
Equations and Inequalities Involving vp(n!)

Mehdi Hassani

Department of Mathematics
Institute for Advanced Studies in Basic Sciences

Zanjan, Iran
mhassani@iasbs.ac.ir

Abstract

In this paper we study vp(n!), the greatest power of prime p in factorization
of n!. We find some lower and upper bounds for vp(n!), and we show that
vp(n!) = n

p−1 + O(lnn). By using above mentioned bounds, we study the
equation vp(n!) = v for a fixed positive integer v. Also, we study the triangle
inequality about vp(n!), and show that the inequality pvp(n!) > qvq(n!) holds for
primes p < q and sufficiently large values of n.
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1 Introduction

As we know, for every n ∈ N, n! = 1 × 2 × 3 × · · · × n. Let vp(n!) be the highest
power of prime p in factorization of n! to prime numbers. It is well-known that (see
[3] or [5])

vp(n!) =
∞∑

k=1

[
n

pk

]
=

[ ln n
ln p

]∑
k=1

[
n

pk

]
, (1)

mailto:mhassani@iasbs.ac.ir


in which [x] is the largest integer less than or equal to x. An elementary problem
about n! is finding the number of zeros at the end of it, in which clearly its answer
is v5(n!). The inverse of this problem is very nice; for example finding values of n
in which n! terminates in 37 zeros [3], and generally finding values of n such that
vp(n!) = v. We show that if vp(n!) = v has a solution then it has exactly p solutions.
For doing these, we need some properties of [x], such as

[x] + [y] ≤ [x+ y] (x, y ∈ R), (2)

and [x
n

]
=

[
[x]

n

]
(x ∈ R, n ∈ N). (3)

2 Estimating vp(n!)

Theorem 1 For every n ∈ N and prime p, such that p ≤ n, we have:

n− p

p− 1
− lnn

ln p
< vp(n!) ≤ n− 1

p− 1
. (4)

Proof: According to the relation (1), we have vp(n!) =
∑m

k=1[
n
pk ] in which m = [ ln n

ln p
],

and since x− 1 < [x] ≤ x, we obtain

n
m∑

k=1

1

pk
−m < vp(n!) ≤ n

m∑
k=1

1

pk
,

considering
∑m

k=1
1
pk =

1− 1
pm

p−1
, we yield that

n

p− 1
(1− 1

pm
)−m < vp(n!) ≤ n

p− 1
(1− 1

pm
),

and combining this inequality with ln n
ln p

− 1 < m ≤ ln n
ln p

completes the proof.

Corollary 1 For every n ∈ N and prime p, such that p ≤ n, we have:

vp(n!) =
n

p− 1
+O(lnn).

Proof: By using (4), we have

0 <

n
p−1

− vp(n!)

lnn
<

1

ln p
,

and this yields the result.
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Note that the above corollary asserts that n! ends approximately in n
4

zeros [1].

Corollary 2 For every n ∈ N and prime p, such that p ≤ n, and for all a ∈ (0,+∞)
we have:

n− p

p− 1
− 1

ln p

(n
a

+ ln a− 1
)
< vp(n!). (5)

Proof: Consider the function f(x) = ln x. Since, f ′′(x) = − 1
x2 , lnx is a concave

function and so, for every a ∈ (0,+∞) we have

lnx ≤ ln a+
1

a
(x− a),

combining this with the left hand side of (4) completes the proof.

3 Study of the Equation vp(n!) = v

Suppose v ∈ N is given. We are interested to find the values of n such that in
factorization of n!, the highest power of p, is equal to v. First, we find some lower
and upper bounds for these n’s.

Lemma 1 Suppose v ∈ N and p is a prime and vp(n!) = v, then we have

1 + (p− 1)v ≤ n <
v + p

p−1
+ ln(1+(p−1)v)

ln p
− 1

ln p

1
p−1

− 1
(1+(p−1)v) ln p

. (6)

Proof: For Proving the left hand side of (6), use right hand side of (4) with assump-
tion vp(n!) = v, and for proving the right hand side of (6), use (5) with a = 1+(p−1)v.

The lemma 1 suggest an interval for the solution of vp(n!) = v. In the next lemma
we show that it is sufficient one check only multiples of p in above interval.

Lemma 2 Suppose m ∈ N and p is a prime, then we have

vp((pm+ p)!)− vp((pm)!) ≥ 1. (7)

Proof: By using (1) and (2) we have

vp((pm+ p)!) =
∞∑

k=1

[
pm+ p

pk

]
≥

∞∑
k=1

[
pm

pk

]
+

∞∑
k=1

[
p

pk

]
= 1 + vp((pm)!),

and this completes the proof.
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In the next lemma, we show that if vp(n!) = v has a solution, then it has exactly p
solutions. In fact, the next lemma asserts that if vp((mp)!) = v holds, then for all
0 ≤ r ≤ p− 1, vp((mp+ r)!) = v also holds.

Lemma 3 Suppose m ∈ N and p is a prime, then we have

vp((m+ 1)!) ≥ vp(m!), (8)

and
vp((pm+ p− 1)!) = vp((pm)!). (9)

Proof: For proving (8), use (1) and (2) as follows

vp((m+ 1)!) =
∞∑

k=1

[
m+ 1

pk

]
≥

∞∑
k=1

[
m

pk

]
+

∞∑
k=1

[
1

pk

]
=

∞∑
k=1

[
m

pk

]
= vp(m!).

For proving (9), it is enough to show that for all k ∈ N, [pm+p−1
pk ] = [pm

pk ] and we do

this by induction on k; for k = 1, clearly [pm+p−1
p

] = [pm
p

]. Now, by using (3) we have

[
pm+ p− 1

pk+1

]
=

[
pm+p−1

pk

p

]
=


[

pm+p−1
pk

]
p

 =


[

pm
pk

]
p

 =

[
pm
pk

p

]
=

[
pm

pk+1

]
.

This completes the proof.

So, we have proved that

Theorem 2 Suppose v ∈ N and p is a prime. For solving the equation vp(n!) = v, it
is sufficient to check the values n = mp, in which m ∈ N and[

1 + (p− 1)v

p

]
≤ m ≤

[
v + p

p−1
+ ln(1+(p−1)v)

ln p
− 1

ln p
p

p−1
− p

(1+(p−1)v) ln p

]
. (10)

Also, if n = mp is a solution of vp(n!) = v, then it has exactly p solutions n = mp+r,
in which 0 ≤ r ≤ p− 1.

Note and Problem 1 As we see, there is no guarantee for existing a solution for
vp(n!) = v. In fact we need to show that {vp(n!)|n ∈ N} = N; however, computational

observations suggest that n = p||1+(p−1)v
p

|| usually is a solution, such that ||x|| is the
nearest integer to x, but we can’t prove it.

Note and Problem 2 Other problems can lead us to other equations involving vp(n!);
for example, suppose n, v ∈ N given, find the value of prime p such that vp(n!) = v.
Or, suppose p and q are primes and f : N2 → N is a prime value function, for which
n’s we have vp(n!) + vq(n!) = vf(p,q)(n!)? And many other problems!
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4 Triangle Inequality Concerning vp(n!)

In this section we are going to compare vp((m+ n)!) and vp(m!) + vp(n!).

Theorem 3 For every m,n ∈ N and prime p, such that p ≤ min{m,n}, we have

vp((m+ n)!) ≥ vp(m!) + vp(n!), (11)

and
vp((m+ n)!)− vp(m!)− vp(n!) = O(ln(mn)). (12)

Proof: By using (1) and (2), we have

vp((m+ n)!) =
∞∑

k=1

[
m+ n

pk

]
≥

∞∑
k=1

[
m

pk

]
+

∞∑
k=1

[
n

pk

]
= vp(m!) + vp(n!).

Also, by using (4) and (11) we obtain

0 ≤ vp((m+ n)!)− vp(m!)− vp(n!) <
2p− 1

p− 1
+

ln(mn)

ln p
≤ 3 +

ln(mn)

ln 2
,

this completes the proof.

More generally, if n1, n2, · · · , nt ∈ N and p is a prime, in which p ≤ min{n1, n2, · · · , nt},
by using an extension of (2), we obtain

vp((
t∑

k=1

nk)!) ≥
t∑

k=1

vp(nk!),

and by using this inequality and (4), we yield that

0 ≤ vp((
t∑

k=1

nk)!)−
t∑

k=1

vp(nk!) <
kp− 1

p− 1
+

ln(n1n2 · · ·nt)

ln p
≤ 2k − 1 +

ln(n1n2 · · ·nt)

ln p
,

and consequently we have

vp((
t∑

k=1

nk)!)−
t∑

k=1

vp(nk!) = O(ln(n1n2 · · ·nt)).

Note and Problem 3 Suppose f : Nt → N is a function and p is a prime. For
which n1, n2, · · · , nt ∈ N, we have

vp((f(n1, n2, · · · , nt)!) ≥ f(vp(n1!), vp(n2!), · · · , vp(nt!))?

Also, we can consider the above question in other view points.
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5 The Inequality pvp(n!) > qvq(n!)

Suppose p and q are primes and p < q. Since vp(n!) ≥ vq(n!), comparing pvp(n!) and
qvq(n!) become a nice problem. In [2], by using elementary properties about [x], it is
considered the inequality pvp(n!) > qvq(n!) in some special cases, beside it is shown that
2v2(n!) > 3v3(n!) holds for all n ≥ 4. In this section we study pvp(n!) > qvq(n!) in more
general case and also reprove 2v2(n!) > 3v3(n!).

Lemma 4 Suppose p and q are primes and p < q, then

pq−1 > qp−1.

Proof: Consider the function

f(x) = x
1

x−1 (x ≥ 2).

A simple calculation yields that for x ≥ 2 we have

f ′(x) = −x
x−2
x−1 (x lnx− x+ 1)

(x− 1)2
< 0,

so, f is strictly decreasing and f(p) > f(q). This completes the proof.

Theorem 4 Suppose p and q are primes and p < q, then for sufficiently large n’s we
have

pvp(n!) > qvq(n!). (13)

Proof: Since p < q, the lemma 4 yields that pq−1

qp−1 > 1 and so, there exits N ∈ N such
that for n > N we have (

pq−1

qp−1

)n

≥ pp(q−1)

qp−1
n(p−1)(q−1).

Thus,
pn(q−1)

n(p−1)(q−1)pp(q−1)
≥ qn(p−1)

qp−1
,

and therefor,
p

n
p−1

np
p

p−1

≥ q
n

q−1

q
1

q−1

.

So, we obtain

p
n−p
p−1

− ln n
ln p ≥ q

n−1
q−1 ,

and considering this inequality with (4), completes the proof.
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Corollary 3 For n = 2 and n ≥ 4 we have

2v2(n!) > 3v3(n!). (14)

Proof: It is easy to see that for n ≥ 30 we have

(
4

3
)n ≥ 16

3
n2,

and by theorem 4, we yield (14) for n ≥ 30. For n = 2 and 4 < n < 30 check it by a
computer.

A Computational Note. In the theorem 4, the relation (13) holds for n > N (see
its proof). We can check (13) for n ≤ N at most by checking the following number
of cases:

R(N) := # {(p, q, n)| p, q ∈ P, n = 3, 4, · · · , N, and p < q ≤ N} ,

in which P is the set of all primes. If, π(x) = The number of primes≤ x, then we
have

R(N) =
N∑

n=3

# {(p, q)| p, q ∈ P, and p < q ≤ n} =
1

2

N∑
n=3

π(n)(π(n)− 1).

But, clearly π(n) < n and this yields that

R(N) <
N3

6
.

Of course, we have other bounds for π(n) sharper that n such as [4]

π(n) <
n

lnn

(
1 +

1

lnn
+

2.25

ln2 n

)
(n ≥ 355991),

and by using this bound we can find sharper bounds for R(N).
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