DENSITY OF $n^{\text {th }}$-POWER FREES

Mohammad Reza Razvan, Mehdi Hassani, Gholam Ali Pirayesh
Department of Mathematics, Institute for Advanced Studies in Basic Sciences P.O. Box 45195-159
Zanjan, Iran.
<razvan, mhassani, pirayesh>@iasbs.ac.ir

Abstract

In this note we are going to analyze the density of $n^{\text {th }}$-power free integers.

1. Introduction

Let \mathbb{P} the set of all primes and suppose M is a positive integer, with the following prime factoring:

$$
M=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}} \quad\left(p_{1}, p_{2}, \cdots, p_{k} \in \mathbb{P}\right) .
$$

We call $M, n^{\text {th }}$-power free if for $1 \leq i \leq k, \alpha_{i}<n$. Let $f_{n}(x)=$ The number of $n^{\text {th }}$-power frees $\leq x$. By density we mean

$$
\lim _{x \rightarrow \infty} \frac{f_{n}(x)}{x}
$$

It is well-know that [1],

$$
f_{2}(x)=\frac{6 x}{\pi^{2}}+O(\sqrt{x}) .
$$

So, the density of square frees is $\frac{6}{\pi^{2}}$ or approximately 61 percent!. Now, what about cubic frees? And generally the $n^{\text {th }}$-power frees?

2. Density Analysis

In this section we will show that the density of $n^{t h}$-power free integers is $\frac{1}{\zeta(n)}$. Our main result is based on the following lemma.

Lemma 1 Let $s>1$ be a real number. We have

$$
\sum_{m=1}^{\infty} \frac{\mu(m)}{m^{s}}=\frac{1}{\zeta(s)}
$$

Proof:

$$
\sum_{m=1}^{\infty} \frac{\mu(m)}{m^{s}}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{p_{1}^{s} p_{2}^{s} \cdots p_{k}^{s}}=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)=\prod_{p \in \mathbb{P}} \frac{1}{\sum_{k=1}^{\infty} \frac{1}{p^{s k}}}=\frac{1}{\sum_{m=1}^{\infty} \frac{1}{m^{s}}}=\frac{1}{\zeta(s)}
$$

Theorem 1 For any integer $n \geq 2$ and any real $x \geq 1$, we have

$$
\begin{equation*}
\left|\frac{x}{\zeta(n)}-f_{n}(x)\right|<\frac{n}{n-1} \sqrt[n]{x}-1 \tag{1}
\end{equation*}
$$

Proof: By a usual counting, we obtain

$$
f_{n}(x)=x-\sum_{p \in \mathbb{P}}\left\lfloor\frac{x}{p^{n}}\right\rfloor+\sum_{p, q \in \mathbb{P}, p \neq q}\left\lfloor\frac{x}{(p q)^{n}}\right\rfloor-\cdots=\sum_{k \leq \sqrt[n]{x}} \mu(k)\left\lfloor\frac{x}{k^{n}}\right\rfloor .
$$

So, we have

$$
\begin{aligned}
&\left|\frac{x}{\zeta(n)}-f_{n}(x)\right|=\left|\sum_{1<k \leq \sqrt[n]{x}} \mu(k)\left(\frac{x}{k^{n}}-\left\lfloor\frac{x}{k^{n}}\right\rfloor\right)+\sum_{k>\sqrt[n]{x}} \mu(k) \frac{x}{k^{n}}\right| \\
&<(\sqrt[n]{x}-1)+x \sum_{k>\sqrt[n]{x}} \frac{1}{k^{n}}<\sqrt[n]{x}-1+x \int_{\sqrt[n]{x}}^{\infty} \frac{d s}{s^{n}}=\frac{n}{n-1} \sqrt[n]{x}-1 .
\end{aligned}
$$

This completes the proof.
A weak but nice form of the above theorem is
Corollary 1 For any integer $n \geq 2$ and any real

$$
f_{n}(x)=\frac{x}{\zeta(n)}+O(\sqrt[n]{x})
$$

Corollary 2 For any integer $n \geq 2$, the density of $n^{\text {th }}$-power free integers is

$$
\frac{1}{\zeta(n)}
$$

According the definition of $f_{n}(x)$ we obtain $0 \leq \frac{f_{n}(x)}{x}<1$. We desire to find better lower bounds:

Lemma 2 Let $n \geq 2$ is an integer. For any real $0 \leq \alpha<\frac{1}{\zeta(n)}$ and any real $x>$ $\left(\frac{n \zeta(n)}{(n-1)(1-\alpha \zeta(n))}\right)^{\frac{n}{n-1}}$, we have

$$
\alpha<\frac{f_{n}(x)}{x} .
$$

Proof: From (1), we have

$$
\frac{1}{\zeta(n)}-\frac{n}{(n-1) x^{1-\frac{1}{n}}}<\frac{f_{n}(x)}{x} .
$$

Let $L B(n, x)$ denote the left hand side of the above inequality. If $0 \leq \alpha<\frac{1}{\zeta(n)}$ and $x>\left(\frac{n \zeta(n)}{(n-1)(1-\alpha \zeta(n))}\right)^{\frac{n}{n-1}}$, then $\alpha<L B(n, x)$. This completes the proof.
The obtained results are useful in study of distribution of $n^{\text {th }}$-power free integers. In the next section we do this.

3. Computational Results

The sequence $\frac{f_{n}(x)}{x}$ for any fixed n is convergent, and it may affairs minimum for some $x \in \mathbb{N}$. The lemma 2 led us to the following algorithm to find the minimum of $\frac{f_{n}(x)}{x}$ on \mathbb{N}.

Step(1). Find $x_{0} \in \mathbb{N}$ such that

$$
\frac{f_{n}\left(x_{0}\right)}{x_{0}}<\frac{1}{\zeta(n)}
$$

Step(2). For $\alpha=\frac{f_{n}\left(x_{0}\right)}{x_{0}}$, take

$$
N=\left\lfloor\left(\frac{n \zeta(n)}{(n-1)(1-\alpha \zeta(n)}\right)^{\frac{n}{n-1}}\right\rfloor .
$$

Step(3). Find

$$
\min _{1 \leq x \leq N}\left\{\frac{f_{n}(x)}{x}\right\} .
$$

We note that there is no guarantee for the existence of x_{0} in step(1), but there are some evidences for the following question.

Question Is there exists an x_{0} in the interval $\left[5^{n}, 6^{n}\right]$ with $\frac{f_{n}\left(x_{0}\right)}{x_{0}}<\frac{1}{\zeta(n)}$?
Our computer program gave an affirmative answer to above question for $n=2, \ldots, 10$. It is based on the following recursive relation:

$$
f_{n}(x)=f_{n}(x-1)+ \begin{cases}1 & x \text { is } n^{t h} \text {-power free } \\ 0 & x \text { other wise }\end{cases}
$$

Since $f_{n}\left(2^{n}\right)=2^{n}-1$, we start from $x=2^{n}$. Then divide our interval into sub intervals $\left[2^{n}, 3^{n}\right],\left[3^{n}, 5^{n}\right],\left[5^{n}, 7^{n}\right], \cdots$. The following table includes the value of x_{0}, exact value of the minimum of $\frac{f_{n}(x)}{x}$ and the value of x at which the minimum occur.

n	x_{0}	N	x	$f_{n}(x)$	$\min _{x \in \mathbb{N}} \frac{f_{n}(x)}{x}$
2	28	6503647	176	106	0.602273
3	136	55980	378	314	0.830688
4	656	171931	2512	2320	0.923567
5	3168	269627	3168	3055	0.964331
6	16064	1346593	31360	30825	0.982940
7	78732	10552627	236288	234331	0.991718
8	393728	25381201	1174528	1169758	0.995939
9	1968640	146390429	7814151	7798488	0.997996
10	9802752	816756521	48833536	48785015	0.999006

Now, we use our numerical results to get the following corollaries.
Corollary 3 Let $n>1$ is an integer. The number of cases that we can write n as sum of two square frees is greater than $\frac{n}{10}$.

Proof: More than 60 percent of integers between 1 and n are square free. The number of pairs $\{i, j\}$ such that $i+j=n$ is not greater than $\frac{n}{2}$, so, there are more than $\frac{n}{10}$ of this pairs with square free members. This complete the proof.

Corollary 4 The probabilty that two successive positive integer numbers both be square free is more than 20%.

Proof: Obvious.

References

[H-W] G. H. Hardy and E. M. Wright, An Introduction to THE THEORY OF NUMBERS, fifth edition, Oxford University Press, London, 1979.

