
A SURVEY OF RECENT REVERSES FOR THE
GENERALISED TRIANGLE INEQUALITY IN INNER

PRODUCT SPACES

SEVER S. DRAGOMIR

Abstract. Recent results concerning reverses of the generalised
triangle inequality in inner product spaces and applications are
surveyed.

1. Introduction

The following reverse of the generalised triangle inequality

cos θ
n∑

k=1

|zk| ≤

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ ,
provided the complex numbers zk, k ∈ {1, . . . , n} satisfy the assump-
tion

a− θ ≤ arg (zk) ≤ a + θ, for any k ∈ {1, . . . , n} ,

where a ∈ R and θ ∈
(
0, π

2

)
was first discovered by M. Petrovich in

1917, [11] (see [10, p. 492]) and subsequently was rediscovered by other
authors, including J. Karamata [6, p. 300 – 301], H.S. Wilf [12], and
in an equivalent form by M. Marden [8].

In 1966, J.B. Diaz and F.T. Metcalf [1] proved the following reverse
of the triangle inequality:

Theorem 1. Let a be a unit vector in the inner product space (H; 〈·, ·〉)
over the real or complex number field K. Suppose that the vectors xi ∈
H\ {0} , i ∈ {1, . . . , n} satisfy

(1.1) 0 ≤ r ≤ Re 〈xi, a〉
‖xi‖

, i ∈ {1, . . . , n} .
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Then

(1.2) r

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

where equality holds if and only if

(1.3)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
a.

A generalisation of this result for orthonormal families is incorpo-
rated in the following result [1].

Theorem 2. Let a1, . . . , an be orthonormal vectors in H. Suppose the
vectors x1, . . . , xn ∈ H\ {0} satisfy

(1.4) 0 ≤ rk ≤
Re 〈xi, ak〉
‖xi‖

, i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} .

Then

(1.5)

(
m∑

k=1

r2
k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

where equality holds if and only if

(1.6)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

rkak.

Similar results valid for semi-inner products may be found in [7] and
[9].

For other classical inequalities related to the triangle inequality, see
Chapter XVII of the book [10] and the references therein.

2. Some Inequalities of Diaz-Metcalf Type

2.1. The Case of One Vector. The following result with a natural
geometrical meaning holds [3]:

Theorem 3. Let a be a unit vector in the inner product space (H; 〈·, ·〉)
and ρ ∈ (0, 1) . If xi ∈ H, i ∈ {1, . . . , n} are such that

(2.1) ‖xi − a‖ ≤ ρ for each i ∈ {1, . . . , n} ,

then we have the inequality

(2.2)
√

1− ρ2

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
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with equality if and only if

(2.3)
n∑

i=1

xi =
√

1− ρ2

(
n∑

i=1

‖xi‖

)
a.

Proof. From (2.1) we have

‖xi‖2 − 2 Re 〈xi, a〉+ 1 ≤ ρ2,

giving

(2.4) ‖xi‖2 + 1− ρ2 ≤ 2 Re 〈xi, a〉 ,
for each i ∈ {1, . . . , n} .

Dividing by
√

1− ρ2 > 0, we deduce

(2.5)
‖xi‖2√
1− ρ2

+
√

1− ρ2 ≤ 2 Re 〈xi, a〉√
1− ρ2

,

for each i ∈ {1, . . . , n} .
On the other hand, by the elementary inequality

(2.6)
p

α
+ qα ≥ 2

√
pq, p, q ≥ 0, α > 0

we have

(2.7) 2 ‖xi‖ ≤
‖xi‖2√
1− ρ2

+
√

1− ρ2

and thus, by (2.5) and (2.7), we deduce

Re 〈xi, a〉
‖xi‖

≥
√

1− ρ2,

for each i ∈ {1, . . . , n} . Applying Theorem 1 for r =
√

1− ρ2, we
deduce the desired inequality (2.2).

The following results may be stated as well.

Theorem 4. Let a be a unit vector in the inner product space (H; 〈·, ·〉)
and M ≥ m > 0. If xi ∈ H, i ∈ {1, . . . , n} are such that either

(2.8) Re 〈Ma− xi, xi −ma〉 ≥ 0

or, equivalently,

(2.9)

∥∥∥∥xi −
M + m

2
· a
∥∥∥∥ ≤ 1

2
(M −m)

holds for each i ∈ {1, . . . , n} , then we have the inequality

(2.10)
2
√

mM

m + M

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
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or, equivalently,

(2.11) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
(√

M −
√

m
)2

2
√

mM

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The equality holds in (2.10) (or in (2.11)) if and only if

(2.12)
n∑

i=1

xi =
2
√

mM

m + M

(
n∑

i=1

‖xi‖

)
a.

Proof. Firstly, we remark that if x, z, Z ∈ H, then the following state-
ments are equivalent:

(i) Re 〈Z − x, x− z〉 ≥ 0;
(ii)

∥∥x− Z+z
2

∥∥ ≤ 1
2
‖Z − z‖ .

Using this fact, one may simply realize that (2.8) and (2.9) are equiv-
alent.

Now, from (2.8), we get

‖xi‖2 + mM ≤ (M + m) Re 〈xi, a〉 ,
for any i ∈ {1, . . . , n} . Dividing this inequality by

√
mM > 0, we

deduce the following inequality that will be used in the sequel

(2.13)
‖xi‖2

√
mM

+
√

mM ≤ M + m√
mM

Re 〈xi, a〉 ,

for each i ∈ {1, . . . , n} .
Using the inequality (2.6) from Theorem 3, we also have

(2.14) 2 ‖xi‖ ≤
‖xi‖2

√
mM

+
√

mM,

for each i ∈ {1, . . . , n} .
Utilizing (2.13) and (2.14), we may conclude with the following in-

equality

‖xi‖ ≤
M + m√

mM
Re 〈xi, a〉 ,

which is equivalent to

(2.15)
2
√

mM

m + M
≤ Re 〈xi, a〉

‖xi‖
for any i ∈ {1, . . . , n} .

Finally, on applying the Diaz-Metcalf result in Theorem 1 for r =
2
√

mM
m+M

, we deduce the desired conclusion.
The equivalence between (2.10) and (2.11) follows by simple calcu-

lation and we omit the details.
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2.2. The Case of m Vectors. In a similar manner to the one used in
the proof of Theorem 3 and by the use of the Diaz-Metcalf inequality
incorporated in Theorem 2, we can also prove the following result [3] :

Theorem 5. Let a1, . . . , an be orthonormal vectors in H. Suppose the
vectors x1, . . . , xn ∈ H\ {0} satisfy

(2.16) ‖xi − ak‖ ≤ ρk for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} ,

where ρk ∈ (0, 1) , k ∈ {1, . . . ,m} . Then we have the following reverse
of the triangle inequality

(2.17)

(
m−

m∑
k=1

ρ2
k

)1/2 n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The equality holds in (2.17) if and only if

(2.18)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

(
1− ρ2

k

)1/2
ak.

Finally, by the use of Theorem 2 and a similar technique to that
employed in the proof of Theorem 4, we may state the following result
[3]:

Theorem 6. Let a1, . . . , an be orthonormal vectors in H. Suppose the
vectors x1, . . . , xn ∈ H\ {0} satisfy

(2.19) Re 〈Mkak − xi, xi − µkak〉 ≥ 0,

or, equivalently,

(2.20)

∥∥∥∥xi −
Mk + µk

2
ak

∥∥∥∥ ≤ 1

2
(Mk − µk) ,

for any i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , where Mk ≥ µk > 0 for
each k ∈ {1, . . . ,m} .

Then we have the inequality

(2.21) 2

(
m∑

k=1

µkMk

(µk + Mk)
2

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The equality holds in (2.21) iff

(2.22)
n∑

i=1

xi = 2

(
n∑

i=1

‖xi‖

)
m∑

k=1

√
µkMk

µk + Mk

ak.
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3. Additive Reverses for the Triangle Inequality

3.1. The Case of One Vector. In this section we establish some ad-
ditive reverses of the generalised triangle inequality in real or complex
inner product spaces.

The following result holds [3]:

Theorem 7. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K and e, xi ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1. If
ki ≥ 0, i ∈ {1, . . . , n} , are such that

(3.1) ‖xi‖ − Re 〈e, xi〉 ≤ ki for each i ∈ {1, . . . , n} ,

then we have the inequality

(3.2) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (3.2) if and only if

(3.3)
n∑

i=1

‖xi‖ ≥
n∑

i=1

ki

and

(3.4)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
n∑

i=1

ki

)
e.

Proof. If we sum in (3.1) over i from 1 to n, then we get

(3.5)
n∑

i=1

‖xi‖ ≤ Re

〈
e,

n∑
i=1

xi

〉
+

n∑
i=1

ki.

By Schwarz’s inequality for e and
∑n

i=1 xi, we have

Re

〈
e,

n∑
i=1

xi

〉
≤

∣∣∣∣∣Re

〈
e,

n∑
i=1

xi

〉∣∣∣∣∣(3.6)

≤

∣∣∣∣∣
〈

e,
n∑

i=1

xi

〉∣∣∣∣∣ ≤ ‖e‖

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

Making use of (3.5) and (3.6), we deduce the desired inequality (3.1).
If (3.3) and (3.4) hold, then∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ =

∣∣∣∣∣
n∑

i=1

‖xi‖ −
n∑

i=1

ki

∣∣∣∣∣ ‖e‖ =
n∑

i=1

‖xi‖ −
n∑

i=1

ki,

and the equality in the second part of (3.2) holds true.
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Conversely, if the equality holds in (3.2), then, obviously (3.3) is
valid and we need only to prove (3.4).

Now, if the equality holds in (3.2) then it must hold in (3.1) for each
i ∈ {1, . . . , n} and also must hold in any of the inequalities in (3.6).

It is well known that in Schwarz’s inequality |〈u, v〉| ≤ ‖u‖ ‖v‖
(u, v ∈ H) the case of equality holds iff there exists a λ ∈ K such
that u = λv. We note that in the weaker inequality Re 〈u, v〉 ≤ ‖u‖ ‖v‖
the case of equality holds iff λ ≥ 0 and u = λv.

Consequently, the equality holds in all inequalities (3.6) simultane-
ously iff there exists a µ ≥ 0 with

(3.7) µe =
n∑

i=1

xi.

If we sum the equalities in (3.1) over i from 1 to n, then we deduce

(3.8)
n∑

i=1

‖xi‖ − Re

〈
e,

n∑
i=1

xi

〉
=

n∑
i=1

ki.

Replacing
∑n

i=1 ‖xi‖ from (3.7) into (3.8), we deduce

n∑
i=1

‖xi‖ − µ ‖e‖2 =
n∑

i=1

ki,

from where we get µ =
∑n

i=1 ‖xi‖ −
∑n

i=1 ki. Using (3.7), we deduce
(3.4) and the theorem is proved.

3.2. The Case of m Vectors. If we turn our attention to the case of
orthogonal families, then we may state the following result as well [3].

Theorem 8. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K, {ek}k∈{1,...,m} a family of orthonormal vectors

in H, xi ∈ H, Mi,k ≥ 0 for i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} such that

(3.9) ‖xi‖ − Re 〈ek, xi〉 ≤ Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} . Then we have the inequality

(3.10)
n∑

i=1

‖xi‖ ≤
1√
m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

n∑
i=1

m∑
k=1

Mik.

The equality holds true in (3.10) if and only if

(3.11)
n∑

i=1

‖xi‖ ≥
1

m

n∑
i=1

m∑
k=1

Mik
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and

(3.12)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik

)
m∑

k=1

ek.

Proof. If we sum over i from 1 to n in (3.9), then we obtain

n∑
i=1

‖xi‖ ≤ Re

〈
e,

n∑
i=1

xi

〉
+

n∑
i=1

Mik,

for each k ∈ {1, . . . ,m} . Summing these inequalities over k from 1 to
m, we deduce

(3.13)
n∑

i=1

‖xi‖ ≤
1

m
Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉
+

1

m

n∑
i=1

m∑
k=1

Mik.

By Schwarz’s inequality for
∑m

k=1 ek and
∑n

i=1 xi we have

Re

〈
m∑

k=1

ek,

n∑
i=1

xi

〉
≤

∣∣∣∣∣Re

〈
m∑

k=1

ek,

n∑
i=1

xi

〉∣∣∣∣∣(3.14)

≤

∣∣∣∣∣
〈

m∑
k=1

ek,
n∑

i=1

xi

〉∣∣∣∣∣
≤

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
=
√

m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

since, obviously,

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥ =

√√√√∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
2

=

√√√√ m∑
k=1

‖ek‖2 =
√

m.

Making use of (3.13) and (3.14), we deduce the desired inequality
(3.10).
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If (3.11) and (3.12) hold, then

1√
m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =

∣∣∣∣∣
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik

∣∣∣∣∣
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥
=

√
m√
m

(
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik

)

=
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik,

and the equality in (3.10) holds true.
Conversely, if the equality holds in (3.10), then, obviously (3.11) is

valid.
Now if the equality holds in (3.10), then it must hold in (3.9) for

each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} and also must hold in any of
the inequalities in (3.14).

It is well known that in Schwarz’s inequality Re 〈u, v〉 ≤ ‖u‖ ‖v‖ ,
the equality occurs iff u = λv with λ ≥ 0, consequently, the equality
holds in all inequalities (3.14) simultaneously iff there exists a µ ≥ 0
with

(3.15) µ

m∑
k=1

ek =
n∑

i=1

xi.

If we sum the equality in (3.9) over i from 1 to n and k from 1 to m,
then we deduce

(3.16) m
n∑

i=1

‖xi‖ − Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉
=

n∑
i=1

m∑
k=1

Mik.

Replacing
∑n

i=1 xi from (3.15) into (3.16), we deduce

m
n∑

i=1

‖xi‖ − µ
m∑

k=1

‖ek‖2 =
n∑

i=1

m∑
k=1

Mik

giving

µ =
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik.

Using (3.15), we deduce (3.12) and the theorem is proved.
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4. Further Additive Reverses

4.1. The Case of Small Balls. In this section we point out different
additive reverses of the generalised triangle inequality under simpler
conditions for the vectors involved.

The following result holds [3]:

Theorem 9. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K and e, xi ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1. If
ρ ∈ (0, 1) and xi, i ∈ {1, . . . , n} are such that

(4.1) ‖xi − e‖ ≤ ρ for each i ∈ {1, . . . , n} ,

then we have the inequality

(0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥(4.2)

≤ ρ2√
1− ρ2

(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉
≤ ρ2√

1− ρ2
(
1 +

√
1− ρ2

) ∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
 .

The equality holds in (4.2) if and only if

(4.3)
n∑

i=1

‖xi‖ ≥
ρ2√

1− ρ2
(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉

and

n∑
i=1

xi(4.4)

=

 n∑
i=1

‖xi‖ −
ρ2√

1− ρ2
(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉 e.

Proof. We know, from the proof of Theorem 7, that, if (4.1) is fulfilled,
then we have the inequality

‖xi‖ ≤
1√

1− ρ2
Re 〈xi, e〉
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for each i ∈ {1, . . . , n} , implying

‖xi‖ − Re 〈xi, e〉 ≤

(
1√

1− ρ2
− 1

)
Re 〈xi, e〉(4.5)

=
ρ2√

1− ρ2
(
1 +

√
1− ρ2

) Re 〈xi, e〉

for each i ∈ {1, . . . , n} .
Now, making use of Theorem 3, for

ki :=
ρ2√

1− ρ2
(
1 +

√
1− ρ2

) Re 〈xi, e〉 , i ∈ {1, . . . , n} ,

we easily deduce the conclusion of the theorem.
We omit the details.

We may state the following result as well [3]:

Theorem 10. Let (H; 〈·, ·〉) be an inner product space and e ∈ H,
M ≥ m > 0. If xi ∈ H, i ∈ {1, . . . , n} are such that either

(4.6) Re 〈Me− xi, xi −me〉 ≥ 0,

or, equivalently,

(4.7)

∥∥∥∥xi −
M + m

2
e

∥∥∥∥ ≤ 1

2
(M −m)

holds for each i ∈ {1, . . . , n} , then we have the inequality

(0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
(√

M −
√

m
)2

2
√

mM
Re

〈
n∑

i=1

xi, e

〉
(4.8) ≤

(√
M −

√
m
)2

2
√

mM

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
 .

The equality holds in (4.8) if and only if

(4.9)
n∑

i=1

‖xi‖ ≥

(√
M −

√
m
)2

2
√

mM
Re

〈
n∑

i=1

xi, e

〉
and

(4.10)
n∑

i=1

xi =

 n∑
i=1

‖xi‖ −

(√
M −

√
m
)2

2
√

mM
Re

〈
n∑

i=1

xi, e

〉 e.
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Proof. We know, from the proof of Theorem 4, that if (4.6) is fulfilled,
then we have the inequality

‖xi‖ ≤
M + m

2
√

mM
Re 〈xi, e〉

for each i ∈ {1, . . . , n} . This is equivalent to

‖xi‖ − Re 〈xi, e〉 ≤

(√
M −

√
m
)2

2
√

mM
Re 〈xi, e〉

for each i ∈ {1, . . . , n} .
Now, making use of Theorem 7, we deduce the conclusion of the

theorem. We omit the details.

Remark 1. If one uses Theorem 8 instead of Theorem 7 above, then
one can state the corresponding generalisation for families of orthonor-
mal vectors of the inequalities (4.2) and (4.8) respectively. We do not
provide them here.

4.2. The Case of Arbitrary Balls. Now, on utilising a slightly dif-
ferent approach, we may point out the following result [3]:

Theorem 11. Let (H; 〈·, ·〉) be an inner product space over K and e,
xi ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1. If ri > 0, i ∈ {1, . . . , n} are such
that

(4.11) ‖xi − e‖ ≤ ri for each i ∈ {1, . . . , n} ,

then we have the inequality

(4.12) 0 ≤
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

2

n∑
i=1

r2
i .

The equality holds in (4.12) if and only if

(4.13)
n∑

i=1

‖xi‖ ≥
1

2

n∑
i=1

r2
i

and

(4.14)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
1

2

n∑
i=1

r2
i

)
e.

Proof. The condition (4.11) is clearly equivalent to

(4.15) ‖xi‖2 + 1 ≤ Re 〈xi, e〉+ r2
i

for each i ∈ {1, . . . , n} .
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Using the elementary inequality

(4.16) 2 ‖xi‖ ≤ ‖xi‖2 + 1,

for each i ∈ {1, . . . , n} , then, by (4.15) and (4.16), we deduce

2 ‖xi‖ ≤ 2 Re 〈xi, e〉+ r2
i ,

giving

(4.17) ‖xi‖ − Re 〈xi, e〉 ≤
1

2
r2
i

for each i ∈ {1, . . . , n} .
Now, utilising Theorem 7 for ki = 1

2
r2
i , i ∈ {1, . . . , n} , we deduce

the desired result. We omit the details.

Finally, we may state and prove the following result as well [3].

Theorem 12. Let (H; 〈·, ·〉) be an inner product space over K and e,
xi ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1. If Mi ≥ mi > 0, i ∈ {1, . . . , n} ,
are such that

(4.18)

∥∥∥∥xi −
Mi + mi

2
e

∥∥∥∥ ≤ 1

2
(Mi −mi) ,

or, equivalently,

(4.19) Re 〈Mie− x, x−mie〉 ≥ 0

for each i ∈ {1, . . . , n} , then we have the inequality

(4.20) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

4

n∑
i=1

(Mi −mi)
2

Mi + mi

.

The equality holds in (4.20) if and only if

(4.21)
n∑

i=1

‖xi‖ ≥
1

4

n∑
i=1

(Mi −mi)
2

Mi + mi

and

(4.22)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
1

4

n∑
i=1

(Mi −mi)
2

Mi + mi

)
e.

Proof. The condition (4.18) is equivalent to:

‖xi‖2 +

(
Mi + mi

2

)2

≤ 2 Re

〈
xi,

Mi + mi

2
e

〉
+

1

4
(Mi −mi)

2

and since

2

(
Mi + mi

2

)
‖xi‖ ≤ ‖xi‖2 +

(
Mi + mi

2

)2

,
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then we get

2

(
Mi + mi

2

)
‖xi‖ ≤ 2 · Mi + mi

2
Re 〈xi, e〉+

1

4
(Mi −mi)

2 ,

or, equivalently,

‖xi‖ − Re 〈xi, e〉 ≤
1

4
· (Mi −mi)

2

Mi + mi

for each i ∈ {1, . . . , n} .

Now, making use of Theorem 7 for ki := 1
4
· (Mi−mi)

2

Mi+mi
, i ∈ {1, . . . , n} ,

we deduce the desired result.

Remark 2. If one uses Theorem 8 instead of Theorem 7 above, then
one can state the corresponding generalisation for families of orthonor-
mal vectors of the inequalities in (4.12) and (4.20) respectively. We
omit the details.

5. Reverses of Schwarz Inequality

In this section we outline a procedure showing how some of the above
results for triangle inequality may be employed to obtain reverses for
the celebrated Schwarz inequality.

For a ∈ H, ‖a‖ = 1 and r ∈ (0, 1) define the closed ball

D (a, r) := {x ∈ H, ‖x− a‖ ≤ r} .

The following reverse of the Schwarz inequality holds [3]:

Proposition 1. If x, y ∈ D (a, r) with a ∈ H, ‖a‖ = 1 and r ∈ (0, 1) ,
then we have the inequality

(5.1) (0 ≤)
‖x‖ ‖y‖ − Re 〈x, y〉

(‖x‖+ ‖y‖)2 ≤ 1

2
r2.

The constant 1
2

in (5.1) is best possible in the sense that it cannot be
replaced by a smaller quantity.

Proof. Using Theorem 3 for x1 = x, x2 = y, ρ = r, we have

(5.2)
√

1− r2 (‖x‖+ ‖y‖) ≤ ‖x + y‖ .

Taking the square in (5.2) we deduce(
1− r2

) (
‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2) ≤ ‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2

which is clearly equivalent to (5.1).
Now, assume that (5.1) holds with a constant C > 0 instead of 1

2
, i.e.,

(5.3)
‖x‖ ‖y‖ − Re 〈x, y〉

(‖x‖+ ‖y‖)2 ≤ Cr2
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provided x, y ∈ D (a, r) with a ∈ H, ‖a‖ = 1 and r ∈ (0, 1) .
Let e ∈ H with ‖e‖ = 1 and e ⊥ a. Define x = a + re, y = a − re.

Then

‖x‖ =
√

1 + r2 = ‖y‖ , Re 〈x, y〉 = 1− r2

and thus, from (5.3), we have

1 + r2 − (1− r2)(
2
√

1 + r2
)2 ≤ Cr2

giving

1

2
≤
(
1 + r2

)
C

for any r ∈ (0, 1) . If in this inequality we let r → 0+, then we get
C ≥ 1

2
and the proposition is proved.

In a similar way, by the use of Theorem 4, we may prove the following
reverse of the Schwarz inequality as well [3]:

Proposition 2. If a ∈ H, ‖a‖ = 1, M ≥ m > 0 and x, y ∈ H are so
that either

Re 〈Ma− x, x−ma〉 , Re 〈Ma− y, y −ma〉 ≥ 0

or, equivalently,∥∥∥∥x− m + M

2
a

∥∥∥∥ ,

∥∥∥∥y − m + M

2
a

∥∥∥∥ ≤ 1

2
(M −m)

hold, then

(0 ≤)
‖x‖ ‖y‖ − Re 〈x, y〉

(‖x‖+ ‖y‖)2 ≤ 1

2

(
M −m

M + m

)2

.

The constant 1
2

cannot be replaced by a smaller quantity.

Remark 3. On utilising Theorem 5 and Theorem 6, we may deduce
some similar reverses of Schwarz inequality provided x, y ∈ ∩m

k=1D (ak, ρk) ,
assumed not to be empty, where a1, ..., an are orthonormal vectors in
H and ρk ∈ (0, 1) for k ∈ {1, ...,m} . We omit the details.

Remark 4. For various different reverses of Schwarz inequality in in-
ner product spaces, see the recent survey [2].
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6. Quadratic Reverses of the Triangle Inequality

6.1. The General Case. The following lemma holds [4]:

Lemma 1. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K, xi ∈ H, i ∈ {1, . . . , n} and kij > 0 for 1 ≤ i <
j ≤ n such that

(6.1) 0 ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤ kij

for 1 ≤ i < j ≤ n. Then we have the following quadratic reverse of the
triangle inequality

(6.2)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ 2
∑

1≤i<j≤n

kij.

The case of equality holds in (6.2) if and only if it holds in (6.1) for
each i, j with 1 ≤ i < j ≤ n.

Proof. We observe that the following identity holds:(
n∑

i=1

‖xi‖

)2

−

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

(6.3)

=
n∑

i,j=1

‖xi‖ ‖xj‖ −

〈
n∑

i=1

xi,
n∑

j=1

xj

〉

=
n∑

i,j=1

‖xi‖ ‖xj‖ −
n∑

i,j=1

Re 〈xi, xj〉

=
n∑

i,j=1

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

=
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

+
∑

1≤j<i≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

= 2
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉] .

Using the condition (6.1), we deduce that∑
1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉] ≤
∑

1≤i<j≤n

kij,

and by (6.3), we get the desired inequality (6.2).
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The case of equality is obvious by the identity (6.3) and we omit the
details.

Remark 5. From (6.2) one may deduce the coarser inequality that
might be useful in some applications:

0 ≤
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
≤

√
2

( ∑
1≤i<j≤n

kij

) 1
2

(
≤
√

2
∑

1≤i<j≤n

√
kij

)
.

Remark 6. If the condition (6.1) is replaced with the following refine-
ment of Schwarz’s inequality:

(6.4) (0 ≤) δij ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 for 1 ≤ i < j ≤ n,

then the following refinement of the quadratic generalised triangle in-
equality is valid:

(6.5)

(
n∑

i=1

‖xi‖

)2

≥

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ 2
∑

1≤i<j≤n

δij

≥ ∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2
 .

The equality holds in the first part of (6.5) iff the case of equality holds
in (6.4) for each 1 ≤ i < j ≤ n.

The following result holds [4].

Proposition 3. Let (H; 〈·, ·〉) be as above, xi ∈ H, i ∈ {1, . . . , n} and
r > 0 such that

(6.6) ‖xi − xj‖ ≤ r

for 1 ≤ i < j ≤ n. Then

(6.7)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
n (n− 1)

2
r2.

The case of equality holds in (6.7) if and only if

(6.8) ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 =
1

2
r2

for each i, j with 1 ≤ i < j ≤ n.

Proof. The inequality (6.6) is obviously equivalent to

‖xi‖2 + ‖xj‖2 ≤ 2 Re 〈xi, xj〉+ r2
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for 1 ≤ i < j ≤ n. Since

2 ‖xi‖ ‖xj‖ ≤ ‖xi‖2 + ‖xj‖2 , 1 ≤ i < j ≤ n;

hence

(6.9) ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤
1

2
r2

for any i, j with 1 ≤ i < j ≤ n.
Applying Lemma 1 for kij := 1

2
r2 and taking into account that∑

1≤i<j≤n

kij =
n (n− 1)

4
r2,

we deduce the desired inequality (6.7). The case of equality is also
obvious by the above lemma and we omit the details.

6.2. Inequalities in Terms of the Forward Difference. In the
same spirit, and if some information about the forward difference ∆xk :=
xk+1−xk (1 ≤ k ≤ n− 1) are available, then the following simple qua-
dratic reverse of the generalised triangle inequality may be stated [4].

Corollary 1. Let (H; 〈·, ·〉) be an inner product space and xi ∈ H,
i ∈ {1, . . . , n} . Then we have the inequality

(6.10)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
n (n− 1)

2

n−1∑
k=1

‖∆xk‖ .

The constant 1
2

is best possible in the sense that it cannot be replaced
in general by a smaller quantity.

Proof. Let 1 ≤ i < j ≤ n. Then, obviously,

‖xj − xi‖ =

∥∥∥∥∥
j−1∑
k=i

∆xk

∥∥∥∥∥ ≤
j−1∑
k=i

‖∆xk‖ ≤
n−1∑
k=1

‖∆xk‖ .

Applying Proposition 3 for r :=
∑n−1

k=1 ‖∆xk‖ , we deduce the desired
result (6.10).

To prove the sharpness of the constant 1
2
, assume that the inequality

(6.10) holds with a constant c > 0, i.e.,

(6.11)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ cn (n− 1)
n−1∑
k=1

‖∆xk‖

for n ≥ 2, xi ∈ H, i ∈ {1, . . . , n} .
If we choose in (6.11), n = 2, x1 = −1

2
e, x2 = 1

2
e, e ∈ H, ‖e‖ = 1,

then we get 1 ≤ 2c, giving c ≥ 1
2
.
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The following result providing a reverse of the quadratic generalised
triangle inequality in terms of the sup-norm of the forward differences
also holds [4].

Proposition 4. Let (H; 〈·, ·〉) be an inner product space and xi ∈ H,
i ∈ {1, . . . , n} . Then we have the inequality

(6.12)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
n2 (n2 − 1)

12
max

1≤k≤n−1
‖∆xk‖2 .

The constant 1
12

is best possible in (6.12).

Proof. As above, we have that

‖xj − xi‖ ≤
j−1∑
k=i

‖∆xk‖ ≤ (j − i) max
1≤k≤n−1

‖∆xk‖ ,

for 1 ≤ i < j ≤ n.
Squaring the above inequality, we get

‖xj‖2 + ‖xi‖2 ≤ 2 Re 〈xi, xj〉+ (j − i)2 max
1≤k≤n−1

‖∆xk‖2

for any i, j with 1 ≤ i < j ≤ n, and since

2 ‖xi‖ ‖xj‖ ≤ ‖xj‖2 + ‖xi‖2 ,

hence

(6.13) 0 ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤
1

2
(j − i)2 max

1≤k≤n−1
‖∆xk‖2

for any i, j with 1 ≤ i < j ≤ n.
Applying Lemma 1 for kij := 1

2
(j − i)2 max

1≤k≤n−1
‖∆xk‖2 , we can state

that (
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)2 max
1≤k≤n−1

‖∆xk‖2 .

However,

∑
1≤i<j≤n

(j − i)2 =
1

2

n∑
i,j=1

(j − i)2 = n
n∑

k=1

k2 −

(
n∑

k=1

k

)2

=
n2 (n2 − 1)

12

giving the desired inequality.
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To prove the sharpness of the constant, assume that (6.12) holds
with a constant D > 0, i.e.,

(6.14)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ Dn2
(
n2 − 1

)
max

1≤k≤n−1
‖∆xk‖2

for n ≥ 2, xi ∈ H, i ∈ {1, . . . , n} .
If in (6.14) we choose n = 2, x1 = −1

2
e, x2 = 1

2
e, e ∈ H, ‖e‖ = 1,

then we get 1 ≤ 12D giving D ≥ 1
12

.

The following result may be stated as well [4].

Proposition 5. Let (H; 〈·, ·〉) be an inner product space and xi ∈ H,
i ∈ {1, . . . , n} . Then we have the inequality:

(6.15)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)
2
q

(
n−1∑
k=1

‖∆xk‖p

) 2
p

,

where p > 1, 1
p

+ 1
q

= 1.

The constant E = 1 in front of the double sum cannot generally be
replaced by a smaller constant.

Proof. Using Hölder’s inequality, we have

‖xj − xi‖ ≤
j−1∑
k=i

‖∆xk‖ ≤ (j − i)
1
q

(
j−1∑
k=i

‖∆xk‖p

) 1
p

≤ (j − i)
1
q

(
n−1∑
k=1

‖∆xk‖p

) 1
p

,

for 1 ≤ i < j ≤ n.
Squaring the previous inequality, we get

‖xj‖2 + ‖xi‖2 ≤ 2 Re 〈xi, xj〉+ (j − i)
2
q

(
n−1∑
k=1

‖∆xk‖p

) 2
p

,

for 1 ≤ i < j ≤ n.
Utilising the same argument from the proof of Proposition 4, we

deduce the desired inequality (6.15).
Now assume that (6.15) holds with a constant E > 0, i.e.,(

n∑
i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ E
∑

1≤i<j≤n

(j − i)
2
q

(
n−1∑
k=1

‖∆xk‖p

) 2
p

,

for n ≥ 2 and xi ∈ H, i ∈ {1, . . . , n} , p > 1, 1
p

+ 1
q

= 1.
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For n = 2, x1 = −1
2
e, x2 = 1

2
e, ‖e‖ = 1, we get 1 ≤ E, showing the

fact that the inequality (6.15) is sharp.

The particular case p = q = 2 is of interest [4].

Corollary 2. Let (H; 〈·, ·〉) be an inner product space and xi ∈ H,
i ∈ {1, . . . , n} . Then we have the inequality:

(6.16)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
(n2 − 1) n

6

n−1∑
k=1

‖∆xk‖2 .

The constant 1
6

is best possible in (6.16).

Proof. For p = q = 2, Proposition 5 provides the inequality(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)
n−1∑
k=1

‖∆xk‖2 ,

and since∑
1≤i<j≤n

(j − i)

= 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + · · ·+ n− 1)

=
n−1∑
k=1

(1 + 2 + · · ·+ k) =
n−1∑
k=1

k (k + 1)

2

=
1

2

[
(n− 1) n (2n− 1)

6
+

n (n− 1)

2

]
=

n (n2 − 1)

6
,

hence the inequality (6.15) is proved. The best constant may be shown
in the same way as above but we omit the details.

6.3. A Different Quadratic Inequality. Finally, we may state and
prove the following different result [4].

Theorem 13. Let (H; 〈·, ·〉) be an inner product space, yi ∈ H, i ∈
{1, . . . , n} and M ≥ m > 0 are such that either

(6.17) Re 〈Myj − yi, yi −myj〉 ≥ 0 for 1 ≤ i < j ≤ n,

or, equivalently,

(6.18)

∥∥∥∥yi −
M + m

2
yj

∥∥∥∥ ≤ 1

2
(M −m) ‖yj‖ for 1 ≤ i < j ≤ n.
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Then we have the inequality

(6.19)

(
n∑

i=1

‖yi‖

)2

≤

∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥
2

+
1

2
· (M −m)2

M + m

n−1∑
k=1

k ‖yk+1‖2 .

The case of equality holds in (6.19) if and only if

(6.20) ‖yi‖ ‖yj‖ − Re 〈yi, yj〉 =
1

4
· (M −m)2

M + m
‖yj‖2

for each i, j with 1 ≤ i < j ≤ n.

Proof. Taking the square in (6.18), we get

‖yi‖2 +
(M −m)2

M + m
‖yj‖2

≤ 2 Re

〈
yi,

M + m

2
yj

〉
+

1

n
(M −m)2 ‖yj‖2

for 1 ≤ i < j ≤ n, and since, obviously,

2

(
M + m

2

)
‖yi‖ ‖yj‖ ≤ ‖yi‖2 +

(M −m)2

M + m
‖yj‖2 ,

hence

2

(
M + m

2

)
‖yi‖ ‖yj‖

≤ 2 Re

〈
yi,

M + m

2
yj

〉
+

1

n
(M −m)2 ‖yj‖2 ,

giving the much simpler inequality

(6.21) ‖yi‖ ‖yj‖ − Re 〈yi, yj〉 ≤
1

4
· (M −m)2

M + m
‖yj‖2 ,

for 1 ≤ i < j ≤ n.

Applying Lemma 1 for kij := 1
4
· (M−m)2

M+m
‖yj‖2 , we deduce

(6.22)

(
n∑

i=1

‖yi‖

)2

≤

∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥
2

+
1

2

(M −m)2

M + m

∑
1≤i<j≤n

‖yj‖2

with equality if and only if (6.21) holds for each i, j with 1 ≤ i < j ≤ n.
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Since∑
1≤i<j≤n

‖yj‖2 =
∑

1<j≤n

‖yj‖2 +
∑

2<j≤n

‖yj‖2 + · · ·+
∑

n−1<j≤n

‖yj‖2

=
n∑

j=2

‖yj‖2 +
n∑

j=3

‖yj‖2 + · · ·+
n∑

j=n−1

‖yj‖2 + ‖yn‖2

=
n∑

j=2

(j − 1) ‖yj‖2 =
n−1∑
k=1

k ‖yk+1‖2 ,

hence the inequality (6.19) is obtained.

7. Further Quadratic Refinements

7.1. The General Case. The following lemma is of interest in itself
as well [4].

Lemma 2. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K, xi ∈ H, i ∈ {1, . . . , n} and k ≥ 1 with the
property that:

(7.1) ‖xi‖ ‖xj‖ ≤ k Re 〈xi, xj〉 ,
for each i, j with 1 ≤ i < j ≤ n. Then

(7.2)

(
n∑

i=1

‖xi‖

)2

+ (k − 1)
n∑

i=1

‖xi‖2 ≤ k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

The equality holds in (7.2) if and only if it holds in (7.1) for each i, j
with 1 ≤ i < j ≤ n.

Proof. Firstly, let us observe that the following identity holds true:(
n∑

i=1

‖xi‖

)2

− k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

(7.3)

=
n∑

i,j=1

‖xi‖ ‖xj‖ − k

〈
n∑

i=1

xi,
n∑

j=1

xj

〉

=
n∑

i,j=1

[‖xi‖ ‖xj‖ − k Re 〈xi, xj〉]

= 2
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − k Re 〈xi, xj〉] + (1− k)
n∑

i=1

‖xi‖2 ,

since, obviously, Re 〈xi, xj〉 = Re 〈xj, xi〉 for any i, j ∈ {1, . . . , n} .
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Using the assumption (7.1), we obtain∑
1≤i<j≤n

[‖xi‖ ‖xj‖ − k Re 〈xi, xj〉] ≤ 0

and thus, from (7.3), we deduce the desired inequality (7.2).
The case of equality is obvious by the identity (7.3) and we omit the

details.

Remark 7. The inequality (7.2) provides the following reverse of the
quadratic generalised triangle inequality:

(7.4) 0 ≤

(
n∑

i=1

‖xi‖

)2

−
n∑

i=1

‖xi‖2 ≤ k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

−
n∑

i=1

‖xi‖2

 .

Remark 8. Since k = 1 and
∑n

i=1 ‖xi‖2 ≥ 0, hence by (7.2) one may
deduce the following reverse of the triangle inequality

(7.5)
n∑

i=1

‖xi‖ ≤
√

k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

provided (7.1) holds true for 1 ≤ i < j ≤ n.

The following corollary providing a better bound for
∑n

i=1 ‖xi‖ ,
holds [4].

Corollary 3. With the assumptions in Lemma 2, one has the inequal-
ity:

(7.6)
n∑

i=1

‖xi‖ ≤
√

nk

n + k − 1

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

Proof. Using the Cauchy-Bunyakovsky-Schwarz inequality

n

n∑
i=1

‖xi‖2 ≥

(
n∑

i=1

‖xi‖

)2

we get

(7.7) (k − 1)
n∑

i=1

‖xi‖2 +

(
n∑

i=1

‖xi‖

)2

≥
(

k − 1

n
+ 1

)( n∑
i=1

‖xi‖

)2

.

Consequently, by (7.7) and (7.2) we deduce

k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

≥ n + k − 1

n

(
n∑

i=1

‖xi‖

)2

giving the desired inequality (7.6).
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7.2. Assymetric Assumptions. The following result may be stated
as well [4].

Theorem 14. Let (H; 〈·, ·〉) be an inner product space and xi ∈ H\ {0} ,
i ∈ {1, . . . , n} , ρ ∈ (0, 1) , such that

(7.8)

∥∥∥∥xi −
xj

‖xj‖

∥∥∥∥ ≤ ρ for 1 ≤ i < j ≤ n.

Then we have the inequality√
1− ρ2

(
n∑

i=1

‖xi‖

)2

+
(
1−

√
1− ρ2

) n∑
i=1

‖xi‖2(7.9)

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

The case of equality holds in (7.9) iff

(7.10) ‖xi‖ ‖xj‖ =
1√

1− ρ2
Re 〈xi, xj〉

for any 1 ≤ i < j ≤ n.

Proof. The condition (7.1) is obviously equivalent to

‖xi‖2 + 1− ρ2 ≤ 2 Re

〈
xi,

xj

‖xj‖

〉
for each 1 ≤ i < j ≤ n.

Dividing by
√

1− ρ2 > 0, we deduce

(7.11)
‖xi‖2√
1− ρ2

+
√

1− ρ2 ≤ 2√
1− ρ2

Re

〈
xi,

xj

‖xj‖

〉
,

for 1 ≤ i < j ≤ n.
On the other hand, by the elementary inequality

(7.12)
p

α
+ qα ≥ 2

√
pq, p, q ≥ 0, α > 0

we have

(7.13) 2 ‖xi‖ ≤
‖xi‖2√
1− ρ2

+
√

1− ρ2.

Making use of (7.11) and (7.13), we deduce that

‖xi‖ ‖xj‖ ≤
1√

1− ρ2
Re 〈xi, xj〉

for 1 ≤ i < j ≤ n.
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Now, applying Lemma 1 for k = 1√
1−ρ2

, we deduce the desired re-

sult.

Remark 9. If we assume that ‖xi‖ = 1, i ∈ {1, . . . , n} , satisfying the
simpler condition

(7.14) ‖xj − xi‖ ≤ ρ for 1 ≤ i < j ≤ n,

then, from (7.9), we deduce the following lower bound for ‖
∑n

i=1 xi‖ ,
namely

(7.15)
[
n + n (n− 1)

√
1− ρ2

] 1
2 ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The equality holds in (7.15) iff
√

1− ρ2 = Re 〈xi, xj〉 for 1 ≤ i < j ≤ n.

Remark 10. Under the hypothesis of Proposition 5, we have the coarser
but simpler reverse of the triangle inequality

(7.16) 4
√

1− ρ2

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

Also, applying Corollary 3 for k = 1√
1−ρ2

, we can state that

(7.17)
n∑

i=1

‖xi‖ ≤
√

n

n
√

1− ρ2 + 1−
√

1− ρ2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

provided xi ∈ H satisfy (7.8) for 1 ≤ i < j ≤ n.

In the same manner, we can state and prove the following reverse of
the quadratic generalised triangle inequality [4].

Theorem 15. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K, xi ∈ H, i ∈ {1, . . . , n} and M ≥ m > 0 such
that either

(7.18) Re 〈Mxj − xi, xi −mxj〉 ≥ 0 for 1 ≤ i < j ≤ n,

or, equivalently,

(7.19)

∥∥∥∥xi −
M + m

2
xj

∥∥∥∥ ≤ 1

2
(M −m) ‖xj‖ for 1 ≤ i < j ≤ n
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hold. Then

2
√

mM

M + m

(
n∑

i=1

‖xi‖

)2

+

(√
M −

√
m
)2

M + m

n∑
i=1

‖xi‖2(7.20)

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

The case of equality holds in (7.20) if and only if

(7.21) ‖xi‖ ‖xj‖ =
M + m

2
√

mM
Re 〈xi, xj〉 for 1 ≤ i < j ≤ n.

Proof. From (7.18), observe that

(7.22) ‖xi‖2 + Mm ‖xj‖2 ≤ (M + m) Re 〈xi, xj〉 ,

for 1 ≤ i < j ≤ n. Dividing (7.22) by
√

mM > 0, we deduce

‖xi‖2

√
mM

+
√

mM ‖xj‖2 ≤ M + m√
mM

Re 〈xi, xj〉 ,

and since, obviously

2 ‖xi‖ ‖xj‖ ≤
‖xi‖2

√
mM

+
√

mM ‖xj‖2

hence

‖xi‖ ‖xj‖ ≤
M + m

2
√

mM
Re 〈xi, xj〉 , for 1 ≤ i < j ≤ n.

Applying Lemma 2 for k = M+m
2
√

mM
≥ 1, we deduce the desired result.

Remark 11. We also must note that a simpler but coarser inequality
that can be obtained from (7.20) is(

2
√

mM

M + m

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

provided (7.18) holds true.

Finally, a different result related to the generalised triangle inequality
is incorporated in the following theorem [4].

Theorem 16. Let (H; 〈·, ·〉) be an inner product space over K, η > 0
and xi ∈ H, i ∈ {1, . . . , n} with the property that

(7.23) ‖xj − xi‖ ≤ η < ‖xj‖ for each i, j ∈ {1, . . . , n} .
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Then we have the following reverse of the triangle inequality

(7.24)

∑n
i=1

√
‖xi‖2 − η2

‖
∑n

i=1 xi‖
≤ ‖

∑n
i=1 xi‖∑n

i=1 ‖xi‖
.

The equality holds in (7.24) iff

(7.25) ‖xi‖
√
‖xj‖2 − η2 = Re 〈xi, xj〉 for each i, j ∈ {1, . . . , n} .

Proof. From (7.23), we have

‖xi‖2 + ‖xj‖2 − η2 ≤ 2 Re 〈xi, xj〉 , i, j ∈ {1, . . . , n} .

On the other hand,

2 ‖xi‖
√
‖xj‖2 − η2 ≤ ‖xi‖2 + ‖xj‖2 − η2, i, j ∈ {1, . . . , n}

and thus

‖xi‖
√
‖xj‖2 − η2 ≤ Re 〈xi, xj〉 , i, j ∈ {1, . . . , n} .

Summing over i, j ∈ {1, . . . , n} , we deduce the desired inequality
(7.24).

The case of equality is also obvious from the above, and we omit the
details.

8. Reverses for Complex Spaces

8.1. The Case of One Vector. The following result holds [5].

Theorem 17. Let (H; 〈·, ·〉) be a complex inner product space. Suppose
that the vectors xk ∈ H, k ∈ {1, . . . , n} satisfy the condition

(8.1) 0 ≤ r1 ‖xk‖ ≤ Re 〈xk, e〉 , 0 ≤ r2 ‖xk‖ ≤ Im 〈xk, e〉

for each k ∈ {1, . . . , n} , where e ∈ H is such that ‖e‖ = 1 and r1, r2 ≥
0. Then we have the inequality

(8.2)
√

r2
1 + r2

2

n∑
k=1

‖xk‖ ≤

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ ,

where equality holds if and only if

(8.3)
n∑

k=1

xk = (r1 + ir2)

(
n∑

k=1

‖xk‖

)
e.
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Proof. In view of the Schwarz inequality in the complex inner product
space (H; 〈·, ·〉) , we have∥∥∥∥∥

n∑
k=1

xk

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

‖e‖2 ≥

∣∣∣∣∣
〈

n∑
k=1

xk, e

〉∣∣∣∣∣
2

(8.4)

=

∣∣∣∣∣
〈

n∑
k=1

xk, e

〉∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

k=1

Re 〈xk, e〉+ i

(
n∑

k=1

Im 〈xk, e〉

)∣∣∣∣∣
2

=

(
n∑

k=1

Re 〈xk, e〉

)2

+

(
n∑

k=1

Im 〈xk, e〉

)2

.

Now, by hypothesis (8.1)

(8.5)

(
n∑

k=1

Re 〈xk, e〉

)2

≥ r2
1

(
n∑

k=1

‖xk‖

)2

and

(8.6)

(
n∑

k=1

Im 〈xk, e〉

)2

≥ r2
2

(
n∑

k=1

‖xk‖

)2

.

If we add (8.5) and (8.6) and use (8.4), then we deduce the desired
inequality (8.2).

Now, if (8.3) holds, then∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ = |r1 + ir2|

(
n∑

k=1

‖xk‖

)
‖e‖ =

√
r2
1 + r2

2

n∑
k=1

‖xk‖

and the case of equality is valid in (8.2).
Before we prove the reverse implication, let us observe that for x ∈ H

and e ∈ H, ‖e‖ = 1, the following identity is true

‖x− 〈x, e〉 e‖2 = ‖x‖2 − |〈x, e〉|2 ,

therefore ‖x‖ = |〈x, e〉| if and only if x = 〈x, e〉 e.
If we assume that equality holds in (8.2), then the case of equality

must hold in all the inequalities required in the argument used to prove
the inequality (8.2), and we may state that

(8.7)

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ =

∣∣∣∣∣
〈

n∑
k=1

xk, e

〉∣∣∣∣∣ ,
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and

(8.8) r1 ‖xk‖ = Re 〈xk, e〉 , r2 ‖xk‖ = Im 〈xk, e〉
for each k ∈ {1, . . . , n} .

From (8.7) we deduce

(8.9)
n∑

k=1

xk =

〈
n∑

k=1

xk, e

〉
e

and from (8.8), by multiplying the second equation with i and summing
both equations over k from 1 to n, we deduce

(8.10) (r1 + ir2)
n∑

k=1

‖xk‖ =

〈
n∑

k=1

xk, e

〉
.

Finally, by (8.10) and (8.9), we get the desired equality (8.3).

The following corollary is of interest [5].

Corollary 4. Let e a unit vector in the complex inner product space
(H; 〈·, ·〉) and ρ1, ρ2 ∈ (0, 1) . If xk ∈ H, k ∈ {1, . . . , n} are such that

(8.11) ‖xk − e‖ ≤ ρ1, ‖xk − ie‖ ≤ ρ2 for each k ∈ {1, . . . , n} ,

then we have the inequality

(8.12)
√

2− ρ2
1 − ρ2

2

n∑
k=1

‖xk‖ ≤

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ ,

with equality if and only if

(8.13)
n∑

k=1

xk =

(√
1− ρ2

1 + i
√

1− ρ2
2

)( n∑
k=1

‖xk‖

)
e.

Proof. From the first inequality in (8.11) we deduce

(8.14) 0 ≤
√

1− ρ2
1 ‖xk‖ ≤ Re 〈xk, e〉

for each k ∈ {1, . . . , n} .
From the second inequality in (8.11) we deduce

0 ≤
√

1− ρ2
2 ‖xk‖ ≤ Re 〈xk, ie〉

for each k ∈ {1, . . . , n} . Since

Re 〈xk, ie〉 = Im 〈xk, e〉 ,
hence

(8.15) 0 ≤
√

1− ρ2
2 ‖xk‖ ≤ Im 〈xk, e〉



REVERSES FOR THE GENERALISED TRIANGLE INEQUALITY 31

for each k ∈ {1, . . . , n} .
Now, observe from (8.14) and (8.15), that the condition (8.1) of

Theorem 17 is satisfied for r1 =
√

1− ρ2
1, r2 =

√
1− ρ2

2 ∈ (0, 1) , and
thus the corollary is proved.

The following corollary may be stated as well [5].

Corollary 5. Let e be a unit vector in the complex inner product space
(H; 〈·, ·〉) and M1 ≥ m1 > 0, M2 ≥ m2 > 0. If xk ∈ H, k ∈ {1, . . . , n}
are such that either

Re 〈M1e− xk, xk −m1e〉 ≥ 0,(8.16)

Re 〈M2ie− xk, xk −m2ie〉 ≥ 0

or, equivalently, ∥∥∥∥xk −
M1 + m1

2
e

∥∥∥∥ ≤ 1

2
(M1 −m1) ,(8.17) ∥∥∥∥xk −

M2 + m2

2
ie

∥∥∥∥ ≤ 1

2
(M2 −m2) ,

for each k ∈ {1, . . . , n} , then we have the inequality

(8.18) 2

[
m1M1

(M1 + m1)
2 +

m2M2

(M2 + m2)
2

]1/2 n∑
k=1

‖xk‖ ≤

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ .

The equality holds in (8.18) if and only if

(8.19)
n∑

k=1

xk = 2

( √
m1M1

M1 + m1

+ i

√
m2M2

M2 + m2

)( n∑
k=1

‖xk‖

)
e.

Proof. From the first inequality in (8.16)

(8.20) 0 ≤ 2
√

m1M1

M1 + m1

‖xk‖ ≤ Re 〈xk, e〉

for each k ∈ {1, . . . , n} .
Now, the proof follows the same path as the one of Corollary 4 and

we omit the details.

8.2. The Case of m Orthonormal Vectors. In [1], the authors have
proved the following reverse of the generalised triangle inequality in
terms of orthonormal vectors [5].

Theorem 18. Let e1, . . . , em be orthonormal vectors in (H; 〈·, ·〉), i.e.,
we recall that 〈ei, ej〉 = 0 if i 6= j and ‖ei‖ = 1, i, j ∈ {1, . . . ,m} .
Suppose that the vectors x1, . . . , xn ∈ H satisfy

0 ≤ rk ‖xj‖ ≤ Re 〈xj, ek〉 ,
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j ∈ {1, . . . , n} , k ∈ {1, . . . ,m} . Then

(8.21)

(
m∑

k=1

r2
k

) 1
2 n∑

j=1

‖xj‖ ≤

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ ,

where equality holds if and only if

(8.22)
n∑

j=1

xj =

(
n∑

j=1

‖xj‖

)
m∑

k=1

rkek.

If the space (H; 〈·, ·〉) is complex and more information is available
for the imaginary part, then the following result may be stated as well
[5].

Theorem 19. Let e1, . . . , em ∈ H be an orthonormal family of vectors
in the complex inner product space H. If the vectors x1, . . . , xn ∈ H
satisfy the conditions

(8.23) 0 ≤ rk ‖xj‖ ≤ Re 〈xj, ek〉 , 0 ≤ ρk ‖xj‖ ≤ Im 〈xj, ek〉
for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then we have the following
reverse of the generalised triangle inequality;

(8.24)

[
m∑

k=1

(
r2
k + ρ2

k

)] 1
2 n∑

j=1

‖xj‖ ≤

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ .

The equality holds in (8.24) if and only if

(8.25)
n∑

j=1

xj =

(
n∑

j=1

‖xj‖

)
m∑

k=1

(rk + iρk) ek.

Proof. Before we prove the theorem, let us recall that, if x ∈ H and
e1, . . . , em are orthogonal vectors, then the following identity holds true:

(8.26)

∥∥∥∥∥x−
m∑

k=1

〈x, ek〉 ek

∥∥∥∥∥
2

= ‖x‖2 −
n∑

k=1

|〈x, ek〉|2 .

As a consequence of this identity, we note the Bessel inequality

(8.27)
m∑

k=1

|〈x, ek〉|2 ≤ ‖x‖2 , x ∈ H.

The case of equality holds in (8.27) if and only if (see (8.26))

(8.28) x =
m∑

k=1

〈x, ek〉 ek.
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Applying Bessel’s inequality for x =
∑n

j=1 xj, we have∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
2

≥
m∑

k=1

∣∣∣∣∣
〈

n∑
j=1

xj, ek

〉∣∣∣∣∣
2

=
m∑

k=1

∣∣∣∣∣
n∑

j=1

〈xj, ek〉

∣∣∣∣∣
2

(8.29)

=
m∑

k=1

∣∣∣∣∣
(

n∑
j=1

Re 〈xj, ek〉

)
+ i

(
n∑

j=1

Im 〈xj, ek〉

)∣∣∣∣∣
2

=
m∑

k=1

( n∑
j=1

Re 〈xj, ek〉

)2

+

(
n∑

j=1

Im 〈xj, ek〉

)2
 .

Now, by the hypothesis (8.23) we have

(8.30)

(
n∑

j=1

Re 〈xj, ek〉

)2

≥ r2
k

(
n∑

j=1

‖xj‖

)2

and

(8.31)

(
n∑

j=1

Im 〈xj, ek〉

)2

≥ ρ2
k

(
n∑

j=1

‖xj‖

)2

.

Further, on making use of (8.29) – (8.31), we deduce∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
2

≥
m∑

k=1

r2
k

(
n∑

j=1

‖xj‖

)2

+ ρ2
k

(
n∑

j=1

‖xj‖

)2


=

(
n∑

j=1

‖xj‖

)2 m∑
k=1

(
r2
k + ρ2

k

)
,

which is clearly equivalent to (8.24).
Now, if (8.25) holds, then∥∥∥∥∥

n∑
j=1

xj

∥∥∥∥∥
2

=

(
n∑

j=1

‖xj‖

)2 ∥∥∥∥∥
m∑

k=1

(rk + iρk) ek

∥∥∥∥∥
2

=

(
n∑

j=1

‖xj‖

)2 m∑
k=1

|rk + iρk|
2

=

(
n∑

j=1

‖xj‖

)2 m∑
k=1

(
r2
k + ρ2

k

)
,

and the case of equality holds in (8.24).
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Conversely, if the equality holds in (8.24), then it must hold in all
the inequalities used to prove (8.24) and therefore we must have

(8.32)

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
2

=
m∑

k=1

∣∣∣∣∣
n∑

j=1

〈xj, ek〉

∣∣∣∣∣
2

and

(8.33) rk ‖xj‖ = Re 〈xj, ek〉 , ρk ‖xj‖ = Im 〈xj, ek〉

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} .
Using the identity (8.26), we deduce from (8.32) that

(8.34)
n∑

j=1

xj =
m∑

k=1

〈
n∑

j=1

xj, ek

〉
ek.

Multiplying the second equality in (8.33) with the imaginary unit i and
summing the equality over j from 1 to n, we deduce

(8.35) (rk + iρk)
n∑

j=1

‖xj‖ =

〈
n∑

j=1

xj, ek

〉
for each k ∈ {1, . . . , n} .

Finally, utilising (8.34) and (8.35), we deduce (8.25) and the theorem
is proved.

The following corollaries are of interest [5].

Corollary 6. Let e1, . . . , em be orthonormal vectors in the complex
inner product space (H; 〈·, ·〉) and ρk, ηk ∈ (0, 1) , k ∈ {1, . . . , n} . If
x1, . . . , xn ∈ H are such that

‖xj − ek‖ ≤ ρk, ‖xj − iek‖ ≤ ηk

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then we have the inequality

(8.36)

[
m∑

k=1

(
2− ρ2

k − η2
k

)] 1
2 n∑

j=1

‖xj‖ ≤

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ .

The case of equality holds in (8.36) if and only if

(8.37)
n∑

j=1

xj =

(
n∑

j=1

‖xj‖

)
m∑

k=1

(√
1− ρ2

k + i
√

1− η2
k

)
ek.

The proof employs Theorem 19 and is similar to the one from Corol-
lary 4. We omit the details.
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Corollary 7. Let e1, . . . , em be as in Corollary 6 and Mk ≥ mk > 0,
Nk ≥ nk > 0, k ∈ {1, . . . ,m} . If x1, . . . , xn ∈ H are such that either

Re 〈Mkek − xj, xj −mkek〉 ≥ 0, Re 〈Nkiek − xj, xj − nkiek〉 ≥ 0

or, equivalently, ∥∥∥∥xj −
Mk + mk

2
ek

∥∥∥∥ ≤ 1

2
(Mk −mk) ,∥∥∥∥xj −

Nk + nk

2
iek

∥∥∥∥ ≤ 1

2
(Nk − nk)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then we have the inequality

(8.38) 2

{
m∑

k=1

[
mkMk

(Mk + mk)
2 +

nkNk

(Nk + nk)
2

]} 1
2 n∑

j=1

‖xj‖ ≤

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ .

The case of equality holds in (8.38) if and only if

(8.39)
n∑

j=1

xj = 2

(
n∑

j=1

‖xj‖

)
m∑

k=1

( √
mkMk

Mk + mk

+ i

√
nkNk

Nk + nk

)
ek.

The proof employs Theorem 19 and is similar to the one in Corollary
5. We omit the details.

9. Applications for Vector-Valued Integral Inequalities

Let (H; 〈·, ·〉) be a Hilbert space over the real or complex number
field, [a, b] a compact interval in R and η : [a, b] → [0,∞) a Lebesgue

integrable function on [a, b] with the property that
∫ b

a
η (t) dt = 1. If,

by Lη ([a, b] ; H) we denote the Hilbert space of all Bochner measurable

functions f : [a, b] → H with the property that
∫ b

a
η (t) ‖f (t)‖2 dt < ∞,

then the norm ‖·‖η of this space is generated by the inner product

〈·, ·〉η : H ×H → K defined by

〈f, g〉η :=

∫ b

a

η (t) 〈f (t) , g (t)〉 dt.

The following proposition providing a reverse of the integral generalised
triangle inequality may be stated [3].

Proposition 6. Let (H; 〈·, ·〉) be a Hilbert space and η : [a, b] → [0,∞)

as above. If g ∈ Lη ([a, b] ; H) is so that
∫ b

a
η (t) ‖g (t)‖2 dt = 1 and

fi ∈ Lη ([a, b] ; H) , i ∈ {1, . . . , n} , ρ ∈ (0, 1) are so that

(9.1) ‖fi (t)− g (t)‖ ≤ ρ
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for a.e. t ∈ [a, b] and each i ∈ {1, . . . , n} , then we have the inequality√
1− ρ2

n∑
i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

)1/2

(9.2)

≤

∫ b

a

η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt

1/2

.

The case of equality holds in (9.2) if and only if

n∑
i=1

fi (t) =
√

1− ρ2

n∑
i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

)1/2

· g (t)

for a.e. t ∈ [a, b] .

Proof. Observe, by (9.2), that

‖fi − g‖η =

(∫ b

a

η (t) ‖fi (t)− g (t)‖2 dt

)1/2

≤
(∫ b

a

η (t) ρ2dt

)1/2

= ρ

for each i ∈ {1, . . . , n} . Applying Theorem 3 for the Hilbert space
Lη ([a, b] ; H) , we deduce the desired result.

The following result may be stated as well [3].

Proposition 7. Let H, η, g be as in Proposition 6. If fi ∈ Lη ([a, b] ; H) , i ∈
{1, . . . , n} and M ≥ m > 0 are so that either

Re 〈Mg (t)− fi (t) , fi (t)−mg (t)〉 ≥ 0

or, equivalently, ∥∥∥∥fi (t)−
m + M

2
g (t)

∥∥∥∥ ≤ 1

2
(M −m)

for a.e. t ∈ [a, b] and each i ∈ {1, . . . , n} , then we have the inequality

2
√

mM

m + M

n∑
i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

)1/2

(9.3)

≤

∫ b

a

η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt

1/2

.
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The equality holds in (9.3) if and only if

n∑
i=1

fi (t) =
2
√

mM

m + M

n∑
i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

)1/2

· g (t) ,

for a.e. t ∈ [a, b] .

The following proposition providing a reverse of the integral gener-
alised triangle inequality may be stated [4].

Proposition 8. Let (H; 〈·, ·〉) be a Hilbert space and η : [a, b] → [0,∞)

as above. If g ∈ Lη ([a, b] ; H) is so that
∫ b

a
η (t) ‖g (t)‖2 dt = 1 and

fi ∈ Lη ([a, b] ; H) , i ∈ {1, . . . , n} , and M ≥ m > 0 are so that either

(9.4) Re 〈Mfj (t)− fi (t) , fi (t)−mfj (t)〉 ≥ 0

or, equivalently,∥∥∥∥fi (t)−
m + M

2
fj (t)

∥∥∥∥ ≤ 1

2
(M −m) ‖fj (t)‖

for a.e. t ∈ [a, b] and 1 ≤ i < j ≤ n, then we have the inequality[
n∑

i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

)1/2
]2

(9.5)

≤
∫ b

a

η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt

+
1

2
· (M −m)2

m + M

∫ b

a

η (t)

(
n−1∑
k=1

k ‖fk+1 (t)‖2

)
dt.

The case of equality holds in (9.5) if and only if(∫ b

a

η (t) ‖fi (t)‖2 dt

)1/2(∫ b

a

η (t) ‖fj (t)‖2 dt

)1/2

−
∫ b

a

η (t) Re 〈fi (t) , fj (t)〉 dt

=
1

4
· (M −m)2

m + M

∫ b

a

η (t) ‖fj (t)‖2 dt

for each i, j with 1 ≤ i < j ≤ n.
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Proof. We observe that

Re 〈Mfj − fi, fi −mfj〉η

=

∫ b

a

η (t) Re 〈Mfj (t)− fi (t) , fi (t)−mfj (t)〉 dt ≥ 0

for any i, j with 1 ≤ i < j ≤ n.
Applying Theorem 13 for the Hilbert space Lη ([a, b] ; H) and for

yi = fi, i ∈ {1, . . . , n} , we deduce the desired result.

Another integral inequality incorporated in the following proposition
holds [4]:

Proposition 9. With the assumptions of Proposition 8, we have

2
√

mM

m + M

[
n∑

i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

)1/2
]2

(9.6)

+

(√
M −

√
m
)2

m + M

n∑
i=1

∫ b

a

η (t) ‖fi (t)‖2 dt

≤
∫ b

a

η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt.

The case of equality holds in (9.6) if and only if(∫ b

a

η (t) ‖fi (t)‖2 dt

)1/2(∫ b

a

η (t) ‖fj (t)‖2 dt

)1/2

=
M + m

2
√

mM

∫ b

a

η (t) Re 〈fi (t) , fj (t)〉 dt

for any i, j with 1 ≤ i < j ≤ n.

The proof is obvious by Theorem 15 and we omit the details.orms
obtained above, but we do not mention them here.

10. Applications for Complex Numbers

The following reverse of the generalised triangle inequality with a
clear geometric meaning may be stated [5].

Proposition 10. Let z1, . . . , zn be complex numbers with the property
that

(10.1) 0 ≤ ϕ1 ≤ arg (zk) ≤ ϕ2 <
π

2
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for each k ∈ {1, . . . , n} . Then we have the inequality

(10.2)
√

sin2 ϕ1 + cos2 ϕ2

n∑
k=1

|zk| ≤

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ .
The equality holds in (10.2) if and only if

(10.3)
n∑

k=1

zk = (cos ϕ2 + i sin ϕ1)
n∑

k=1

|zk| .

Proof. Let zk = ak + ibk. We may assume that bk ≥ 0, ak > 0,
k ∈ {1, . . . , n} , since, by (10.1), bk

ak
= tan [arg (zk)] ∈

[
0, π

2

)
, k ∈

{1, . . . , n} . By (10.1), we obviously have

0 ≤ tan2 ϕ1 ≤
b2
k

a2
k

≤ tan2 ϕ2, k ∈ {1, . . . , n}

from where we get

b2
k + a2

k

a2
k

≤ 1

cos2 ϕ2

, k ∈ {1, . . . , n} , ϕ2 ∈
(
0,

π

2

)
and

a2
k + b2

k

a2
k

≤ 1 + tan2 ϕ1

tan2 ϕ1

=
1

sin2 ϕ1

, k ∈ {1, . . . , n} , ϕ1 ∈
(
0,

π

2

)
giving the inequalities

|zk| cos ϕ2 ≤ Re (zk) , |zk| sin ϕ1 ≤ Im (zk)

for each k ∈ {1, . . . , n} .
Now, applying Theorem 17 for the complex inner product C endowed

with the inner product 〈z, w〉 = z·w̄ for xk = zk, r1 = cos ϕ2, r2 = sin ϕ1

and e = 1, we deduce the desired inequality (10.2). The case of equality
is also obvious by Theorem 17 and the proposition is proven.

Another result that has an obvious geometrical interpretation is the
following one.

Proposition 11. Let e ∈ C with |z| = 1 and ρ1, ρ2 ∈ (0, 1) . If zk ∈ C,
k ∈ {1, . . . , n} are such that

(10.4) |zk − c| ≤ ρ1, |zk − ic| ≤ ρ2 for each k ∈ {1, . . . , n} ,

then we have the inequality

(10.5)
√

2− ρ2
1 − ρ2

2

n∑
k=1

|zk| ≤

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ ,
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with equality if and only if

(10.6)
n∑

k=1

zk =

(√
1− ρ2

1 + i
√

1− ρ2
2

)( n∑
k=1

|zk|

)
e.

The proof is obvious by Corollary 4 applied for H = C.

Remark 12. If we choose e = 1, and for ρ1, ρ2 ∈ (0, 1) we define
D̄ (1, ρ1) := {z ∈ C| |z − 1| ≤ ρ1} , D̄ (i, ρ2) := {z ∈ C| |z − i| ≤ ρ2} ,
then obviously the intersection

Sρ1,ρ2
:= D̄ (1, ρ1) ∩ D̄ (i, ρ2)

is nonempty if and only if ρ1 + ρ2 >
√

2.
If zk ∈ Sρ1,ρ2

for k ∈ {1, . . . , n} , then (10.5) holds true. The equality
holds in (10.5) if and only if

n∑
k=1

zk =

(√
1− ρ2

1 + i
√

1− ρ2
2

) n∑
k=1

|zk| .

References

[1] J.B. DIAZ and F.T. METCALF, A complementary triangle inequality in
Hilbert and Banach spaces, Proceedings Amer. Math. Soc., 17(1) (1966), 88-97.

[2] S.S. DRAGOMIR, Advances in inequalities of the Schwarz,
Gruss and Bessel type in inner product spaces, Preprint,
http://front.math.ucdavis.edu/math.FA/0309354.

[3] S.S. DRAGOMIR, Reverses of the triangle inequality in inner product
spaces, RGMIA Res. Rep. Coll., 7(2004), Supplement, Article 7, [ONLINE:
http://rgmia.vu.edu.au/v7(E).html].

[4] S.S. DRAGOMIR, Quadratic reverses of the triangle inequality in inner prod-
uct spaces, RGMIA Res. Rep. Coll., 7(2004), Supplement, Article 8, [ONLINE:
http://rgmia.vu.edu.au/v7(E).html].

[5] S.S. DRAGOMIR, Some reverses of the generalised triangle inequality in com-
plex inner product spaces, RGMIA Res. Rep. Coll., 7(2004), Supplement, Ar-
ticle 8, [ONLINE: http://rgmia.vu.edu.au/v7(E).html].

[6] J. KARAMATA, Teorija i Praksa Stieltjesova Integrala (Serbo-Coratian)
(Stieltjes Integral, Theory and Practice), SANU, Posebna izdanja, 154,
Beograd, 1949.

[7] S.M. KHALEELULA, On Diaz-Metcalf’s complementary triangle inequality,
Kyungpook Math. J., 15 (1975), 9-11..

[8] M. MARDEN, The Geometry of the Zeros of a Polynomial in a Complex
Variable, Amer. Math. Soc. Math. Surveys, 3, New York, 1949.
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