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Abstract. Simple geometric proofs of some old and new inequalities between
the Sei�ert mean and classical means.

Sei�ert introduced his �rst mean in [3] as

(1) P(x, y) =

{
x−y

2 arcsin x−y
x+y

x 6= y,

x x = y.

and proved in [4, 3] that for x 6= y

(2) G ≤ L ≤ P ≤ I ≤ A

where

G(x, y) =
√

xy,(3)

L(x, y) =
x− y

log x− log y
,(4)

I(x, y) =
1
e

(
xx

yy

) 1
x−y

,(5)

A(x, y) =
x + y

2
(6)

are the geometric, logarithmic, identric and arithmetic means. Later in [6] he used
series representation to show that

(7) P < A <
π

2
P.

and

(8)
3
P

<
2
A

+
1
G

.

Sándor in [2] obtained further re�nement. Using Pfa�'s algorithm he proved that

(9)
A + G

2
< P <

√
A

A + G
2

The second Sei�ert mean [5] is de�ned by

(10) T(x, y) =

{
x−y

2 arctan x−y
x+y

x 6= y,

x x = y.

The goal of this paper is to give simple geometric proofs of (2), (7), (8) and sharpen
the inequality (9). We also use obtain similar inequalities for T.
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Figure 1

Consider a right triangle ∆ABC with sides

|AB| = x + y

2
= A, |AC| = |x− y|

2
, |BC| = √

xy = G

Let P be the intersection point of AB and the circle of radius |BC| centered at B.
Then

∠B = arcsin
x− y

x + y

and

(11) P =
|AC|
∠B

=
|AC||BC|

|
_

PC|

The following equations will be useful:

sin
B

2
=

√
1− cos B

2
=

√
|AB| − |BC|

2|AB|
(12)

=
|AC|

2
√
|AB| |AB|+|BC|

2

tan
B

2
=

√
1− cos B

1 + cos B
=

√
|AB| − |BC|
|AB|+ |BC|

(13)

=
|AC|

|AB|+ |BC|

Now we are ready to prove the �rst theorem:

Theorem 1. For x 6= y

(14) G < P

and there is no constant c satisfying P < cG for all x, y.
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Proof. As |
_

PC| < |AC| and |BC| = G (14) follows form (11). On the other hand
the ratio

|AC|

|
_

PC|
>

2
π

|AC|
|BC|

=
x− y

π
√

xy
=

1
π

(√
x

y
−

√
y

x

)
can be made as large as we wish, so the ratio P/G cannot be bounded from above.
�
Let PQ be the height of the triangle ∆PBC. Then the following inequalities hold:

(15) 1 <
|

_

PC|
|PQ|

<
π

2

which implies

Theorem 2.
2
π
A < P < A

Proof. From (15) and (11) we get

2
π

|AC||BC|
|PQ|

< P <
|AC||BC|
|PQ|

and
|AC||BC|
|PQ|

=
|AC||BP |
|PQ|

= |AB| = A.

�
Another obvious inequality

(16) 1 <
|

_

PC|
|PC|

<
π

2
√

2
gives

Theorem 3.

2
√

2
π

√
A

A + G
2

< P <

√
A

A + G
2

Proof. From (16) and (11) we get

2
√

2
π

|AC||BC|
|PC|

< P <
|AC||BC|
|PC|

and

(17)
|AC||BC|
|PC|

=
|AC|

2 sin B
2

=

√
|AB| |AB|+ |BC|

2
=

√
A

A + G
2

by (12). �

In the middle of
_

PC draw a tangent line that meets BA at F and BC at E. It is
obvious that

(18)
π

4
<
|

_

PC|
|EF |

< 1

and this implies
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Theorem 4. (see [1], Cor. 1.11)

A + G
2

< P <
4
π

A + G
2

Proof. From (18) and (11) we get

|AC||BC|
|EF |

< P <
4
π

|AC||BC|
|EF |

and

(19)
|AC||BC|
|EF |

=
|AC|

2 tan B
2

=
|AB|+ |BC|

2
=

A + G
2

by 13. �

In order to show other inequalities for the Sei�ert means we need the following
lemma:

Lemma 1. Let φt(x) = (1− t) sinx + t tanx− x, 0 ≤ t ≤ 1. Then

(a) φt(x) > 0 for x ∈ (0, π
2 ) if and only if t ≥ 1

3 .

(b) φt(x) < 0 for x ∈ (0, π
4 ) if and only if t ≤ π−2

√
2

4−2
√

2
.

(c) φt(x) < 0 for x ∈ (0, π
8 ) if and only if t ≤ π−4

√
2−

√
2

4
[
2(
√

2−1)−
√

2−
√

2
] .

Proof. φ′t(x) = (1− t) cos x + t cos−2 x− 1, so φ′t(0) = 0.

(20) φ′′t (x) = 2t sinx

(
cos−3x− 1− t

2t

)
.

From (20) we see that if t ≥ 1
3 then φ′′t > 0 so φt is convex, so from φt(0) = 0 and

φ′t(0) = 0 we deduce that φ > 0. On the other hand if t < 1
3 then φ is concave for

small x hence is negative.
To prove (b) note that if t < 1

3 then φt is concave and negative for x < x0 and then
becomes convex, so φt has exactly one zero in (0, π

2 ). So φt < 0 in (0, π
4 ) if and only

if φt(π
4 ) < 0, which holds for t ≤ π−2

√
2

4−2
√

2
.

Proof of (c) is exatly the same with π/4 replaced by π/8. �
Consider now the points Mt = (1− t)Q + tC and Nt = (1− t)P + tA. We have

(21) |MtNt| = (1− t)|QP |+ t|CA| = |BC|((1− t) sinB + t tanB).

Theorem 5.
3
P

<
2
A

+
1
G

Proof. From Lemma 1(a) we see that |MtNt| > |
_

PC| holds for every triangle if and
only if t ≥ 1

3 . (11) and (21) give

1
P

=
|

_

PC|
|AC||BC|

<
|MtNt|
|AC||BC|

=
(1− t)|QP |+ t|CA|

|AC||BC|
=

1− t

A
+

t

G
.

The right hand side of this expression increases with t, so the inequality in theorem
is the strongest one. �
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Similarly let Rt = (1− t)C + tE and St = (1− t)P + tF . Then

(22) |RtSt| = (1− t)|CP |+ t|EF | = 2|BC|((1− t) sin
B

2
+ t tan

B

2
).

The formula is similar to (21) but B/2 varies from 0 to π/4 and we can improve
the inequalities (9)

Theorem 6.

(23)
1− r1√
AA+G

2

+
r1

A+G
2

<
1
P

<
2/3√
AA+G

2

+
1/3
A+G

2

where r1 = π−2
√

2
4−2

√
2
≈ .2673035.

Proof. As in the proof of the previous theorem we see from (22) and lemma 1(b),

that for t > 1
3 |RtSt| > |

_

PC| and for t < r1 |RtSt| < |
_

PC|.
Using (11), (22),(17) and (19) we obtain the desired estimations. �

Similar inequalities for the second Sei�ert mean T can be obtained in the same
way by considering a triangle with sides

|AB| =
√

x2 + y2

2
= A2 |AC| = |x− y|

2
, |BC| = x + y

2
= A.

A2 is called the root-square-mean.
In this case

(24) T =
|AC|
∠B

=
|AC||BC|

|
_

PC|

and we obtain similar results with G and A replaced with A and A2. Important
di�erence between the two cases is that now |AC| < |BC|, so 0 < ∠B < π/4 hence
the constants in inequalities are di�erent:

π

4
<
|

_

PC|
|AC|

< 1

1 <
|

_

PC|
|PQ|

<
π
√

2
4

1 <
|

_

PC|
|PC|

<
π

4
√

2−
√

2

π

8(
√

2− 1)
<
|

_

PC|
|EF |

< 1

which leads to
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Theorem 7.

A < T <
4
π
A

2
√

2
π

A2 < T < A2

4
√

2−
√

2
π

√
A2

A2 + A
2

< T <

√
A2

A2 + A
2

A2 + A
2

< T <
8(
√

2− 1)
π

A2 + A
2

1− r1

A2
+

r1

A
<

1
T

<
2/3
A2

+
1/3
A

1− r2√
A2

A2+A
2

+
r2

A2+A
2

<
1
T

<
2/3√

A2
A2+A

2

+
1/3

A2+A
2

where r1 = π−2
√

2
4−2

√
2
≈ .2673035 and r2 = π−4

√
2−

√
2

4
[
2(
√

2−1)−
√

2−
√

2
] ≈ 0.3176533
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