
A SURVEY OF RECENT REVERSES FOR THE
GENERALISED TRIANGLE INEQUALITY IN

NORMED SPACES

SEVER S. DRAGOMIR

Abstract. Recent reverses of the generalised triangle inequality
in normed linear spaces that complement the classical results of
Diaz and Metcalf are surveyed.

1. Introduction

In [2], Diaz and Metcalf established the following reverse of the gen-
eralised triangle inequality in real or complex normed linear spaces.

If F : X → K, K = R, C is a linear functional of a unit norm defined
on the normed linear space X endowed with the norm ‖·‖ and the
vectors x1, . . . , xn satisfy the condition

(1.1) 0 ≤ r ≤ Re F (xi) , i ∈ {1, . . . , n} ;

then

(1.2) r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

where equality holds if and only if both

(1.3) F

(
n∑

i=1

xi

)
= r

n∑
i=1

‖xi‖

and

(1.4) F

(
n∑

i=1

xi

)
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

If X = H, (H; 〈·, ·〉) is an inner product space and F (x) = 〈x, e〉 ,
‖e‖ = 1, then the condition (1.1) may be replaced with the simpler
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assumption

(1.5) 0 ≤ r ‖xi‖ ≤ Re 〈xi, e〉 , i = 1, . . . , n,

which implies the reverse of the generalised triangle inequality (1.2).
In this case the equality holds in (1.2) if and only if [2]

(1.6)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
e.

Let F1, . . . , Fm be linear functionals on X, each of unit norm. As in
[2], let consider the real number c defined by

c = sup
x 6=0

[∑m
k=1 |Fk (x)|2

‖x‖2

]
;

it then follows that 1 ≤ c ≤ m. Suppose the vectors x1, . . . , xk whenever
xi 6= 0, satisfy

(1.7) 0 ≤ rk ‖xi‖ ≤ Re Fk (xi) , i = 1, . . . , n, k = 1, . . . ,m.

Then one has the following reverse of the generalised triangle inequality
[2]

(1.8)

(∑m
k=1 r2

k

c

)1/2 n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

where equality holds if and only if both

(1.9) Fk

(
n∑

i=1

xi

)
= rk

n∑
i=1

‖xi‖ , k = 1, . . . ,m

and

(1.10)
m∑

k=1

[
Fk

(
n∑

i=1

xi

)]2

= c

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

If X = H, an inner product space, then, for Fk (x) = 〈x, ek〉 ,
where {ek}k=1,n is an orthonormal family in H, i.e., 〈ei, ej〉 = δij,

i, j ∈ {1, . . . , k} , δij is Kronecker delta, the condition (1.7) may be
replaced by

(1.11) 0 ≤ rk ‖xi‖ ≤ Re 〈xi, e〉 , i = 1, . . . , n, k = 1, . . . ,m;

implying the following reverse of the generalised triangle inequality

(1.12)

(
m∑

k=1

r2
k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
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where the equality holds if and only if

(1.13)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

rkek.

The aim of this paper is to survey recent reverses of the triangle
inequality obtained by the authors in [6] and [7]. Their versions in inner
product spaces are analysed and applications for complex numbers are
given as well.

For various inequalities related to the triangle inequality, see Chapter
XVII of the book [10] and the references therein.

2. Some Inequalities of Diaz-Metcalf Type for m
Functionals

2.1. The Case of Normed Spaces. The following result may be
stated [6].

Theorem 1. Let (X, ‖·‖) be a normed linear space over the real or
complex number field K and Fk : X → K, k ∈ {1, . . . ,m} continuous
linear functionals on X. If xi ∈ X\ {0} , i ∈ {1, . . . , n} are such that
there exists the constant rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

(2.1) Re Fk (xi) ≥ rk ‖xi‖

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(2.2)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 Fk‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The case of equality holds in (2.2) if both

(2.3)

(
m∑

k=1

Fk

)(
n∑

i=1

xi

)
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖

and

(2.4)

(
m∑

k=1

Fk

)(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
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Proof. Utilising the hypothesis (2.1) and the properties of the modulus,
we have

I :=

∣∣∣∣∣
(

m∑
k=1

Fk

)(
n∑

i=1

xi

)∣∣∣∣∣ ≥
∣∣∣∣∣Re

[(
m∑

k=1

Fk

)(
n∑

i=1

xi

)]∣∣∣∣∣(2.5)

≥
m∑

k=1

Re Fk

(
n∑

i=1

xi

)
=

m∑
k=1

n∑
i=1

Re Fk (xi)

≥

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

On the other hand, by the continuity property of Fk, k ∈ {1, . . . ,m}
we obviously have

(2.6) I =

∣∣∣∣∣
(

m∑
k=1

Fk

)(
n∑

i=1

xi

)∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .

Making use of (2.5) and (2.6), we deduce the desired inequality (2.2).
Now, if (2.3) and (2.4) are valid, then, obviously, the case of equality

holds true in the inequality (2.2).
Conversely, if the case of equality holds in (2.2), then it must hold

in all the inequalities used to prove (2.2). Therefore we have

(2.7) Re Fk (xi) = rk ‖xi‖

for each i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} ;

(2.8)
m∑

k=1

Im Fk

(
n∑

i=1

xi

)
= 0

and

(2.9)
m∑

k=1

Re Fk

(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .

Note that, from (2.7), by summation over i and k, we get

(2.10) Re

[(
m∑

k=1

Fk

)(
n∑

i=1

xi

)]
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

Since (2.8) and (2.10) imply (2.3), while (2.9) and (2.10) imply (2.4)
hence the theorem is proved.
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Remark 1. If the norms ‖Fk‖ , k ∈ {1, . . . ,m} are easier to find,
then, from (2.2), one may get the (coarser) inequality that might be
more useful in practice:

(2.11)
n∑

i=1

‖xi‖ ≤
∑m

k=1 ‖Fk‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

2.2. The Case of Inner Product Spaces. The case of inner product
spaces, in which we may provide a simpler condition for equality, is of
interest in applications [6].

Theorem 2. Let (H; 〈·, ·〉) be an inner product space over the real
or complex number field K, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈
{1, . . . , n} . If rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 satisfy

(2.12) Re 〈xi, ek〉 ≥ rk ‖xi‖
for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(2.13)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The case of equality holds in (2.13) if and only if

(2.14)
n∑

i=1

xi =

∑m
k=1 rk

‖
∑m

k=1 ek‖2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

Proof. By the properties of inner product and by (2.12), we have∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣(2.15)

≥

∣∣∣∣∣
m∑

k=1

Re

〈
n∑

i=1

xi, ek

〉∣∣∣∣∣ ≥
m∑

k=1

Re

〈
n∑

i=1

xi, ek

〉

=
m∑

k=1

n∑
i=1

Re 〈xi, ek〉 ≥

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ > 0.

Observe also that, by (2.15),
∑m

k=1 ek 6= 0.
On utlising Schwarz’s inequality in the inner product space (H; 〈·, ·〉)

for
∑n

i=1 xi,
∑m

k=1 ek, we have

(2.16)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣ .
Making use of (2.15) and (2.16), we can conclude that (2.13) holds.
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Now, if (2.14) holds true, then, by taking the norm, we have∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =
(
∑m

k=1 rk)
∑n

i=1 ‖xi‖
‖
∑m

k=1 ek‖2

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
=

(
∑m

k=1 rk)

‖
∑m

k=1 ek‖

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

i.e., the case of equality holds in (2.13).
Conversely, if the case of equality holds in (2.13), then it must hold

in all the inequalities used to prove (2.13). Therefore, we have

(2.17) Re 〈xi, ek〉 = rk ‖xi‖

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} ,

(2.18)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣
and

(2.19) Im

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
= 0.

From (2.17), on summing over i and k, we get

(2.20) Re

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

By (2.19) and (2.20), we have

(2.21)

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

On the other hand, by the use of the following identity in inner product
spaces ∥∥∥∥u− 〈u, v〉 v

‖v‖2

∥∥∥∥2

=
‖u‖2 ‖v‖2 − |〈u, v〉|2

‖v‖2 , v 6= 0,

the relation (2.18) holds if and only if

(2.22)
n∑

i=1

xi =
〈
∑n

i=1 xi,
∑m

k=1 ek〉
‖
∑m

k=1 ek‖2

m∑
k=1

ek.

Finally, on utilising (2.21) and (2.22), we deduce that the condition
(2.14) is necessary for the equality case in (2.13).
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Before we give a corollary of the above theorem, we need to state the
following lemma that has been basically obtained in [3]. For the sake
of completeness, we provide a short proof here as well.

Lemma 1. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K and x, a ∈ H, r > 0 such that:

(2.23) ‖x− a‖ ≤ r < ‖a‖ .

Then we have the inequality

(2.24) ‖x‖
(
‖a‖2 − r2

) 1
2 ≤ Re 〈x, a〉

or, equivalently

(2.25) ‖x‖2 ‖a‖2 − [Re 〈x, a〉]2 ≤ r2 ‖x‖2 .

The case of equality holds in (2.24) (or in (2.25)) if and only if

(2.26) ‖x− a‖ = r and ‖x‖2 + r2 = ‖a‖2 .

Proof. From the first part of (2.23), we have

(2.27) ‖x‖2 + ‖a‖2 − r2 ≤ 2 Re 〈x, a〉 .

By the second part of (2.23) we have
(
‖a‖2 − r2

) 1
2 > 0, therefore, by

(2.27), we may state that

(2.28) 0 <
‖x‖2(

‖a‖2 − r2
) 1

2

+
(
‖a‖2 − r2

) 1
2 ≤ 2 Re 〈x, a〉(

‖a‖2 − r2
) 1

2

.

Utilising the elementary inequality

1

α
q + αp ≥ 2

√
pq, α > 0, p > 0, q ≥ 0;

with equality if and only if α =
√

q
p
, we may state (for α =

(
‖a‖2 − r2

) 1
2 ,

p = 1, q = ‖x‖2) that

(2.29) 2 ‖x‖ ≤ ‖x‖2(
‖a‖2 − r2

) 1
2

+
(
‖a‖2 − r2

) 1
2 .

The inequality (2.24) follows now by (2.28) and (2.29).
From the above argument, it is clear that the equality holds in (2.24)

if and only if it holds in (2.28) and (2.29). However, the equality
holds in (2.28) if and only if ‖x− a‖ = r and in (2.29) if and only if(
‖a‖2 − r2

) 1
2 = ‖x‖ .

The proof is thus completed.

We may now state the following corollary.
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Corollary 1. Let (H; 〈·, ·〉) be an inner product space over the real
or complex number field K, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈
{1, . . . , n} . If ρk ≥ 0, k ∈ {1, . . . ,m} with

(2.30) ‖xi − ek‖ ≤ ρk < ‖ek‖

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(2.31)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The case of equality holds in (2.31) if and only if

n∑
i=1

xi =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

‖
∑m

k=1 ek‖2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

Proof. Utilising Lemma 1, we have from (2.30) that

‖xi‖
(
‖ek‖2 − ρ2

k

) 1
2 ≤ Re 〈xi, ek〉

for each k ∈ {1, . . . ,m} and i ∈ {1, . . . , n} .
Applying Theorem 2 for

rk :=
(
‖ek‖2 − ρ2

k

) 1
2 , k ∈ {1, . . . ,m} ,

we deduce the desired result.

Remark 2. If {ek}k∈{1,...,m} are orthogonal, then (2.31) becomes

(2.32)
n∑

i=1

‖xi‖ ≤
(∑m

k=1 ‖ek‖2) 1
2∑m

k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
with equality if and only if

n∑
i=1

xi =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2∑m

k=1 ‖ek‖2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

Moreover, if {ek}k∈{1,...,m} is assumed to be orthonormal and

‖xi − ek‖ ≤ ρk for k ∈ {1, . . . ,m} , i ∈ {1, . . . , n}

where ρk ∈ [0, 1) for k ∈ {1, . . . ,m} , then

(2.33)
n∑

i=1

‖xi‖ ≤
√

m∑m
k=1 (1− ρ2

k)
1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
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with equality if and only if

n∑
i=1

xi =

∑m
k=1 (1− ρ2

k)
1
2

m

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

The following lemma may be stated as well [3].

Lemma 2. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K, x, y ∈ H and M ≥ m > 0. If

(2.34) Re 〈My − x, x−my〉 ≥ 0

or, equivalently,

(2.35)

∥∥∥∥x− m + M

2
y

∥∥∥∥ ≤ 1

2
(M −m) ‖y‖ ,

then

(2.36) ‖x‖ ‖y‖ ≤ 1

2
· M + m√

mM
Re 〈x, y〉 .

The equality holds in (2.36) if and only if the case of equality holds in
(2.34) and

(2.37) ‖x‖ =
√

mM ‖y‖ .

Proof. Obviously,

Re 〈My − x, x−my〉 = (M + m) Re 〈x, y〉 − ‖x‖2 −mM ‖y‖2 .

Then (2.34) is clearly equivalent to

(2.38)
‖x‖2

√
mM

+
√

mM ‖y‖2 ≤ M + m√
mM

Re 〈x, y〉 .

Since, obviously,

(2.39) 2 ‖x‖ ‖y‖ ≤ ‖x‖2

√
mM

+
√

mM ‖y‖2 ,

with equality iff ‖x‖ =
√

mM ‖y‖ , hence (2.38) and (2.39) imply
(2.36).

The case of equality is obvious and we omit the details.

Finally, we may state the following corollary of Theorem 2.

Corollary 2. Let (H; 〈·, ·〉) be an inner product space over the real
or complex number field K, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈
{1, . . . , n} . If Mk > µk > 0, k ∈ {1, . . . ,m} are such that either

(2.40) Re 〈Mkek − xi, xi − µkek〉 ≥ 0
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or, equivalently,∥∥∥∥xi −
Mk + µk

2
ek

∥∥∥∥ ≤ 1

2
(Mk − µk) ‖ek‖

for each k ∈ {1, . . . ,m} and i ∈ {1, . . . , n} , then

(2.41)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The case of equality holds in (2.41) if and only if

n∑
i=1

xi =

∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

‖
∑m

k=1 ek‖2

n∑
i=1

‖xi‖
m∑

k=1

ek.

Proof. Utilising Lemma 2, by (2.40) we deduce

2 ·
√

µkMk

µk + Mk

‖xi‖ ‖ek‖ ≤ Re 〈xi, ek〉

for each k ∈ {1, . . . ,m} and i ∈ {1, . . . , n} .
Applying Theorem 2 for

rk :=
2 ·
√

µkMk

µk + Mk

‖ek‖ , k ∈ {1, . . . ,m} ,

we deduce the desired result.

3. Diaz-Metcal Inequality for Semi-Inner Products

In 1961, G. Lumer [9] introduced the following concept.

Definition 1. Let X be a linear space over the real or complex number
field K. The mapping [·, ·] : X ×X → K is called a semi-inner product
on X, if the following properties are satisfied (see also [3, p. 17]):

(i) [x + y, z] = [x, z] + [y, z] for all x, y, z ∈ X;
(ii) [λx, y] = λ [x, y] for all x, y ∈ X and λ ∈ K;

(iii) [x, x] ≥ 0 for all x ∈ X and [x, x] = 0 implies x = 0;
(iv) |[x, y]|2 ≤ [x, x] [y, y] for all x, y ∈ X;
(v) [x, λy] = λ̄ [x, y] for all x, y ∈ X and λ ∈ K.

It is well known that the mapping X 3 x 7−→ [x, x]
1
2 ∈ R is a norm

on X and for any y ∈ X, the functional X 3 x
ϕy7−→ [x, x]

1
2 ∈ K is a

continuous linear functional on X endowed with the norm ‖·‖ generated
by [·, ·] . Moreover, one has

∥∥ϕy

∥∥ = ‖y‖ (see for instance [3, p. 17]).
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Let (X, ‖·‖) be a real or complex normed space. If J : X →2 X∗ is
the normalised duality mapping defined on X, i.e., we recall that (see
for instance [3, p. 1])

J (x) = {ϕ ∈ X∗|ϕ (x) = ‖ϕ‖ ‖x‖ , ‖ϕ‖ = ‖x‖} , x ∈ X,

then we may state the following representation result (see for instance
[3, p. 18]):

Each semi-inner product [·, ·] : X ×X → K that generates the norm
‖·‖ of the normed linear space (X, ‖·‖) over the real or complex number
field K, is of the form

[x, y] =
〈
J̃ (y) , x

〉
for any x, y ∈ X,

where J̃ is a selection of the normalised duality mapping and 〈ϕ, x〉 :=
ϕ (x) for ϕ ∈ X∗ and x ∈ X.

Utilising the concept of semi-inner products, we can state the follow-
ing particular case of the Diaz-Metcalf inequality.

Corollary 3. Let (X, ‖·‖) be a normed linear space, [·, ·] : X×X → K
a semi-inner product generating the norm ‖·‖ and e ∈ X, ‖e‖ = 1. If
xi ∈ X, i ∈ {1, . . . , n} and r ≥ 0 such that

(3.1) r ‖xi‖ ≤ Re [xi, e] for each i ∈ {1, . . . , n} ,

then we have the inequality

(3.2) r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The case of equality holds in (3.2) if and only if both

(3.3)

[
n∑

i=1

xi, e

]
= r

n∑
i=1

‖xi‖

and

(3.4)

[
n∑

i=1

xi, e

]
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

The proof is obvious from the Diaz-Metcalf theorem [2, Theorem 3]
applied for the continuous linear functional Fe (x) = [x, e] , x ∈ X.

Before we provide a simpler necessary and sufficient condition of
equality in (3.2), we need to recall the concept of strictly convex normed
spaces and a classical characterisation of these spaces.

Definition 2. A normed linear space (X, ‖·‖) is said to be strictly
convex if for every x, y from X with x 6= y and ‖x‖ = ‖y‖ = 1, we have
‖λx + (1− λ) y‖ < 1 for all λ ∈ (0, 1) .
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The following characterisation of strictly convex spaces is useful in
what follows (see [1], [8], or [3, p. 21]).

Theorem 3. Let (X, ‖·‖) be a normed linear space over K and [·, ·] a
semi-inner product generating its norm. The following statements are
equivalent:

(i) (X, ‖·‖) is strictly convex;
(ii) For every x, y ∈ X, x, y 6= 0 with [x, y] = ‖x‖ ‖y‖ , there exists

a λ > 0 such that x = λy.

The following result may be stated.

Corollary 4. Let (X, ‖·‖) be a strictly convex normed linear space, [·, ·]
a semi-inner product generating the norm and e, xi (i ∈ {1, . . . , n}) as
in Corollary 3. Then the case of equality holds in (3.2) if and only if

(3.5)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
e.

Proof. If (3.5) holds true, then, obviously∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ = r

(
n∑

i=1

‖xi‖

)
‖e‖ = r

n∑
i=1

‖xi‖ ,

which is the equality case in (3.2).
Conversely, if the equality holds in (3.2), then by Corollary 3, we

have that (3.3) and (3.4) hold true. Utilising Theorem 3, we conclude
that there exists a µ > 0 such that

(3.6)
n∑

i=1

xi = µe.

Inserting this in (3.3) we get

µ ‖e‖2 = r
n∑

i=1

‖xi‖

giving

(3.7) µ = r

n∑
i=1

‖xi‖ .

Finally, by (3.6) and (3.7) we deduce (3.5) and the corollary is proved.
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4. An Additive Reverse for the Triangle Inequality

4.1. The Case of One Functional. In the following we provide an
alternative of the Diaz-Metcalf reverse of the generalised triangle in-
equality [7].

Theorem 4. Let (X, ‖·‖) be a normed linear space over the real or
complex number field K and F : X → K a linear functional with the
property that |F (x)| ≤ ‖x‖ for any x ∈ X (i.e., ‖F‖ = 1, we say that
F is of unit norm). If xi ∈ X, ki ≥ 0, i ∈ {1, . . . , n} are such that

(4.1) (0 ≤) ‖xi‖ − Re F (xi) ≤ ki for each i ∈ {1, . . . , n} ,

then we have the inequality

(4.2) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (4.2) if and only if both

(4.3) F

(
n∑

i=1

xi

)
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ and F

(
n∑

i=1

xi

)
=

n∑
i=1

‖xi‖ −
n∑

i=1

ki.

Proof. If we sum in (4.1) over i from 1 to n, then we get

(4.4)
n∑

i=1

‖xi‖ ≤ Re

[
F

(
n∑

i=1

xi

)]
+

n∑
i=1

ki.

Taking into account that |F (x)| ≤ ‖x‖ for each x ∈ X, then we may
state that

Re

[
F

(
n∑

i=1

xi

)]
≤

∣∣∣∣∣Re F

(
n∑

i=1

xi

)∣∣∣∣∣(4.5)

≤

∣∣∣∣∣F
(

n∑
i=1

xi

)∣∣∣∣∣ ≤
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .

Now, making use of (4.4) and (4.5), we deduce (4.2).
Obviously, if (4.3) is valid, then the case of equality in (4.2) holds

true.
Conversely, if the equality holds in (4.2), then it must hold in all the

inequalities used to prove (4.2), therefore we have

n∑
i=1

‖xi‖ = Re

[
F

(
n∑

i=1

xi

)]
+

n∑
i=1

ki



14 SEVER S. DRAGOMIR

and

Re

[
F

(
n∑

i=1

xi

)]
=

∣∣∣∣∣F
(

n∑
i=1

xi

)∣∣∣∣∣ =

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

which imply (4.3).

The following corollary may be stated [7].

Corollary 5. Let (X, ‖·‖) be a normed linear space, [·, ·] : X×X → K
a semi-inner product generating the norm ‖·‖ and e ∈ X, ‖e‖ = 1. If
xi ∈ X, ki ≥ 0, i ∈ {1, . . . , n} are such that

(4.6) (0 ≤) ‖xi‖ − Re [xi, e] ≤ ki for each i ∈ {1, . . . , n} ,

then we have the inequality

(4.7) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (4.7) if and only if both

(4.8)

[
n∑

i=1

xi, e

]
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ and

[
n∑

i=1

xi, e

]
=

n∑
i=1

‖xi‖ −
n∑

i=1

ki.

Moreover, if (X, ‖·‖) is strictly convex, then the case of equality holds
in (4.7) if and only if

(4.9)
n∑

i=1

‖xi‖ ≥
n∑

i=1

ki

and

(4.10)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
n∑

i=1

ki

)
· e.

Proof. The first part of the corollary is obvious by Theorem 4 applied
for the continuous linear functional of unit norm Fe, Fe (x) = [x, e] ,
x ∈ X. The second part may be shown on utilising a similar argument
to the one from the proof of Corollary 4. We omit the details.

Remark 3. If X = H, (H; 〈·, ·〉) is an inner product space, then from
Corollary 5 we deduce the additive reverse inequality obtained in The-
orem 7 of [5]. For further similar results in inner product spaces, see
[4] and [5].
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4.2. The Case of m Functionals. The following result generalising
Theorem 4 may be stated [7].

Theorem 5. Let (X, ‖·‖) be a normed linear space over the real or
complex number field K. If Fk, k ∈ {1, . . . ,m} are bounded linear
functionals defined on X and xi ∈ X, Mik ≥ 0 for i ∈ {1, . . . , n},
k ∈ {1, . . . ,m} such that

(4.11) ‖xi‖ − Re Fk (xi) ≤ Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} , then we have the inequality

(4.12)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1

m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

The case of equality holds in (4.12) if both

(4.13)
1

m

m∑
k=1

Fk

(
n∑

i=1

xi

)
=

∥∥∥∥∥ 1

m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
and

(4.14)
1

m

m∑
k=1

Fk

(
n∑

i=1

xi

)
=

n∑
i=1

‖xi‖ −
1

m

m∑
k=1

n∑
j=1

Mik.

Proof. If we sum (4.11) over i from 1 to n, then we deduce

n∑
i=1

‖xi‖ − Re Fk

(
n∑

i=1

xi

)
≤

n∑
i=1

Mik

for each k ∈ {1, . . . ,m} .
Summing these inequalities over k from 1 to m, we deduce

(4.15)
n∑

i=1

‖xi‖ ≤
1

m

m∑
k=1

Re Fk

(
n∑

i=1

xi

)
+

1

m

m∑
k=1

n∑
i=1

Mik.

Utilising the continuity property of the functionals Fk and the proper-
ties of the modulus, we have

m∑
k=1

Re Fk

(
n∑

i=1

xi

)
≤

∣∣∣∣∣
m∑

k=1

Re Fk

(
n∑

i=1

xi

)∣∣∣∣∣(4.16)

≤

∣∣∣∣∣
m∑

k=1

Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .

Now, by (4.15) and (4.16), we deduce (4.12).
Obviously, if (4.13) and (4.14) hold true, then the case of equality is

valid in (4.12).
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Conversely, if the case of equality holds in (4.12), then it must hold
in all the inequalities used to prove (4.12). Therefore we have

n∑
i=1

‖xi‖ =
1

m

m∑
k=1

Re Fk

(
n∑

i=1

xi

)
+

1

m

m∑
k=1

n∑
i=1

Mik,

m∑
k=1

Re Fk

(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
and

m∑
k=1

Im Fk

(
n∑

i=1

xi

)
= 0.

These imply that (4.13) and (4.14) hold true, and the theorem is com-
pletely proved.

Remark 4. If Fk, k ∈ {1, . . . ,m} are of unit norm, then, from (4.12),
we deduce the inequality

(4.17)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik,

which is obviously coarser than (4.12), but perhaps more useful for
applications.

4.3. The Case of Inner Product Spaces. The case of inner product
spaces, in which we may provide a simpler condition of equality, is of
interest in applications [7].

Theorem 6. Let (X, ‖·‖) be an inner product space over the real or
complex number field K, ek, xi ∈ H\ {0} , k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} .
If Mik ≥ 0 for i ∈ {1, . . . , n} , {1, . . . , n} such that

(4.18) ‖xi‖ − Re 〈xi, ek〉 ≤ Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} , then we have the inequality

(4.19)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

The case of equality holds in (4.19) if and only if

(4.20)
n∑

i=1

‖xi‖ ≥
1

m

m∑
k=1

n∑
i=1

Mik

and

(4.21)
n∑

i=1

xi =
m
(∑n

i=1 ‖xi‖ − 1
m

∑m
k=1

∑n
i=1 Mik

)
‖
∑m

k=1 ek‖2

m∑
k=1

ek.
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Proof. As in the proof of Theorem 5, we have

(4.22)
n∑

i=1

‖xi‖ ≤ Re

〈
1

m

m∑
k=1

ek,

n∑
i=1

xi

〉
+

1

m

m∑
k=1

n∑
i=1

Mik,

and
∑m

k=1 ek 6= 0.
On utilising the Schwarz inequality in the inner product space (H; 〈·, ·〉)

for
∑n

i=1 xi,
∑m

k=1 ek, we have∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣(4.23)

≥

∣∣∣∣∣Re

〈
n∑

i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣
≥ Re

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
.

By (4.22) and (4.23) we deduce (4.19).
Taking the norm in (4.21) and using (4.20), we have∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ =
m
(∑n

i=1 ‖xi‖ − 1
m

∑m
k=1

∑n
i=1 Mik

)
‖
∑m

k=1 ek‖
,

showing that the equality holds in (4.19).
Conversely, if the case of equality holds in (4.19), then it must hold

in all the inequalities used to prove (4.19). Therefore we have

(4.24) ‖xi‖ = Re 〈xi, ek〉+ Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} ,

(4.25)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣
and

(4.26) Im

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
= 0.

From (4.24), on summing over i and k, we get

(4.27) Re

〈
n∑

i=1

xi,

m∑
k=1

ek

〉
= m

n∑
i=1

‖xi‖ −
m∑

k=1

n∑
i=1

Mik.
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On the other hand, by the use of the following identity in inner product
spaces, ∥∥∥∥u− 〈u, v〉 v

‖v‖2

∥∥∥∥2

=
‖u‖2 ‖v‖2 − |〈u, v〉|2

‖v‖2 , v 6= 0;

the relation (4.25) holds if and only if

n∑
i=1

xi =
〈
∑n

i=1 xi,
∑m

k=1 ek〉
‖
∑m

k=1 ek‖2

m∑
k=1

ek,

giving, from (4.26) and (4.27), that

n∑
i=1

xi =
m
∑n

i=1 ‖xi‖ −
∑m

k=1

∑n
i=1 Mik

‖
∑m

k=1 ek‖2

m∑
k=1

ek.

If the inequality holds in (4.19), then obviously (4.20) is valid, and the
theorem is proved.

Remark 5. If in the above theorem the vectors {ek}k=1,m are assumed

to be orthogonal, then (4.19) becomes:

(4.28)
n∑

i=1

‖xi‖ ≤
1

m

(
m∑

k=1

‖ek‖2

) 1
2
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

Moreover, if {ek}k=1,m is an orthonormal family, then (4.28) becomes

(4.29)
n∑

i=1

‖xi‖ ≤
√

m

m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik,

which has been obtained in [5].

Before we provide some natural consequences of Theorem 6, we need
some preliminary results concerning reverses of Schwarz’s inequality in
inner product spaces (see for instance [4, p. 27]).

Lemma 3. Let (X, ‖·‖) be an inner product space over the real or
complex number field K and x, a ∈ H, r > 0. If ‖x− a‖ ≤ r, then we
have the inequality

(4.30) ‖x‖ ‖a‖ − Re 〈x, a〉 ≤ 1

2
r2.

The case of equality holds in (4.30) if and only if

(4.31) ‖x− a‖ = r and ‖x‖ = ‖a‖ .
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Proof. The condition ‖x− a‖ ≤ r is clearly equivalent to

(4.32) ‖x‖2 + ‖a‖2 ≤ 2 Re 〈x, a〉+ r2.

Since

(4.33) 2 ‖x‖ ‖a‖ ≤ ‖x‖2 + ‖a‖2 ,

with equality if and only if ‖x‖ = ‖a‖ , hence by (4.32) and (4.33) we
deduce (4.30).

The case of equality is obvious.

Utilising the above lemma we may state the following corollary of
Theorem 6 [7].

Corollary 6. Let (H; 〈·, ·〉) , ek, xi be as in Theorem 6. If rik > 0,
i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} such that

(4.34) ‖xi − ek‖ ≤ rik for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} ,

then we have the inequality

(4.35)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

2m

m∑
k=1

n∑
i=1

r2
ik.

The equality holds in (4.35) if and only if
n∑

i=1

‖xi‖ ≥
1

2m

m∑
k=1

n∑
i=1

r2
ik

and
n∑

i=1

xi =
m
(∑n

i=1 ‖xi‖ − 1
2m

∑m
k=1

∑n
i=1 r2

ik

)
‖
∑m

k=1 ek‖2

m∑
k=1

ek.

The following lemma may provide another sufficient condition for
(4.18) to hold (see also [4, p. 28]).

Lemma 4. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K and x, y ∈ H, M ≥ m > 0. If either

(4.36) Re 〈My − x, x−my〉 ≥ 0

or, equivalently,

(4.37)

∥∥∥∥x− m + M

2
y

∥∥∥∥ ≤ 1

2
(M −m) ‖y‖ ,

holds, then

(4.38) ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

4
· (M −m)2

m + M
‖y‖2 .



20 SEVER S. DRAGOMIR

The case of equality holds in (4.38) if and only if the equality case is
realised in (4.36) and

‖x‖ =
M + m

2
‖y‖ .

The proof is obvious by Lemma 3 for a = M+m
2

y and r = 1
2
(M −m) ‖y‖ .

Finally, the following corollary of Theorem 6 may be stated [7].

Corollary 7. Assume that (H, 〈·, ·〉) , ek, xi are as in Theorem 6. If
Mik ≥ mik > 0 satisfy the condition

Re 〈Mkek − xi, xi − µkek〉 ≥ 0

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

4m

m∑
k=1

n∑
i=1

(Mik −mik)
2

Mik + mik

‖ek‖2 .

5. Applications for Complex Numbers

Let C be the field of complex numbers. If z = Re z + i Im z, then by
|·|p : C → [0,∞), p ∈ [1,∞] we define the p−modulus of z as

|z|p :=


max {|Re z| , |Im z|} if p = ∞,

(|Re z|p + |Im z|p)
1
p if p ∈ [1,∞),

where |a| , a ∈ R is the usual modulus of the real number a.
For p = 2, we recapture the usual modulus of a complex number,

i.e.,

|z|2 =

√
|Re z|2 + |Im z|2 = |z| , z ∈ C.

It is well known that
(
C, |·|p

)
, p ∈ [1,∞] is a Banach space over the

real number field R.
Consider the Banach space (C, |·|1) and F : C → C, F (z) = az with

a ∈ C, a 6= 0. Obviously, F is linear on C. For z 6= 0, we have

|F (z)|
|z|1

=
|a| |z|
|z|1

=
|a|
√
|Re z|2 + |Im z|2

|Re z|+ |Im z|
≤ |a| .

Since, for z0 = 1, we have |F (z0)| = |a| and |z0|1 = 1, hence

‖F‖1 := sup
z 6=0

|F (z)|
|z|1

= |a| ,

showing that F is a bounded linear functional on (C, |·|1) and ‖F‖1 =
|a| .
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We can apply Theorem 1 to state the following reverse of the gener-
alised triangle inequality for complex numbers [6].

Proposition 1. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If
there exist the constants rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

(5.1) rk [|Re xj|+ |Im xj|] ≤ Re ak · Re xj − Im ak · Im xj

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(5.2)
n∑

j=1

[|Re xj|+ |Im xj|] ≤
|
∑m

k=1 ak|∑m
k=1 rk

[∣∣∣∣∣
n∑

j=1

Re xj

∣∣∣∣∣+
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
]

.

The case of equality holds in (5.2) if both

Re

(
m∑

k=1

ak

)
Re

(
n∑

j=1

xj

)
− Im

(
m∑

k=1

ak

)
Im

(
n∑

j=1

xj

)

=

(
m∑

k=1

rk

)
n∑

j=1

[|Re xj|+ |Im xj|]

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
[∣∣∣∣∣

n∑
j=1

Re xj

∣∣∣∣∣+
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
]

.

The proof follows by Theorem 1 applied for the Banach space (C, |·|1)
and Fk (z) = akz, k ∈ {1, . . . ,m} on taking into account that:∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
1

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣ .
Now, consider the Banach space (C, |·|∞) . If F (z) = dz, then for z 6= 0
we have

|F (z)|
|z|∞

=
|d| |z|
|z|∞

=
|d|
√
|Re z|2 + |Im z|2

max {|Re z| , |Im z|}
≤
√

2 |d| .

Since, for z0 = 1 + i, we have |F (z0)| =
√

2 |d| , |z0|∞ = 1, hence

‖F‖∞ := sup
z 6=0

|F (z)|
|z|∞

=
√

2 |d| ,

showing that F is a bounded linear functional on (C, |·|∞) and ‖F‖∞ =√
2 |d| .
If we apply Theorem 1, then we can state the following reverse of

the generalised triangle inequality for complex numbers [6].
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Proposition 2. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If
there exist the constants rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

rk max {|Re xj| , |Im xj|} ≤ Re ak · Re xj − Im ak · Im xj

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then
n∑

j=1

max {|Re xj| , |Im xj|}(5.3)

≤
√

2 · |
∑m

k=1 ak|∑m
k=1 rk

max

{∣∣∣∣∣
n∑

j=1

Re xj

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
}

.

The case of equality holds in (5.3) if both

Re

(
m∑

k=1

ak

)
Re

(
n∑

j=1

xj

)
− Im

(
m∑

k=1

ak

)
Im

(
n∑

j=1

xj

)

=

(
m∑

k=1

rk

)
n∑

j=1

max {|Re xj| , |Im xj|}

=
√

2

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣max

{∣∣∣∣∣
n∑

j=1

Re xj

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
}

.

Finally, consider the Banach space
(
C, |·|2p

)
with p ≥ 1.

Let F : C → C, F (z) = cz. By Hölder’s inequality, we have

|F (z)|
|z|2p

=
|c|
√
|Re z|2 + |Im z|2(

|Re z|2p + |Im z|2p) 1
2p

≤ 2
1
2
− 1

2p |c| .

Since, for z0 = 1+ i we have |F (z0)| = 2
1
2 |c| , |z0| = 2

1
2p (p ≥ 1) , hence

‖F‖2p := sup
z 6=0

|F (z)|
|z|2p

= 2
1
2
− 1

2p |c| ,

showing that F is a bounded linear functional on
(
C, |·|2p

)
, p ≥ 1 and

‖F‖2p = 2
1
2
− 1

2p |c| .
If we apply Theorem 1, then we can state the following proposition

[6].

Proposition 3. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If
there exist the constants rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

rk

[
|Re xj|2p + |Im xj|2p] 1

2p ≤ Re ak · Re xj − Im ak · Im xj
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for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(5.4)
n∑

j=1

[
|Re xj|2p + |Im xj|2p] 1

2p

≤ 2
1
2
− 1

2p
|
∑m

k=1 ak|∑m
k=1 rk

∣∣∣∣∣
n∑

j=1

Re xj

∣∣∣∣∣
2p

+

∣∣∣∣∣
n∑

j=1

Im xj

∣∣∣∣∣
2p
 1

2p

.

The case of equality holds in (5.4) if both:

Re

(
m∑

k=1

ak

)
Re

(
n∑

j=1

xj

)
− Im

(
m∑

k=1

ak

)
Im

(
n∑

j=1

xj

)

=

(
m∑

k=1

rk

)
n∑

j=1

[
|Re xj|2p + |Im xj|2p] 1

2p

= 2
1
2
− 1

2p

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
∣∣∣∣∣

n∑
j=1

Re xj

∣∣∣∣∣
2p

+

∣∣∣∣∣
n∑

j=1

Im xj

∣∣∣∣∣
2p
 1

2p

.

Remark 6. If in the above proposition we choose p = 1, then we have
the following reverse of the generalised triangle inequality for complex
numbers

n∑
j=1

|xj| ≤
|
∑m

k=1 ak|∑m
k=1 rk

∣∣∣∣∣
n∑

j=1

xj

∣∣∣∣∣
provided xj, ak, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} satisfy the assumption

rk |xj| ≤ Re ak · Re xj − Im ak · Im xj

for each j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} . Here |·| is the usual modulus
of a complex number and rk > 0, k ∈ {1, . . . ,m} are given.

We can apply Theorem 5 to state the following reverse of the gener-
alised triangle inequality for complex numbers [7].

Proposition 4. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If
there exist the constants Mjk ≥ 0, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n} such
that

(5.5) |Re xj|+ |Im xj| ≤ Re ak · Re xj − Im ak · Im xj + Mjk
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for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(5.6)
n∑

j=1

[|Re xj|+ |Im xj|]

≤ 1

m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
[∣∣∣∣∣

n∑
j=1

Re xj

∣∣∣∣∣+
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
]

+
1

m

m∑
k=1

n∑
j=1

Mjk.

The proof follows by Theorem 5 applied for the Banach space (C, |·|1)
and Fk (z) = akz, k ∈ {1, . . . ,m} on taking into account that:∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
1

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣ .
If we apply Theorem 5 for the Banach space (C, |·|∞), then we can

state the following reverse of the generalised triangle inequality for
complex numbers [7].

Proposition 5. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If
there exist the constants Mjk ≥ 0, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n} such
that

max {|Re xj| , |Im xj|} ≤ Re ak · Re xj − Im ak · Im xj + Mjk

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(5.7)
n∑

j=1

max {|Re xj| , |Im xj|}

≤
√

2

m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣max

{∣∣∣∣∣
n∑

j=1

Re xj

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
}

+
1

m

m∑
k=1

n∑
j=1

Mjk.

Finally, consider the Banach space
(
C, |·|2p

)
with p ≥ 1.

If we apply Theorem 5, then we can state the following proposition
[7].

Proposition 6. Let ak, xj, Mjk be as in Proposition 5. If

[
|Re xj|2p + |Im xj|2p] 1

2p ≤ Re ak · Re xj − Im ak · Im xj + Mjk
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for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(5.8)
n∑

j=1

[
|Re xj|2p + |Im xj|2p] 1

2p

≤ 2
1
2
− 1

2p

m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
∣∣∣∣∣

n∑
j=1

Re xj

∣∣∣∣∣
2p

+

∣∣∣∣∣
n∑

j=1

Im xj

∣∣∣∣∣
2p
 1

2p

+
1

m

m∑
k=1

n∑
j=1

Mjk.

where p ≥ 1.

Remark 7. If in the above proposition we choose p = 1, then we have
the following reverse of the generalised triangle inequality for complex
numbers

n∑
j=1

|xj| ≤

∣∣∣∣∣ 1

m

m∑
k=1

ak

∣∣∣∣∣
∣∣∣∣∣

n∑
j=1

xj

∣∣∣∣∣+ 1

m

m∑
k=1

n∑
j=1

Mjk

provided xj, ak, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} satisfy the assumption

|xj| ≤ Re ak · Re xj − Im ak · Im xj + Mjk

for each j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} . Here |·| is the usual modulus
of a complex number and Mjk > 0, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} are
given.
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