Equations and Inequalities Involving $v_{p}(n!)$

Mehdi Hassani
Department of Mathematics
Institute for Advanced Studies in Basic Sciences
Zanjan, Iran
mhassani@iasbs.ac.ir

Abstract

In this paper we study $v_{p}(n!)$, the greatest power of prime p in factorization of $n!$. We find some lower and upper bounds for $v_{p}(n!)$, and we show that $v_{p}(n!)=\frac{n}{p-1}+O(\ln n)$. By using above mentioned bounds, we study the equation $v_{p}(n!)=v$ for a fixed positive integer v. Also, we study the triangle inequality about $v_{p}(n!)$, and show that the inequality $p^{v_{p}(n!)}>q^{v_{q}(n!)}$ holds for primes $p<q$ and sufficiently large values of n.

2000 Mathematics Subject Classification: 05A10, 11A41, 26D15, 26D20.
Keywords: factorial function, prime number, inequality.

1 Introduction

As we know, for every $n \in \mathbb{N}, n!=1 \times 2 \times 3 \times \cdots \times n$. Let $v_{p}(n!)$ be the highest power of prime p in factorization of n ! to prime numbers. It is well-known that (see [3] or [5])

$$
\begin{equation*}
v_{p}(n!)=\sum_{k=1}^{\infty}\left[\frac{n}{p^{k}}\right]=\sum_{k=1}^{\left[\frac{\ln n}{\ln p}\right]}\left[\frac{n}{p^{k}}\right] \tag{1}
\end{equation*}
$$

in which $[x]$ is the largest integer less than or equal to x. An elementary problem about n ! is finding the number of zeros at the end of it, in which clearly its answer is $v_{5}(n!)$. The inverse of this problem is very nice; for example finding values of n in which n ! terminates in 37 zeros [3], and generally finding values of n such that $v_{p}(n!)=v$. We show that if $v_{p}(n!)=v$ has a solution then it has exactly p solutions. For doing these, we need some properties of $[x]$, such as

$$
\begin{equation*}
[x]+[y] \leq[x+y] \quad(x, y \in \mathbb{R}) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{x}{n}\right]=\left[\frac{[x]}{n}\right] \quad(x \in \mathbb{R}, n \in \mathbb{N}) \tag{3}
\end{equation*}
$$

2 Estimating $v_{p}(n!)$

Theorem 1 For every $n \in \mathbb{N}$ and prime p, such that $p \leq n$, we have:

$$
\begin{equation*}
\frac{n-p}{p-1}-\frac{\ln n}{\ln p}<v_{p}(n!) \leq \frac{n-1}{p-1} \tag{4}
\end{equation*}
$$

Proof: According to the relation (1), we have $v_{p}(n!)=\sum_{k=1}^{m}\left[\frac{n}{p^{k}}\right]$ in which $m=\left[\frac{\ln n}{\ln p}\right]$, and since $x-1<[x] \leq x$, we obtain

$$
n \sum_{k=1}^{m} \frac{1}{p^{k}}-m<v_{p}(n!) \leq n \sum_{k=1}^{m} \frac{1}{p^{k}},
$$

considering $\sum_{k=1}^{m} \frac{1}{p^{k}}=\frac{1-\frac{1}{p^{m}}}{p-1}$, we yield that

$$
\frac{n}{p-1}\left(1-\frac{1}{p^{m}}\right)-m<v_{p}(n!) \leq \frac{n}{p-1}\left(1-\frac{1}{p^{m}}\right)
$$

and combining this inequality with $\frac{\ln n}{\ln p}-1<m \leq \frac{\ln n}{\ln p}$ completes the proof.
Corollary 1 For every $n \in \mathbb{N}$ and prime p, such that $p \leq n$, we have:

$$
v_{p}(n!)=\frac{n}{p-1}+O(\ln n)
$$

Proof: By using (4), we have

$$
0<\frac{\frac{n}{p-1}-v_{p}(n!)}{\ln n}<\frac{1}{\ln p}
$$

and this yields the result.

Note that the above corollary asserts that n ! ends approximately in $\frac{n}{4}$ zeros [1].
Corollary 2 For every $n \in \mathbb{N}$ and prime p, such that $p \leq n$, and for all $a \in(0,+\infty)$ we have:

$$
\begin{equation*}
\frac{n-p}{p-1}-\frac{1}{\ln p}\left(\frac{n}{a}+\ln a-1\right)<v_{p}(n!) . \tag{5}
\end{equation*}
$$

Proof: Consider the function $f(x)=\ln x$. Since, $f^{\prime \prime}(x)=-\frac{1}{x^{2}}, \ln x$ is a concave function and so, for every $a \in(0,+\infty)$ we have

$$
\ln x \leq \ln a+\frac{1}{a}(x-a),
$$

combining this with the left hand side of (4) completes the proof.

3 Study of the Equation $v_{p}(n!)=v$

Suppose $v \in \mathbb{N}$ is given. We are interested to find the values of n such that in factorization of n !, the highest power of p, is equal to v. First, we find some lower and upper bounds for these n 's.

Lemma 1 Suppose $v \in \mathbb{N}$ and p is a prime and $v_{p}(n!)=v$, then we have

$$
\begin{equation*}
1+(p-1) v \leq n<\frac{v+\frac{p}{p-1}+\frac{\ln (1+(p-1) v)}{\ln p}-\frac{1}{\ln p}}{\frac{1}{p-1}-\frac{1}{(1+(p-1) v) \ln p}} \tag{6}
\end{equation*}
$$

Proof: For Proving the left hand side of (6), use right hand side of (4) with assumption $v_{p}(n!)=v$, and for proving the right hand side of (6), use (5) with $a=1+(p-1) v$.

The lemma 1 suggest an interval for the solution of $v_{p}(n!)=v$. In the next lemma we show that it is sufficient one check only multiples of p in above interval.

Lemma 2 Suppose $m \in \mathbb{N}$ and p is a prime, then we have

$$
\begin{equation*}
v_{p}((p m+p)!)-v_{p}((p m)!) \geq 1 \tag{7}
\end{equation*}
$$

Proof: By using (1) and (2) we have

$$
v_{p}((p m+p)!)=\sum_{k=1}^{\infty}\left[\frac{p m+p}{p^{k}}\right] \geq \sum_{k=1}^{\infty}\left[\frac{p m}{p^{k}}\right]+\sum_{k=1}^{\infty}\left[\frac{p}{p^{k}}\right]=1+v_{p}((p m)!),
$$

and this completes the proof.

In the next lemma, we show that if $v_{p}(n!)=v$ has a solution, then it has exactly p solutions. In fact, the next lemma asserts that if $v_{p}((m p)!)=v$ holds, then for all $0 \leq r \leq p-1, v_{p}((m p+r)!)=v$ also holds.

Lemma 3 Suppose $m \in \mathbb{N}$ and p is a prime, then we have

$$
\begin{equation*}
v_{p}((m+1)!) \geq v_{p}(m!), \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{p}((p m+p-1)!)=v_{p}((p m)!) \tag{9}
\end{equation*}
$$

Proof: For proving (8), use (1) and (2) as follows

$$
v_{p}((m+1)!)=\sum_{k=1}^{\infty}\left[\frac{m+1}{p^{k}}\right] \geq \sum_{k=1}^{\infty}\left[\frac{m}{p^{k}}\right]+\sum_{k=1}^{\infty}\left[\frac{1}{p^{k}}\right]=\sum_{k=1}^{\infty}\left[\frac{m}{p^{k}}\right]=v_{p}(m!) .
$$

For proving (9), it is enough to show that for all $k \in \mathbb{N},\left[\frac{p m+p-1}{p^{k}}\right]=\left[\frac{p m}{p^{k}}\right]$ and we do this by induction on k; for $k=1$, clearly $\left[\frac{p m+p-1}{p}\right]=\left[\frac{p m}{p}\right]$. Now, by using (3) we have

$$
\left[\frac{p m+p-1}{p^{k+1}}\right]=\left[\frac{\frac{p m+p-1}{p^{k}}}{p}\right]=\left[\frac{\left[\frac{p m+p-1}{p^{k}}\right]}{p}\right]=\left[\frac{\left[\frac{p m}{p^{k}}\right]}{p}\right]=\left[\frac{\frac{p m}{p^{k}}}{p}\right]=\left[\frac{p m}{p^{k+1}}\right] .
$$

This completes the proof.
So, we have proved that
Theorem 2 Suppose $v \in \mathbb{N}$ and p is a prime. For solving the equation $v_{p}(n!)=v$, it is sufficient to check the values $n=m p$, in which $m \in \mathbb{N}$ and

$$
\begin{equation*}
\left[\frac{1+(p-1) v}{p}\right] \leq m \leq\left[\frac{v+\frac{p}{p-1}+\frac{\ln (1+(p-1) v)}{\ln p}-\frac{1}{\ln p}}{\frac{p}{p-1}-\frac{p}{(1+(p-1) v) \ln p}}\right] . \tag{10}
\end{equation*}
$$

Also, if $n=m p$ is a solution of $v_{p}(n!)=v$, then it has exactly p solutions $n=m p+r$, in which $0 \leq r \leq p-1$.

Note and Problem 1 As we see, there is no guarantee for existing a solution for $v_{p}(n!)=v$. In fact we need to show that $\left\{v_{p}(n!) \mid n \in \mathbb{N}\right\}=\mathbb{N}$; however, computational observations suggest that $n=p\left\|\frac{1+(p-1) v}{p}\right\|$ usually is a solution, such that $\|x\|$ is the nearest integer to x, but we can't prove it.

Note and Problem 2 Other problems can lead us to other equations involving $v_{p}(n!)$; for example, suppose $n, v \in \mathbb{N}$ given, find the value of prime p such that $v_{p}(n!)=v$. Or, suppose p and q are primes and $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is a prime value function, for which n 's we have $v_{p}(n!)+v_{q}(n!)=v_{f(p, q)}(n!)$? And many other problems!

4 Triangle Inequality Concerning $v_{p}(n!)$

In this section we are going to compare $v_{p}((m+n)!)$ and $v_{p}(m!)+v_{p}(n!)$.
Theorem 3 For every $m, n \in \mathbb{N}$ and prime p, such that $p \leq \min \{m, n\}$, we have

$$
\begin{equation*}
v_{p}((m+n)!) \geq v_{p}(m!)+v_{p}(n!) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{p}((m+n)!)-v_{p}(m!)-v_{p}(n!)=O(\ln (m n)) \tag{12}
\end{equation*}
$$

Proof: By using (1) and (2), we have

$$
v_{p}((m+n)!)=\sum_{k=1}^{\infty}\left[\frac{m+n}{p^{k}}\right] \geq \sum_{k=1}^{\infty}\left[\frac{m}{p^{k}}\right]+\sum_{k=1}^{\infty}\left[\frac{n}{p^{k}}\right]=v_{p}(m!)+v_{p}(n!) .
$$

Also, by using (4) and (11) we obtain

$$
0 \leq v_{p}((m+n)!)-v_{p}(m!)-v_{p}(n!)<\frac{2 p-1}{p-1}+\frac{\ln (m n)}{\ln p} \leq 3+\frac{\ln (m n)}{\ln 2}
$$

this completes the proof.
More generally, if $n_{1}, n_{2}, \cdots, n_{t} \in \mathbb{N}$ and p is a prime, in which $p \leq \min \left\{n_{1}, n_{2}, \cdots, n_{t}\right\}$, by using an extension of (2), we obtain

$$
v_{p}\left(\left(\sum_{k=1}^{t} n_{k}\right)!\right) \geq \sum_{k=1}^{t} v_{p}\left(n_{k}!\right),
$$

and by using this inequality and (4), we yield that
$0 \leq v_{p}\left(\left(\sum_{k=1}^{t} n_{k}\right)!\right)-\sum_{k=1}^{t} v_{p}\left(n_{k}!\right)<\frac{k p-1}{p-1}+\frac{\ln \left(n_{1} n_{2} \cdots n_{t}\right)}{\ln p} \leq 2 k-1+\frac{\ln \left(n_{1} n_{2} \cdots n_{t}\right)}{\ln p}$,
and consequently we have

$$
v_{p}\left(\left(\sum_{k=1}^{t} n_{k}\right)!\right)-\sum_{k=1}^{t} v_{p}\left(n_{k}!\right)=O\left(\ln \left(n_{1} n_{2} \cdots n_{t}\right)\right)
$$

Note and Problem 3 Suppose $f: \mathbb{N}^{t} \rightarrow \mathbb{N}$ is a function and p is a prime. For which $n_{1}, n_{2}, \cdots, n_{t} \in \mathbb{N}$, we have

$$
v_{p}\left(\left(f\left(n_{1}, n_{2}, \cdots, n_{t}\right)!\right) \geq f\left(v_{p}\left(n_{1}!\right), v_{p}\left(n_{2}!\right), \cdots, v_{p}\left(n_{t}!\right)\right) ?\right.
$$

Also, we can consider the above question in other view points.

5 The Inequality $p^{v_{p}(n!)}>q^{v_{q}(n!)}$

Suppose p and q are primes and $p<q$. Since $v_{p}(n!) \geq v_{q}(n!)$, comparing $p^{v_{p}(n!)}$ and $q^{v_{q}(n!)}$ become a nice problem. In [2], by using elementary properties about $[x]$, it is considered the inequality $p^{v_{p}(n!)}>q^{v_{q}(n!)}$ in some special cases, beside it is shown that $2^{v_{2}(n!)}>3^{v_{3}(n!)}$ holds for all $n \geq 4$. In this section we study $p^{v_{p}(n!)}>q^{v_{q}(n!)}$ in more general case and also reprove $2^{v_{2}(n!)}>3^{v_{3}(n!)}$.

Lemma 4 Suppose p and q are primes and $p<q$, then

$$
p^{q-1}>q^{p-1}
$$

Proof: Consider the function

$$
f(x)=x^{\frac{1}{x-1}} \quad(x \geq 2)
$$

A simple calculation yields that for $x \geq 2$ we have

$$
f^{\prime}(x)=-\frac{x^{\frac{x-2}{x-1}}(x \ln x-x+1)}{(x-1)^{2}}<0
$$

so, f is strictly decreasing and $f(p)>f(q)$. This completes the proof.
Theorem 4 Suppose p and q are primes and $p<q$, then for sufficiently large n 's we have

$$
\begin{equation*}
p^{v_{p}(n!)}>q^{v_{q}(n!)} . \tag{13}
\end{equation*}
$$

Proof: Since $p<q$, the lemma 4 yields that $\frac{p^{q-1}}{q^{p-1}}>1$ and so, there exits $N \in \mathbb{N}$ such that for $n>N$ we have

$$
\left(\frac{p^{q-1}}{q^{p-1}}\right)^{n} \geq \frac{p^{p(q-1)}}{q^{p-1}} n^{(p-1)(q-1)} .
$$

Thus,

$$
\frac{p^{n(q-1)}}{n^{(p-1)(q-1)} p^{p(q-1)}} \geq \frac{q^{n(p-1)}}{q^{p-1}}
$$

and therefor,

$$
\frac{p^{\frac{n}{p-1}}}{n p^{\frac{p}{p-1}}} \geq \frac{q^{\frac{n}{q-1}}}{q^{\frac{1}{q-1}}} .
$$

So, we obtain

$$
p^{\frac{n-p}{p-1}-\frac{\ln n}{\ln p}} \geq q^{\frac{n-1}{q-1}}
$$

and considering this inequality with (4), completes the proof.

Corollary 3 For $n=2$ and $n \geq 4$ we have

$$
\begin{equation*}
2^{v_{2}(n!)}>3^{v_{3}(n!)} \tag{14}
\end{equation*}
$$

Proof: It is easy to see that for $n \geq 30$ we have

$$
\left(\frac{4}{3}\right)^{n} \geq \frac{16}{3} n^{2}
$$

and by theorem 4, we yield (14) for $n \geq 30$. For $n=2$ and $4<n<30$ check it by a computer.

A Computational Note. In the theorem 4, the relation (13) holds for $n>N$ (see its proof). We can check (13) for $n \leq N$ at most by checking the following number of cases:

$$
R(N):=\#\{(p, q, n) \mid p, q \in \mathbb{P}, n=3,4, \cdots, N, \text { and } p<q \leq N\}
$$

in which \mathbb{P} is the set of all primes. If, $\pi(x)=$ The number of primes $\leq x$, then we have

$$
R(N)=\sum_{n=3}^{N} \#\{(p, q) \mid p, q \in \mathbb{P}, \text { and } p<q \leq n\}=\frac{1}{2} \sum_{n=3}^{N} \pi(n)(\pi(n)-1) .
$$

But, clearly $\pi(n)<n$ and this yields that

$$
R(N)<\frac{N^{3}}{6}
$$

Of course, we have other bounds for $\pi(n)$ sharper that n such as [4]

$$
\pi(n)<\frac{n}{\ln n}\left(1+\frac{1}{\ln n}+\frac{2.25}{\ln ^{2} n}\right) \quad(n \geq 355991)
$$

and by using this bound we can find sharper bounds for $R(N)$.
Acknowledgement. I deem my duty to thank A. Abedin-Zade and Y. RudgharAmoli for their comments on the Note and Problem 1.

References

[1] Andrew Adler and John E. Coury, The Theory of Numbers, Bartlett Publishers, 1995.
[2] Ion Bălăcenoiu, Remarkable inequalities, Proceedings of the First International Conference on Smarandache Type Notions in Number Theory (Craiova, 1997), 131135, Am. Res. Press, Lupton, AZ, 1997.
[3] David M. Burton, Elementary Number Theory (Second Edition), Universal Book Stall, 1990.
[4] P. Dusart, Inégalités explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59.
[5] Melvyn B. Nathanson, Elementary Methods in Number Theory, Springer, 2000.

