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Sequence Inequalities for the Logarithmic Convex(Concave) Function

Jian-She Sun

Abstract. Let f be a positive strictly increasing logarithmic convex (or logarithmic con-
cave) function on (0, 1], then, for k being a nonnegative integer and n a natural number, the
sequence 1

n

∑n+k
i=k+1 lnf( i

n+k ) is decreasing in n and k and has a lower bound
∫ 1
0 f(t)dt. From

this, some new inequalities involving n
√

(n + k)!/k! are deduced.

1. Introduction
In [1], H. Alzer, using mathematical induction and other techniques, proved that for r > 0

and n ∈ N ,
n

n + 1
≤ (

1
n

n∑
i=1

ir/
1

n + 1

n+1∑
i=1

ir)1/r <
n
√

n!
n+1

√
(n + 1)!

(1)

By Cauchy’s mean-value theorem and mathematical induction, F. Qi in [7] presented that, if n
and m are natural numbers, k is a nonnegative integer, r > 0, then

n + k

n + m + k
< (

1
n

n+k∑
i=k+1

ir/
1

n + m

n+m+k∑
i=k+1

ir)1/r (2)

The lower is best possible.
From Stirling’s formula, for all nonnegative integers k and natural numbers n and m, F. Qi

in [8] obtained

(
n+k∏

i=k+1

i)1/n/(
n+m+k∏
i=k+1

i)1/(n+m) ≤
√

n + m

n + m + k
(3)

Let f be a strictly increasing convex (or concave) function in (0, 1], J.-C.Kuang in [2] verified
that

1
n

n∑
k=1

f(
k

n
) >

1
n + 1

n+1∑
k=1

f(
k

n + 1
) >

∫ 1

0
f(x)dx (4)

In [10], F.Qi, considering the convexity of a function proved the following: Let f be a strictly in-
creasing convex (or concave) function in (0, 1], then the sequence 1

n

∑n+k
i=k+1 f( i

n+k ) is decreasing
in n and k and has a lower bound

∫ 1
0 f(t)dt. That is

1
n

n+k∑
i=k+1

f(
i

n + k
) >

1
n + 1

n+k+1∑
i=k+1

f(
i

n + k + 1
) >

∫ 1

0
f(t)dt (5)

Where k is a nonnegative integer, n a natural number.
There is much literature studying Alzer’s and Minc-Sathre’s inequality has many literature,

for example, [1]− [13].
In this article, motivated by [2, 7, 10], i.e. the inequalities in (2), (3), (4) and (5), considering

the logarithmic convexity of a function, we get

12000 Mathematics Subject Classification. Primary 26D15.
Key Words and phrases: Alzer’s inequality, Kuang’s inequality, Logarithmic convex, Logarithmic concave .
The author was supported in part by NSF of Henan Province, SF for Pure Research of Natural Science of the

Education Department of Henan Province, China.

1



2

Theorem 1. Let f be a positive strictly increasing logarithmic convex (or logarithmic con-
cave) function on (0, 1], then, for k being a nonnegative integer and n a natural number, the
sequence 1

n

∑n+k
i=k+1 lnf( i

n+k ) is decreasing in n and k and has a lower bound
∫ 1
0 f(t)dt, that is

1
n

n+k∑
i=k+1

lnf(
i

n + k
) >

1
n + 1

n+k+1∑
i=k+1

lnf(
i

n + k + 1
) >

∫ 1

0
f(t)dt (6)

Where k is a nonnegative integer, n a natural number.
If let f(x) = axr

, r > 0, or let k = 0 in (6), then the inequalities in (1), (2) and (4) could be
deduced. If we let f(x) = eg(x), g(x) be a strictly increasing logarithmic convex (or logarithmic
concave) function in (0, 1], the inequalities in (5) could be deduced. Therefore, inequality (6)
generalizes Alzer’s and Kuang’s inequality in [1, 2] and inequality (2) above.

Corollary 1.([10]). For a nonnegative integer k and a natural number n > 1, we have

n + k

n + k + 1
< [

(2n + 2k)!
(n + 2k)!

]1/n/[
(2n + 2k + 2)!
(n + 2k + 1)!

]1/(n+1)

< [
(n + k)!

k!
]1/n/[

(n + k + 1)!
k!

]1/(n+1) (7)

Theorem 2. For a natural number n > 1, then

[n(n+1)2/(n + 1)n2
]1/(2n+1) < (

n∏
i=1

ii)2/n(n+1) <
2n + 1

3
(8)

2. Proofs of theorems

Proof of Theorem 1. Let us first assume that f is a positive strictly increasing logarithmic
convex function in (0, 1]. Taking x1 = i−1

n+k , x2 = i
n+k , λ = i−k−1

n and using the logarithmic
convexity and monotonicity of f yields

i− k − 1
n

lnf(
i− 1
n + k

) + (1− i− k − 1
n

)lnf(
i

n + k
)

≥ lnf(
i− k − 1

n
· i− 1
n + k

+
n− i + k + 1

n
· i

n + k
)

= lnf(
ni− i + k + 1

n(n + k)
) > lnf(

i

n + k + 1
) (9)

for i = k + 1, k + 2, ..., n + k + 1. Summing up leads to
n+k∑

i=k+1

[
i− k − 1

n
lnf(

i− 1
n + k

) +
n− i + k + 1

n
lnf(

i

n + k
)]

>

n+k∑
i=k+1

lnf(
i

n + k + 1
) (10)

n+k∑
i=k+1

[(i− k − 1)lnf(
i− 1
n + k

) + (n− i + k + 1)lnf(
i

n + k
)]

> n

n+k∑
i=k+1

lnf(
i

n + k + 1
) (11)
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(n + 1)
n+k∑

i=k+1

lnf(
i

n + k
)− nlnf(1) > n

n+k∑
i=k+1

lnf(
i

n + k + 1
) (12)

(n + 1)
n+k∑

i=k+1

lnf(
i

n + k
) > nlnf(1) + n

n+k∑
i=k+1

lnf(
i

n + k + 1
)

= n
n+k+1∑
i=k+1

lnf(
i

n + k + 1
) (13)

the left inequality in (6) is proved.
By a similar procedure, if f is a strictly increasing logarithmic concave function in (0, 1], then

for i = k + 1, k + 2, ..., n + k + 1, we have
i− k

n + 1
lnf(

i + 1
n + k + 1

) + (1− i− k

n + 1
)lnf(

i

n + k + 1
)

≤ lnf(
i− k

n + 1
· i + 1
n + k + 1

+
n− i + k + 1

n + 1
· i

n + k + 1
)

= lnf(
ni + 2i− k

(n + 1)(n + k + 1)
) < lnf(

i

n + k
) (14)

Summing up leads to
n+k∑

i=k+1

[
i− k

n + 1
lnf(

i + 1
n + k + 1

) + (1− i− k

n + 1
)lnf(

i

n + k + 1
)]

=
n

n + 1

n+k∑
i=k+1

lnf(
i

n + k + 1
) +

n

n + 1
lnf(1)

<

n+k∑
i=k+1

lnf(
i

n + k
) (15)

n

n + 1

n+k+1∑
i=k+1

lnf(
i

n + k + 1
) <

n+k∑
i=k+1

lnf(
i

n + k
) (16)

The final line in (16) implies the left inequality in (6).
Finally, by definition of definite integral, the right inequality in (6) follows.
The proof is complete.
Proof of Corollary 1. Substituting f with (x + 1)r, r > 0 or with x

x+1 in (6) and simplifying
yields the first or the second inequality in (7), respectively.

Proof of Theorem 2. Substituting f by xx and k = 0 in Theorem 1,we have

1
n

n∑
i=1

(
i

n
)ln(

i

n
) >

1
n + 1

n+1∑
i=1

(
i

n + 1
)ln(

i

n + 1
) (17)

1
n2

n∑
i=1

[i(lni− lnn)] >
1

(n + 1)2

n+1∑
i=1

[i(lni− ln(n + 1))] (18)

[
1
n2
− 1

(n + 1)2
]

n∑
i=1

(ilni) > [
lnn

n2
− ln(n + 1)

(n + 1)2
]

n∑
i=1

i
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= [
lnn

n2
− ln(n + 1)

(n + 1)2
]
n(n + 1)

2
(19)

(2n + 1)ln(
n∏

i=1

ii) >
n(n + 1)

2
ln[n(n+1)2/(n + 1)n2

] (20)

In [3, p.89],the following inequalities were given for n > 1, n ∈ N .

(
n + 1

2
)an <

n∏
i=1

ii < (
2n + 1

3
)an , an =

n(n + 1)
2

(21)

Taking the logarithm yields

anln(
n + 1

2
) < ln(

n∏
i=1

ii) < anln(
2n + 1

3
) (22)

By substituting the inequalities in (22) into the left term of inequality (20), we obtain

(2n + 1)
n(n + 1)

2
ln(

2n + 1
3

) > (2n + 1)ln(
n∏

i=1

ii)

>
n(n + 1)

2
ln[n(n+1)2/(n + 1)n2

] (23)

[n(n+1)2/(n + 1)n2
]1/(2n+1) < (

n∏
i=1

ii)2/n(n+1) <
2n + 1

3
(24)

The proof is complete.
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