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Abstract. In this short note, a conjecture ([4]: J. K. Merikoski, Extending means of two variables
to several variables, J. Ineq. Pure & Appl. Math., 5(2) (2004), Article 65) of an inequality involving
the generalized elementary symmetric mean to the power mean is proved, and its generalization is
given.

1. Introduction

Let a = (a1, a2, · · · , an) and r be a nonnegative integer, where ai for 1 ≤ i ≤ n are nonnegative
real numbers. Then

(1.1) E[r]
n = E[r]

n (a) =
∑

i1+i2+···+in=r,
i1,i2,··· ,in≥0 are integers

n∏
k=1

aik
k

with E
[0]
n = E

[0]
n (a) = 1 for n ≥ 1 and E

[r]
n = 0 for r < 0 or n ≤ 0 is called the rth generalized

elementary symmetric function of a.
The rth generalized elementary symmetric mean of a is defined by ([1, 2])

(1.2)
[r]∑
n

=
[r]∑
n

(a) =
E

[r]
n (a)(

n+r−1
r

) .
If r be a real number, then the r-order power mean as follows [3]

(1.3) Mr = Mr(a) =



(
1
n

n∑
i=1

ar
i

) 1
r

, r 6= 0;( n∏
i=1

ai

) 1
n

, r = 0.

In [5] and [4], S. Mustonen and J. K. Merikoski both posed the following Conjecture 1.1 that the
inequality relating the generalized elementary symmetric mean to the power mean is true:

Conjecture 1.1. If r be a nonnegative integer, and ai for 1 ≤ i ≤ n are nonnegative real numbers,
then

(1.4)
[ [r]∑

n

(a)
] 1

r

6 Mr(a).

In 1988, by using B-splines, E. Neuman obtained a solation of Conjecture 1.1 in [6].
In this paper, we shall prove inequality (1.4) again, and give its generalization.
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2. Proof of Conjecture 1.1

To prove Conjecture 1.1, the following lemma are necessary.

Lemma 2.1. (I. Schur [3, p. 182]) If r ∈ N, then

(2.1)
[r]∑
n

(a) = (n− 1)!
∫
· · ·
∫ ( n∑

i=1

aixi

)r

dx1 · · · dxn−1,

where xn = 1− (x1 + x2 + · · ·+ xn−1) and the integral is taken over xk ≥ 0 for k = 1, 2, · · ·n− 1.

Let r = 1, and alter ai → ar
i , i = 1.2. · · · , n, Lemma 2.1 leads to

Corollary 2.1. If r ∈ N, then

(2.2)
[
Mr(a)

]r

= (n− 1)!
∫
· · ·
∫ n∑

i=1

ar
i xidx1 · · · dxn−1,

where xn = 1− (x1 + x2 + · · ·+ xn−1) and the integral is taken over xk ≥ 0 for k = 1, 2, · · ·n− 1.

Proof of Conjecture 1.1. From the well-known weighted power mean inequality, xn = 1−(x1 +x2 +
· · ·+ xn−1), and r > 1, we have (

n∑
i=1

aixi

)r

6
n∑

i=1

ar
i xi.(2.3)

Combination of Lemma 2.1, Corollary 2.1 and (2.3) easily find Conjecture 1.1. The proof is com-
pleted.

3. Generalization of Conjecture 1.1

In this section, we assume

(3.1) V (a; r) =

∣∣∣∣∣∣∣∣
1 a1 a2

1 · · · an−2
1 an−1+r

1

1 a2 a2
2 · · · an−2

2 an−1+r
2

· · · · · · · · · · · · · · · · · ·
1 an a2

n · · · an−2
n an−1+r

n

∣∣∣∣∣∣∣∣ .
If r = 0, then V (a; r) = V (a) is the Vandermonde determinant. Let V i(a) denote V (a) subdeter-
minant obtained by omitting its last row and ith column, we have

(3.2) V (a) = V (a; 0) =
n∑

i=1

(−1)n+ian−1
i Vi(a) =

∏
1≤i<j≤n

(aj − ai).

Definition 3.1. Let r be a real number, and all the ai
′
s are unequal. Then

(3.3) Sr(a) =



[
(n− 1)!∏n
k=1(k + r)

· V (a; r)
V (a)

]1/r

, r 6= 0,−1,−2, · · · ,−(n− 1),

exp

[∑n
i=1(−1)n+ian−1

i Vi(a) ln ai

V (a)
−

n−1∑
k=1

1
k

]
, r = 0,[

(n− 1)!
∑n

i=1(−1)n+ian−1+r
i Vi(a) ln ai

(−1)r+1(−r − 1)!(n + r)! · V (a)

]1/r

, r = −1, · · · ,−(n− 1),

is called the rth generalized Stolaesky’s mean of a.

In 2000, we obtained a formulas relating Sr(a) in [7]
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Theorem 3.1. Let Sr(a) be the rth generalized Stolaesky’s mean of a, and all the ai
′
s are unequal,

then we have

(3.4) Sr(a) =


[
(n− 1)!

∫
···
∫ (∑n

i=1 aixi

)r

dx1 · · · dxn−1

]1/r

, r 6= 0,

exp
[
(n− 1)!

∫
···
∫

ln(
∑n

i=1 aixi)dx1 · · · dxn−1

]
, r = 0.

By using same method of Section 2, we can easily lead to the following generalization of Conjec-
ture 1.1.

Theorem 3.2. Let r be a real number. If r > 1, then we have

(3.5) Sr(a) 6 Mr(a),

and inverse inequality of (3.5) holds if r < 1, with equality in (3.5) holding if and only if a1 = a2 =
· · · = an.
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