=x_{1} x_{2}$, (4.3) and 4.5)-4.8), we have the inequality (4.2). The proof of Theorem 4.8 is completed.

The inequality (4.2) is obtained by X.-Zh. Yang in (4). There following theorems are the special cases of Theorem4.8.

Theorem 4.3. (Oppenheim [1]) Let x, y, z are three real numbers, then in every triangle $A B C$, we have

$$
\begin{equation*}
y z \sin A+z x \sin B+x y \sin C \leqslant \frac{1}{2 \sqrt{3}}(x+y+z)^{2} \tag{4.9}
\end{equation*}
$$

with equality holding if and only if $x=y=z$ and triangle $A B C$ is the equilateral one.
Theorem 4.4. (Vasic [1) Let x, y, z are three real numbers for $x y z>0$, then in every triangle $A B C$, we have

$$
\begin{equation*}
x \sin A+y \sin B+z \sin C \leqslant \frac{\sqrt{3}}{2}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{x y}{z}\right) \tag{4.10}
\end{equation*}
$$

with equality holding if and only if $x=y=z$ and triangle $A B C$ is the equilateral one.
Theorem 4.5. (Klamkin [1]) Let $x, y, z>0$, then in every triangle $A B C$, we have

$$
\begin{equation*}
x \sin A+y \sin B+z \sin C \leqslant \frac{1}{2}(x y+y z+z x) \sqrt{\frac{x+y+z}{x y z}} \tag{4.11}
\end{equation*}
$$

with equality holding if and only if $x=y=z$ and triangle $A B C$ is the equilateral one.
Theorem 4.6. ([3]) Let $x, y, z>0$, and in every triangle we have the inequality

$$
\begin{equation*}
\sqrt{\frac{x}{y+z}} \sin A+\sqrt{\frac{y}{z+x}} \sin B+\sqrt{\frac{z}{x+y}} \sin C \leq \sqrt{\frac{(x+y+z)^{3}}{(x+y)(y+z)(z+x)}} \tag{4.12}
\end{equation*}
$$

with both equalities holding if and only if $x: y: z=\tan A: \tan B: \tan C$ or

$$
\frac{\sin ^{2} A}{x(y+z)}=\frac{\sin ^{2} B}{y(z+x)}=\frac{\sin ^{2} C}{z(x+y)}
$$

Theorem 4.7. (4]) Let x, y, z are three real numbers, and $u, v, w>0$, then in every triangle we have the inequality

$$
\begin{equation*}
y z \sin A+z x \sin B+x y \sin C \leq \frac{1}{2}\left(\frac{x^{2}}{u}+\frac{y^{2}}{v}+\frac{z^{2}}{w}\right) \sqrt{v w+w u+u v} \tag{4.13}
\end{equation*}
$$

with both equalities holding if and only if $x: \cos A=y: \cos B=z: \cos C$ and $u: \cot A=v:$ $\cot B=w: \cot C$.

Theorem 4.8. (3]) If $k, u, v, w>0$, and

$$
\begin{equation*}
\frac{1}{u^{2}+k}+\frac{1}{v^{2}+k}+\frac{1}{w^{2}+k}=\frac{2}{k} \tag{4.14}
\end{equation*}
$$

in every triangle, we have the inequality

$$
\begin{equation*}
u \sin A+v \sin B+w \sin C \leq \frac{1}{k} \sqrt{\left(u^{2}+k\right)\left(v^{2}+k\right)\left(w^{2}+k\right)} \tag{4.15}
\end{equation*}
$$

with equality holding if and only if

$$
\frac{u^{2}+k}{u} \sin A=\frac{v^{2}+k}{v} \sin B=\frac{w^{2}+k}{w} \sin C
$$

or

$$
u \cos A=v \cos B=w \cos C .
$$

Theorem 4.9. ([3]) Let x, y, z are three real numbers, if $x y z>0$, then in every triangle $A B C$, we have

$$
\begin{equation*}
x \cos A+y \cos B+z \cos C \leqslant \frac{1}{2}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{x y}{z}\right), \tag{4.16}
\end{equation*}
$$

and the reverse inequality holds if $x y z<0$. With equality holding if and only if $\frac{1}{x}: \frac{1}{y}: \frac{1}{z}=\sin A$: $\sin B: \sin C$.

From Theorem4.1, we easily obtain the following corollary:
Corollary 4.1. Let x, y, z are three real numbers, then in every triangle $A B C$, we have

$$
\begin{equation*}
2 y z \sin \frac{A}{2}+2 z x \sin \frac{B}{2}+2 x y \sin \frac{C}{2} \leqslant x^{2}+y^{2}+z^{2} \tag{4.17}
\end{equation*}
$$

with equality holding if and only if $x: y: z=\cos \frac{A}{2}: \cos \frac{B}{2}: \cos \frac{C}{2}$.
The proof of the following two inequalities will be left to the readers.
Theorem 4.10. Let $x, y, z>0$, then in every triangle $A B C$, we have

$$
\begin{equation*}
(y+z) \cot A+(z+x) \cot B+(x+y) \cot C \geqslant 2 \sqrt{y z+z x+x y}, \tag{4.18}
\end{equation*}
$$

with equality holding if and only if $x: y: z=\cot A: \cot B: \cot C$.
Theorem 4.11. Let $x, y, z>0$, then in every triangle $A B C$, we have

$$
\begin{equation*}
x \sin ^{2} A+y \sin ^{2} B+z \sin ^{2} C \leqslant \frac{(y z+z x+x y)^{2}}{4 x y z} \tag{4.19}
\end{equation*}
$$

with equality holding if and only if $x \sin 2 A=y \sin 2 B=z \sin 2 C$.

References

[1] O.Bottema, R.Z.Djordjević, R.R.Janić, D.S.Mitrinović and P.M. Vasić. Geometric Inequalities. Wolters-NoordhoPublishing, Groningen, 1969.
[2] D.S.Mitrinovic̀, J.E.Pečarć and V.Voloneć. Recent Advances in Geometric Inequalities. 1989.
[3] Zh.-H. Zhang and Zh.-G. Xiao. The generalised Wilkin's inequality, RGMIA Research Report Collection, 6(4), Article 1, 2003.
[4] X.-Zh. Yang. The generalization of a trigonometric inequality, High-School Mathematics. 1(1988), 23-25.
(Zh.-H. Zhang) Zixing Educational Research Section, Chenzhou, Hunan 423400, P.R.China.
E-mail address: zxzh1234@163.com \& zxzzh@126.com
(Q. Song) High School Attached to Nanchang University, Nanchang, Jiangxi 330000, P.R.China.
(Sh.-Q. Li) Shili Middle School of Zixin, Chenzhou, Hunan 423400, P. R. China.

