A NEW PROOF OF AN INEQUALITY INVOLVING THE GENERALIZED ELEMENTARY SYMMETRIC MEAN TO THE POWER MEAN

ZHEN-GANG XIAO, RONG TANG, AND ZHI-HUA ZHANG

Abstract

In this short note, a conjecture ([4]: J. K. Merikoski, Extending means of two variables to several variables, J. Ineq. Pure \& Appl. Math., 5(2) (2004), Article 65) of an inequality involving the generalized elementary symmetric mean to the power mean is proved, and its generalization is given.

1. Introduction

Let $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and r be a nonnegative integer, where a_{i} for $1 \leq i \leq n$ are nonnegative real numbers. Then

$$
\begin{equation*}
E_{n}^{[r]}=E_{n}^{[r]}(a)=\sum_{\substack{i_{1}+i_{2}+\cdots+i_{n}=r, i_{1}, i_{2}, \cdots, i_{n} \geq 0 \text { are integers }}} \prod_{k=1}^{n} a_{k}^{i_{k}} \tag{1.1}
\end{equation*}
$$

with $E_{n}^{[0]}=E_{n}^{[0]}(a)=1$ for $n \geq 1$ and $E_{n}^{[r]}=0$ for $r<0$ or $n \leq 0$ is called the r th generalized elementary symmetric function of a.

The r th generalized elementary symmetric mean of a is defined by ([1, [2])

$$
\begin{equation*}
\sum_{n}^{[r]}=\sum_{n}^{[r]}(a)=\frac{E_{n}^{[r]}(a)}{\binom{n+r-1}{r}} . \tag{1.2}
\end{equation*}
$$

If r be a real number, then the r-order power mean as follows [3]

$$
M_{r}=M_{r}(a)= \begin{cases}\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{r}\right)^{\frac{1}{r}}, & r \neq 0 \tag{1.3}\\ \left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}}, & r=0\end{cases}
$$

In 55 and [4], S. Mustonen and J. K. Merikoski both posed the following Conjecture 1.1 that the inequality relating the generalized elementary symmetric mean to the power mean is true:

Conjecture 1.1. If r be a nonnegative integer, and a_{i} for $1 \leq i \leq n$ are nonnegative real numbers, then

$$
\begin{equation*}
\left[\sum_{n}^{[r]}(a)\right]^{\frac{1}{r}} \leqslant M_{r}(a) . \tag{1.4}
\end{equation*}
$$

In 1988, by using B-splines, E. Neuman obtained a solation of Conjecture 1.1 in 6].
In this paper, we shall prove inequality (1.4) again, and give its generalization.

[^0]
2. Proof of Conjecture 1.1

To prove Conjecture 1.1, the following lemma are necessary.
Lemma 2.1. (I. Schur [3, p. 182]) If $r \in \mathbb{N}$, then

$$
\begin{equation*}
\sum_{n}^{[r]}(a)=(n-1)!\int \cdots \int\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{r} d x_{1} \cdots d x_{n-1} \tag{2.1}
\end{equation*}
$$

where $x_{n}=1-\left(x_{1}+x_{2}+\cdots+x_{n-1}\right)$ and the integral is taken over $x_{k} \geq 0$ for $k=1,2, \cdots n-1$.
Let $r=1$, and alter $a_{i} \rightarrow a_{i}^{r}, i=1.2 . \cdots, n$, Lemma 2.1 leads to
Corollary 2.1. If $r \in \mathbb{N}$, then

$$
\begin{equation*}
\left[M_{r}(a)\right]^{r}=(n-1)!\int \cdots \int \sum_{i=1}^{n} a_{i}^{r} x_{i} d x_{1} \cdots d x_{n-1} \tag{2.2}
\end{equation*}
$$

where $x_{n}=1-\left(x_{1}+x_{2}+\cdots+x_{n-1}\right)$ and the integral is taken over $x_{k} \geq 0$ for $k=1,2, \cdots n-1$.
Proof of Conjecture 1.1. From the well-known weighted power mean inequality, $x_{n}=1-\left(x_{1}+x_{2}+\right.$ $\cdots+x_{n-1}$), and $r>1$, we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{r} \leqslant \sum_{i=1}^{n} a_{i}^{r} x_{i} \tag{2.3}
\end{equation*}
$$

Combination of Lemma 2.1, Corollary 2.1 and (2.3) easily find Conjecture 1.1. The proof is completed.

3. Generalization of Conjecture 1.1

In this section, we assume

$$
V(a ; r)=\left|\begin{array}{cccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-2} & a_{1}^{n-1+r} \tag{3.1}\\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-2} & a_{2}^{n-1+r} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-2} & a_{n}^{n-1+r}
\end{array}\right|
$$

If $r=0$, then $V(a ; r)=V(a)$ is the Vandermonde determinant. Let $V i(a)$ denote $V(a)$ subdeterminant obtained by omitting its last row and i th column, we have

$$
\begin{equation*}
V(a)=V(a ; 0)=\sum_{i=1}^{n}(-1)^{n+i} a_{i}^{n-1} V_{i}(a)=\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right) \tag{3.2}
\end{equation*}
$$

Definition 3.1. Let r be a real number, and all the $a_{i}^{\prime} s$ are unequal. Then

$$
S_{r}(a)= \begin{cases}{\left[\frac{(n-1)!}{\prod_{k=1}^{n}(k+r)} \cdot \frac{V(a ; r)}{V(a)}\right]^{1 / r},} & r \neq 0,-1,-2, \cdots,-(n-1), \tag{3.3}\\ \exp \left[\frac{\sum_{i=1}^{n}(-1)^{n+i} a_{i}^{n-1} V_{i}(a) \ln a_{i}}{V(a)}-\sum_{k=1}^{n-1} \frac{1}{k}\right], & r=0, \\ {\left[\frac{(n-1)!\sum_{i=1}^{n}(-1)^{n+i} a_{i}^{n-1+r} V_{i}(a) \ln a_{i}}{(-1)^{r+1}(-r-1)!(n+r)!\cdot V(a)}\right]^{1 / r},} & r=-1, \cdots,-(n-1),\end{cases}
$$

is called the rth generalized Stolaesky's mean of a.
In 2000, we obtained a formulas relating $S_{r}(a)$ in [7]

Theorem 3.1. Let $S_{r}(a)$ be the rth generalized Stolaesky's mean of a, and all the $a_{i}{ }^{\prime} s$ are unequal, then we have

$$
S_{r}(a)= \begin{cases}{\left[(n-1)!\int \cdots \int\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{r} d x_{1} \cdots d x_{n-1}\right]^{1 / r},} & r \neq 0, \tag{3.4}\\ \exp \left[(n-1)!\int \cdots \int \ln \left(\sum_{i=1}^{n} a_{i} x_{i}\right) d x_{1} \cdots d x_{n-1}\right], & r=0\end{cases}
$$

By using same method of Section 2, we can easily lead to the following generalization of Conjecture 1.1

Theorem 3.2. Let r be a real number. If $r>1$, then we have

$$
\begin{equation*}
S_{r}(a) \leqslant M_{r}(a), \tag{3.5}
\end{equation*}
$$

and inverse inequality of (3.5) holds if $r<1$, with equality in (3.5) holding if and only if $a_{1}=a_{2}=$ $\cdots=a_{n}$.

References

[1] D. W. Detemple and J. M. Robertson, On generalized symmetric means of two variables, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634-672 (1979), 236-238
[2] D. S. Mintrinović, Analytic Inequalities, Springer, 1970.
[3] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd ed. Cambridge Univ. Press, 1952.
[4] J. K. Merikoski, Extending means of two variables to several variables, J. Ineq. Pure \& Appl. Math., 5(2) (2004), Article 65. ONLINE [http://jipam.vu.edu.au/].
[5] S. Mustonen, Logarithmic mean for several arguments, (2002). ONLINE http://www. survo.fi/papers /logmean.pdf.
[6] E. Neuman, On complete symmetric functions. SIAM J. Math. Anal. 19 (1988), 736-750
[7] Zh.-G. Xiao, and Zh.-H. Zhang, A class of compulational formulas for multiple integral, J. Yueyang Normal Universty 13 (2000), no. 4, 1-5. (Chinese)
(Zh.-G. Xiao) Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
E-mail address: xiaozg@163.com
(R. Tang) Xiangnan University, Chenzhou, Hunan 423000, China
(Zh.-H. Zhang) Zixing Educational Research Section, Chenzhou, Hunan 423400, China
E-mail address: zxzh1234@163.com

[^0]: 2000 Mathematics Subject Classification. Primary 26D15.
 Key words and phrases. generalized elementary symmetric mean, power mean, inequality, proof.
 This paper was typeset using $\mathcal{A} \mathcal{M}^{\mathcal{S}}$-ETEX.

