SEIFFERT MEANS IN A TRIANGLE

ALFRED WITKOWSKI

Abstract. Simple geometric proofs of some old and new inequalities between the Seiffert mean and classical means.

Seiffert introduced his first mean in [3] as

$$
\mathbf{P}(x, y)= \begin{cases}\frac{x-y}{2 \arcsin \frac{x-y}{x+y}} & x \neq y \tag{1}\\ x & x=y\end{cases}
$$

and proved in $[4,3]$ that for $x \neq y$

$$
\begin{equation*}
\mathbf{G} \leq \mathbf{L} \leq \mathbf{P} \leq \mathbf{I} \leq \mathbf{A} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{G}(x, y) & =\sqrt{x y} \tag{3}\\
\mathbf{L}(x, y) & =\frac{x-y}{\log x-\log y} \tag{4}\\
\mathbf{I}(x, y) & =\frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}} \tag{5}\\
\mathbf{A}(x, y) & =\frac{x+y}{2} \tag{6}
\end{align*}
$$

are the geometric, logarithmic, identric and arithmetic means. Later in [6] he used series representation to show that

$$
\begin{equation*}
\mathbf{P}<\mathbf{A}<\frac{\pi}{2} \mathbf{P} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3}{\mathbf{P}}<\frac{2}{\mathbf{A}}+\frac{1}{\mathbf{G}} \tag{8}
\end{equation*}
$$

Sándor in [2] obtained further refinement. Using Pfaff's algorithm he proved that

$$
\begin{equation*}
\frac{\mathbf{A}+\mathbf{G}}{2}<\mathbf{P}<\sqrt{\mathbf{A} \frac{\mathbf{A}+\mathbf{G}}{2}} \tag{9}
\end{equation*}
$$

The second Seiffert mean [5] is defined by

$$
\mathbf{T}(x, y)= \begin{cases}\frac{x-y}{2 \arctan \frac{x-y}{x+y}} & x \neq y \tag{10}\\ x & x=y\end{cases}
$$

The goal of this paper is to give simple geometric proofs of (2), (7), (8) and sharpen the inequality (9). We also use obtain similar inequalities for \mathbf{T}.

[^0]

Figure 1

Consider a right triangle $\triangle A B C$ with sides

$$
|A B|=\frac{x+y}{2}=\mathbf{A}, \quad|A C|=\frac{|x-y|}{2}, \quad|B C|=\sqrt{x y}=\mathbf{G}
$$

Let P be the intersection point of $A B$ and the circle of radius $|B C|$ centered at B. Then

$$
\angle B=\arcsin \frac{x-y}{x+y}
$$

and

$$
\begin{equation*}
\mathbf{P}=\frac{|A C|}{\angle B}=\frac{|A C||B C|}{|\widetilde{P C}|} \tag{11}
\end{equation*}
$$

The following equations will be useful:

$$
\begin{align*}
\sin \frac{B}{2} & =\sqrt{\frac{1-\cos B}{2}}=\sqrt{\frac{|A B|-|B C|}{2|A B|}} \tag{12}\\
& =\frac{|A C|}{2 \sqrt{|A B| \frac{|A B|+|B C|}{2}}} \\
\tan \frac{B}{2} & =\sqrt{\frac{1-\cos B}{1+\cos B}}=\sqrt{\frac{|A B|-|B C|}{|A B|+|B C|}} \tag{13}\\
& =\frac{|A C|}{|A B|+|B C|}
\end{align*}
$$

Now we are ready to prove the first theorem:
Theorem 1. For $x \neq y$

$$
\begin{equation*}
\mathbf{G}<\mathbf{P} \tag{14}
\end{equation*}
$$

and there is no constant c satisfying $\mathbf{P}<c \mathbf{G}$ for all x, y.

Proof. As $|\widehat{P C}|<|A C|$ and $|B C|=\mathbf{G}$ (14) follows form (11). On the other hand the ratio

$$
\frac{|A C|}{|\widetilde{P C}|}>\frac{2}{\pi} \frac{|A C|}{|B C|}=\frac{x-y}{\pi \sqrt{x y}}=\frac{1}{\pi}\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)
$$

can be made as large as we wish, so the ratio \mathbf{P} / \mathbf{G} cannot be bounded from above.
Let $P Q$ be the height of the triangle $\triangle P B C$. Then the following inequalities hold:

$$
\begin{equation*}
1<\frac{|\widehat{P C}|}{|P Q|}<\frac{\pi}{2} \tag{15}
\end{equation*}
$$

which implies
Theorem 2.

$$
\frac{2}{\pi} \mathbf{A}<\mathbf{P}<\mathbf{A}
$$

Proof. From (15) and (11) we get

$$
\frac{2}{\pi} \frac{|A C||B C|}{|P Q|}<\mathbf{P}<\frac{|A C||B C|}{|P Q|}
$$

and

$$
\frac{|A C||B C|}{|P Q|}=\frac{|A C||B P|}{|P Q|}=|A B|=\mathbf{A} \text {. }
$$

Another obvious inequality

$$
\begin{equation*}
1<\frac{|\overparen{P C}|}{|\overparen{P C}|}<\frac{\pi}{2 \sqrt{2}} \tag{16}
\end{equation*}
$$

gives

Theorem 3.

$$
\frac{2 \sqrt{2}}{\pi} \sqrt{\mathbf{A} \frac{\mathbf{A}+\mathbf{G}}{2}}<\mathbf{P}<\sqrt{\mathbf{A} \frac{\mathbf{A}+\mathbf{G}}{2}}
$$

Proof. From (16) and (11) we get

$$
\frac{2 \sqrt{2}}{\pi} \frac{|A C||B C|}{|P C|}<\mathbf{P}<\frac{|A C||B C|}{|P C|}
$$

and

$$
\begin{equation*}
\frac{|A C||B C|}{|P C|}=\frac{|A C|}{2 \sin \frac{B}{2}}=\sqrt{|A B| \frac{|A B|+|B C|}{2}}=\sqrt{\mathbf{A} \frac{\mathbf{A}+\mathbf{G}}{2}} \tag{17}
\end{equation*}
$$

by (12).
In the middle of $\overparen{P C}$ draw a tangent line that meets $B A$ at F and $B C$ at E. It is obvious that

$$
\begin{equation*}
\frac{\pi}{4}<\frac{|\overparen{P C}|}{|E F|}<1 \tag{18}
\end{equation*}
$$

and this implies

Theorem 4. (see [1], Cor. 1.11)

$$
\frac{\mathbf{A}+\mathbf{G}}{2}<\mathbf{P}<\frac{4}{\pi} \frac{\mathbf{A}+\mathbf{G}}{2}
$$

Proof. From (18) and (11) we get

$$
\frac{|A C||B C|}{|E F|}<\mathbf{P}<\frac{4}{\pi} \frac{|A C||B C|}{|E F|}
$$

and

$$
\begin{equation*}
\frac{|A C||B C|}{|E F|}=\frac{|A C|}{2 \tan \frac{B}{2}}=\frac{|A B|+|B C|}{2}=\frac{\mathbf{A}+\mathbf{G}}{2} \tag{19}
\end{equation*}
$$

by 13 .
In order to show other inequalities for the Seiffert means we need the following lemma:

Lemma 1. Let $\phi_{t}(x)=(1-t) \sin x+t \tan x-x, 0 \leq t \leq 1$. Then
(a) $\phi_{t}(x)>0$ for $x \in\left(0, \frac{\pi}{2}\right)$ if and only if $t \geq \frac{1}{3}$.
(b) $\phi_{t}(x)<0$ for $x \in\left(0, \frac{\pi}{4}\right)$ if and only if $t \leq \frac{\pi-2 \sqrt{2}}{4-2 \sqrt{2}}$.
(c) $\phi_{t}(x)<0$ for $x \in\left(0, \frac{\pi}{8}\right)$ if and only if $t \leq \frac{\pi-4 \sqrt{2-\sqrt{2}}}{4[2(\sqrt{2}-1)-\sqrt{2-\sqrt{2}}]}$.

Proof. $\phi_{t}^{\prime}(x)=(1-t) \cos x+t \cos ^{-2} x-1$, so $\phi_{t}^{\prime}(0)=0$.

$$
\begin{equation*}
\phi_{t}^{\prime \prime}(x)=2 t \sin x\left(\cos ^{-3} x-\frac{1-t}{2 t}\right) . \tag{20}
\end{equation*}
$$

From (20) we see that if $t \geq \frac{1}{3}$ then $\phi_{t}^{\prime \prime}>0$ so ϕ_{t} is convex, so from $\phi_{t}(0)=0$ and $\phi_{t}^{\prime}(0)=0$ we deduce that $\phi>0$. On the other hand if $t<\frac{1}{3}$ then ϕ is concave for small x hence is negative.
To prove (b) note that if $t<\frac{1}{3}$ then ϕ_{t} is concave and negative for $x<x_{0}$ and then becomes convex, so ϕ_{t} has exactly one zero in $\left(0, \frac{\pi}{2}\right)$. So $\phi_{t}<0$ in $\left(0, \frac{\pi}{4}\right)$ if and only if $\phi_{t}\left(\frac{\pi}{4}\right)<0$, which holds for $t \leq \frac{\pi-2 \sqrt{2}}{4-2 \sqrt{2}}$.
Proof of (c) is exatly the same with $\pi / 4$ replaced by $\pi / 8$.
Consider now the points $M_{t}=(1-t) Q+t C$ and $N_{t}=(1-t) P+t A$. We have

$$
\begin{equation*}
\left|M_{t} N_{t}\right|=(1-t)|Q P|+t|C A|=|B C|((1-t) \sin B+t \tan B) \tag{21}
\end{equation*}
$$

Theorem 5.

$$
\frac{3}{\mathbf{P}}<\frac{2}{\mathbf{A}}+\frac{1}{\mathbf{G}}
$$

Proof. From Lemma 1(a) we see that $\left|M_{t} N_{t}\right|>|\overparen{P C}|$ holds for every triangle if and only if $t \geq \frac{1}{3}$. (11) and (21) give

$$
\frac{1}{\mathbf{P}}=\frac{|\overparen{P C}|}{|A C||B C|}<\frac{\left|M_{t} N_{t}\right|}{|A C||B C|}=\frac{(1-t)|Q P|+t|C A|}{|A C||B C|}=\frac{1-t}{\mathbf{A}}+\frac{t}{\mathbf{G}}
$$

The right hand side of this expression increases with t, so the inequality in theorem is the strongest one.

Similarly let $R_{t}=(1-t) C+t E$ and $S_{t}=(1-t) P+t F$. Then

$$
\begin{equation*}
\left|R_{t} S_{t}\right|=(1-t)|C P|+t|E F|=2|B C|\left((1-t) \sin \frac{B}{2}+t \tan \frac{B}{2}\right) \tag{22}
\end{equation*}
$$

The formula is similar to (21) but $B / 2$ varies from 0 to $\pi / 4$ and we can improve the inequalities (9)

Theorem 6.

$$
\begin{equation*}
\frac{1-r_{1}}{\sqrt{\mathbf{A} \frac{\mathbf{A}+\mathbf{G}}{2}}}+\frac{r_{1}}{\frac{\mathbf{A}+\mathbf{G}}{2}}<\frac{1}{\mathbf{P}}<\frac{2 / 3}{\sqrt{\mathbf{A} \frac{\mathbf{A}+\mathbf{G}}{2}}}+\frac{1 / 3}{\frac{\mathbf{A}+\mathbf{G}}{2}} \tag{23}
\end{equation*}
$$

where $r_{1}=\frac{\pi-2 \sqrt{2}}{4-2 \sqrt{2}} \approx .2673035$.
Proof. As in the proof of the previous theorem we see from (22) and lemma 1(b), that for $t>\frac{1}{3} \quad\left|R_{t} S_{t}\right|>|\overparen{P C}|$ and for $t<r_{1} \quad\left|R_{t} S_{t}\right|<|\overparen{P C}|$.
Using (11), (22),(17) and (19) we obtain the desired estimations.

Similar inequalities for the second Seiffert mean \mathbf{T} can be obtained in the same way by considering a triangle with sides

$$
|A B|=\sqrt{\frac{x^{2}+y^{2}}{2}}=\mathbf{A}_{2} \quad|A C|=\frac{|x-y|}{2}, \quad|B C|=\frac{x+y}{2}=\mathbf{A}
$$

\mathbf{A}_{2} is called the root-square-mean.
In this case

$$
\begin{equation*}
\mathbf{T}=\frac{|A C|}{\angle B}=\frac{|A C||B C|}{|\widetilde{P C}|} \tag{24}
\end{equation*}
$$

and we obtain similar results with \mathbf{G} and \mathbf{A} replaced with \mathbf{A} and $\mathbf{A}_{\mathbf{2}}$. Important difference between the two cases is that now $|A C|<|B C|$, so $0<\angle B<\pi / 4$ hence the constants in inequalities are different:

$$
\begin{aligned}
\frac{\pi}{4} & <\frac{|\overparen{P C}|}{|A C|}<1 \\
1 & <\frac{|\overparen{P C}|}{\mid \overparen{P Q \mid}}<\frac{\pi \sqrt{2}}{4} \\
1 & <\frac{|\overparen{P C}|}{|P C|}<\frac{\pi}{4 \sqrt{2-\sqrt{2}}} \\
\frac{\pi}{8(\sqrt{2}-1)} & <\frac{|\overparen{P C}|}{|E F|}<1
\end{aligned}
$$

which leads to

Theorem 7.

$$
\begin{aligned}
\mathbf{A} & <\mathbf{T}
\end{aligned} \begin{aligned}
& \frac{2 \sqrt{2}}{\pi} \mathbf{A}_{\mathbf{2}}<\mathbf{T}<\frac{4}{\pi} \mathbf{A} \\
& \frac{4 \sqrt{2-\sqrt{2}}}{\pi} \sqrt{\mathbf{A}_{\mathbf{2}}} \\
& \frac{\mathbf{A}_{\mathbf{2}}+\mathbf{A}}{2}<\mathbf{T}<\sqrt{\mathbf{A}_{\mathbf{2}} \frac{\mathbf{A}_{\mathbf{2}}+\mathbf{A}}{2}} \\
& \frac{\mathbf{A}_{\mathbf{2}}+\mathbf{A}}{2}<\mathbf{T}<\frac{8(\sqrt{2}-1) \frac{\mathbf{A}_{\mathbf{2}}+\mathbf{A}}{\pi}}{2} \\
& \frac{1-r_{1}}{\mathbf{A}_{\mathbf{2}}}+\frac{r_{1}}{\mathbf{A}}<\frac{1}{\mathbf{T}}<\frac{2 / 3}{\mathbf{A}_{\mathbf{2}}}+\frac{1 / 3}{\mathbf{A}} \\
& \frac{1-r_{2}}{\sqrt{\mathbf{A}_{\mathbf{2}} \frac{\mathbf{A}_{\mathbf{2}}+\mathbf{A}}{2}}}+\frac{r_{2}}{\frac{\mathbf{A}_{\mathbf{2}}+\mathbf{A}}{2}}<\frac{1}{\mathbf{T}}<\frac{2 / 3}{\sqrt{\mathbf{A}_{\mathbf{2}} \frac{\mathbf{A}_{\mathbf{2}}+\mathbf{A}}{2}}}+\frac{1 / 3}{\frac{\mathbf{A}_{\mathbf{2}}+\mathbf{A}}{2}}
\end{aligned}
$$

where $r_{1}=\frac{\pi-2 \sqrt{2}}{4-2 \sqrt{2}} \approx .2673035$ and $r_{2}=\frac{\pi-4 \sqrt{2-\sqrt{2}}}{4[2(\sqrt{2}-1)-\sqrt{2-\sqrt{2}}]} \approx 0.3176533$

References

[1] Hästö P.A., A Monotonicity Property of Ratios of Symmetric Homogeneous Means, J. Ineq. Pure and Appl. Math., 3(5) (2002), Article 71. [ONLINE: http://jipam.vu.edu.au/article.php?sid=223].
[2] Sándor J., On certain inequalities for means, III, RGMIA Research Report Collection, 2(3), Article 8, 1999 [ONLINE: http:/rgmia.vu.edu.au/v2n3.html].
[3] Seiffert H.-J., Werte zwischen dem geometrischen und dem arithmetischen Mittel zweier Zahlen, Elem. Math. 42 (1987), 105-107.
[4] Seiffert H.-J., Problem 887, Nieuv Arch. Wisk. (Ser. 4), 11 (1993), 196.
[5] Seiffert H.-J., Aufgabe $\beta 16$, Die Wurzel, 29 (1995), 221-222.
[6] Seiffert H.-J., Ungleichungen für einen bestimmten Mittelwert, Nieuv Arch. Wisk. (Ser. 4), 13 (1995), 195-198.

Mielczarskiego 4/29, 85-796 Bydgoszcz, Poland
E-mail address: alfred.witkowski@atosorigin.com

[^0]: Date: 9 Sepember 2004.
 2000 Mathematics Subject Classification. 26D15.
 Key words and phrases. Seiffert mean, power means.

