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Abstract

In the present note we establish a new integral inequality similar to
Griiss integral inequality by using a variant of the mean value theorem.

1 Introduction

G Griiss [3] has proved the following useful and interesting inequality (See also

)
1 b 1 b 1 b
= f(af)g(:v)dx—<ba / f(w)daf> (ba / g(m)dw>’

SE(P—p) (Q—a) (1.1)

provided that f and g are two integrable functions on [a,b] such that

p< flx) <P, qg<gx)<Q

for all z € [a,b] ,where p,P,q,Q are real constants.

During the past few years, many researchers have obtained various generaliza-
tions , variants and extensions of the inequality (1.1), see [1,2] and the references
cited therein . The main purpose of the present note is to establish a new in-
equality of the type (1.1) by using the variant of the well known Lagrange’s
mean value theorem.

2 Statement of Results

In what follows , R and ’ denotes the set of real numbers and the derivative of
a function.
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In the proof of our result we make use of the following theorem, which is a
variant of the well known Lagrange’s mean value theorem (See[8]).

Theorem 1 . Suppose f is continous on [a,b] and differentiable in (a,b).
Then there exists a point ¢ € (a, b) such that

F) = @)+ (- ) (@) + 5 (o - 2)° (o).

The proof can be completed by applying Rolle’s theorem for the function
®(t)=f(y) = FO) = (=01 (1) = (y—1)* 4,

where A is constant.
Our main result is given in the following theorem.

Theorem 2 .Let f,g: [a,b] — R be continous on [a,b] a < b ; a,b € R and
differentiable on (a,b). Then

bia/a Fw)g(y)dy — (bia/a f(y)dy> (b_la/a g(y)dy>
b b
‘za)ia)’z [{f () = fla)} ( / v (4) dy> +{9(b) - g(a)} ( / uf (v) dyﬂ
b b b b
vt ([ 0w ([ srwm) ([ o) (o)

S { / <y—x>2{|g<y>|||f"||oo+|f<y>||g"||oo}dx}dy,

where
1f" Nl = Sup [f" ()] < o0, 9"l = Sup |g" ()] < cc.
te(a,b) te(a,b)

Proof: Let z,y € [a,b]with y # z.From the hypotheses and applying Theo-
reml, there exists a point ¢ between y and x such that

1

)= @)+ =) @)+ 5 (=2 (o) (22)
90) = 9(@)+ - 2)g@) + 5 (-2 (o). (23)

Multiplying both sides of (2.2) and (2.3) by g(y) and f(y) respectively and
adding the resulting identities we get

2f()gy) =g f(@)+f@g@)+ylgWw) f(x)+f(y)g (=)}
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—z{g) f @)+ f () g (=)} + % (=)’ {f W) g" () +g®) f"(c)}. (24)

Integrating both sides of (2.4) with respect to = over [a, b] we have
2(b—a)f /f )dz + f (y / g(z)dx
+yg(y / f(x)dx +yf(y )/a '(v)dw
() / of (@)t = f0) [ g (@)

1 /b )
+§/a (y—2)" [g(y)f"(c) + f(y)g" (c)] du. (2.5)

Integrating both sides of (2.5) with respect to y over [a, b] we have

b b
+5 { | =0 o))+ 1 ()} dx} . (26)

Multiplying both sides of (2.6) by W and rewriting we get

b b b
i [ f@dy- (bf / f(y)dy> (bf / g(y)dy>
1 b b
S l(f(b)f(a)) ( / yg(y)dy>+<g<b>g<a>> < / yf(y)dyﬂ
1 b b b b
a2 [(/ g(y)dl/> </ yf'(y)dy> + (/ f(y)dy> </ yg'(y)dyﬂ

b b
=) { / <yz>2{9<y>f"<c>+f<y>g"<c>}d:c}dy. (27)
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From (2.7) and using properties of modulus we have

b b b
bia/a fFW)g(y)dy — (bla/a f(y)dy> (bla/a g(y)dy>

_M [{f(b) — f(a)} (/a Y9 (y) dy) +{g(b) — g(a)} (/a yf () dy)]
1 b b b b
+m K/a g(y)dy> (/a yf (y)dy> + (/a f(y)dy) (/a yg (y)dy>H

b b
: » / { / (yx>2{|g<y>|||f"||oo+|f(y)||g~||oo}dz}dy7

Si
4(b—a

which is the required inequality in (2.1) and the proof is complete.
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