The sum-of-divisors minimum and maximum functions

József Sándor
Babeș-Bolyai University of Cluj, Romania

1. Let \(f : \mathbb{N}^* \to \mathbb{N} \) be a given arithmetic function, and \(A \subset \mathbb{N}^* \) a given set. The arithmetic function

\[
F_f^A(n) = \min\{k \in A : n | f(k)\}
\]

has been introduced in [7] and [6]. For \(A = \mathbb{N}^* \), \(f(k) = k! \) one obtains the Smarandache function; for \(A = \mathbb{N}^* \), \(A = P = \{2, 3, 5, \ldots\} = \) set of all primes, one obtains a function

\[
P(n) = \min\{k \in P : n | k!\}
\]

For properties of this function, see [7], [6].

For \(A = \{k^2 : k \in \mathbb{N}^*\} = \) set of perfect squares, and \(f(k) = k! \) one obtains the function

\[
Q(n) = \min\{m^2 \geq 1 : n | (m^2)!\},
\]

while for \(A = \) set of squarefree numbers \(\geq 1 \), \(f(k) = k! \) we get

\[
Q_1(n) = \min\{m \geq 1 \text{ squarefree}: n | m!\}
\]

For properties of \(Q(n) \) and \(Q_1(n) \), see [11].
The "dual" function of (1) has been defined by

\[G_g^A(n) = \max \{ k \in A : g(k) | n \} \] \hspace{1cm} (5)

where \(g : \mathbb{N}^* \to \mathbb{N} \) is a given function. Particularly for \(A = \mathbb{N}^* \), \(g(k) = k! \) one obtains the dual of the Smarandache function

\[S_*(n) = \max \{ k \geq 1 : k! | n \} \] \hspace{1cm} (6)

For properties of this function, see [7], [6]. F. Luca [4], K. Atanassov [1] and M. Le [2] have proved in the affirmative a conjecture of the author stated in [7] and [6].

For \(A = \mathbb{N}^* \), \(f(k) = g(k) = \varphi(k) \) (where \(\varphi \) is Euler’s totient) in (1), resp. (5) one obtains the Euler minimum, resp. maximum-functions, defined by

\[E(n) = \min \{ k \geq 1 : n | \varphi(k) \} \] \hspace{1cm} (7)
\[E_*(n) = \max \{ k \geq 1 : \varphi(k) | n \} \] \hspace{1cm} (8)

For properties of these functions, see [5], [8].

When \(A = \mathbb{N}^* \), \(f(k) = d(k) = \) number of divisors of \(k \), one has the divisor minimum function (see [7], [6], [9]):

\[D(n) = \min \{ k \geq 1 : n | d(k) \} \] \hspace{1cm} (9)

It is interesting to note that the divisor maximum function (i.e. the "dual" of \(D(n) \)) given by

\[D_*(n) = \max \{ k \geq 1 : d(k) | n \} \] \hspace{1cm} (10)

is not well-defined! Indeed, for any prime \(p \) we have \(d(p^{n-1}) = n \), and \(p^{n-1} \) is unbounded as \(p \to \infty \). When \(A \) is a finite set, however,

\[D_*(n) = \max \{ k \in A : d(k) | n \} \] \hspace{1cm} (11)
does exist.

When \(A = \mathbb{N}^* \), \(f(k) = g(k) = S(k) = \min\{m \geq 1 : k | m!\} \) (Smarandache function) one obtains the Smarandache minimum and maximum functions, given by

\[
S_{\min}(n) = \min\{k \geq 1 : n | S(k)\}, \tag{12}
\]
\[
S_{\max}(n) = \max\{k \geq 1 : S(k) | n\}. \tag{13}
\]

These functions have been introduced and studied recently in [10].

2. Let \(\sigma(n) \) be the sum of divisors of \(n \). The function

\[
\Sigma(n) = \min\{k \geq 1 : n | \sigma(k)\} \tag{14}
\]

has been introduced in [7], [6] (denoted there by \(F_\sigma \)). Let \(k \) be a prime of the form \(k = an - 1 \), where \(n \geq 1 \) is given. By Dirichlet’s theorem on arithmetical progressions, such a prime does exist. Then clearly \(\sigma(k) = an \), so \(n | \sigma(k) \), and \(\Sigma(n) \) is well defined.

The dual of \(\Sigma(n) \) is

\[
\Sigma_*(n) = \max\{k \geq 1 : \sigma(k) | n\} \tag{15}
\]

Since \(\sigma(1) = 1 | n \) and \(\sigma(k) \geq k \), clearly \(\Sigma_*(n) \leq n \), so this function is correctly defined.

The aim of this note is the initial study of these functions \(\Sigma(n) \) and \(\Sigma_*(n) \).

Some values of \(\Sigma(n) \) are: \(\Sigma(1) = 1, \Sigma(2) = 3, \Sigma(3) = 2, \Sigma(4) = 3, \Sigma(5) = 8, \Sigma(6) = 5, \Sigma(7) = 4, \Sigma(8) = 7, \Sigma(9) = 10, \Sigma(11) = 43, \Sigma(12) = 6, \Sigma(13) = 9, \Sigma(14) = 12, \Sigma(15) = 8, \Sigma(16) = 21, \Sigma(17) = 67, \Sigma(18) = 10, \Sigma(19) = 37, \Sigma(20) = 19, \Sigma(21) = 20, \Sigma(22) = 43, \Sigma(23) = 137, \Sigma(24) = 14, \Sigma(25) = 149, \Sigma(26) = 45, \Sigma(27) = 34, \Sigma(28) = 12, \Sigma_*(1) = 1, \Sigma_*(2) = 1, \Sigma_*(3) = 2, \Sigma_*(4) = 3, \Sigma_*(5) = 1, \Sigma_*(6) = 5, \)

3
\(\Sigma_s(7) = 4, \Sigma_s(8) = 7, \Sigma_s(9) = 2, \Sigma_s(10) = 1, \Sigma_s(11) = 1, \Sigma_s(12) = 11,\)
\(\Sigma_s(13) = 9, \Sigma_s(14) = 13, \Sigma_s(15) = 8, \Sigma_s(16) = 7, \Sigma_s(17) = 1, \Sigma_s(18) = 17, \Sigma_s(19) = 1, \Sigma_s(20) = 19, \Sigma_s(21) = 4, \Sigma_s(22) = 1, \Sigma_s(23) = 1,\)
\(\Sigma_s(24) = 23, \Sigma_s(25) = 1, \Sigma_s(26) = 9, \Sigma_s(27) = 2, \Sigma_s(28) = 12.\)

3. The first theoretical result gives informations on values of these functions at \(n = p + 1\), where \(p\) is a prime:

Theorem 1. If \(p\) is a prime, then

\[
\Sigma(p + 1) \leq p \leq \Sigma_s(p + 1)
\]

(16)

Proof. Since \((p + 1)|\sigma(p) = p + 1\), by definition (14) one can write
\(\Sigma(p + 1) \leq p.\) Similarly, definition (15) gives (by \(\sigma(p) = (p + 1)|(p + 1)\))
\(\Sigma_s(p + 1) \geq p.\)

Remark. On the left side of (16) one can have equality, e.g. \(\Sigma(3) = 2,\)
\(\Sigma(6) = 5, \Sigma(8) = 7.\) But the inequality can be strict, as \(\Sigma(12) = 6 < 11,\)
\(\Sigma(18) = 10 < 17.\) For the right side of (16) however, one can prove the more precise result:

Theorem 2. For all primes \(p\), one has

\[
\Sigma_s(p + 1) = p
\]

(17)

Proof. First we prove that for all \(n \geq 2\) we have

\[
\Sigma_s(n) \leq n - 1
\]

(18)

Indeed, since \(\sigma(k)|n\), clearly we must have \(\sigma(k) \leq n.\) On the other hand, for all \(k \geq 2\) we have \(\sigma(k) \geq k + 1\) (with equality only for \(k =\) prime), so \(k \leq n - 1,\) and this is true for all \(k;\) so (18) follows.

Let now \(n = p + 1 \geq 3\) in (18). Then \(\Sigma_s(p + 1) \leq p,\) which combined
with (16) implies relation (17).
Theorem 3. Let p be a prime and suppose that

$$(p + 1)|n$$

Then

$$\Sigma_*(n) \geq p$$

Proof. Indeed, by $\sigma(p) = (p + 1)|n$, and definition (15), relation (20) follows. By letting $p = 2, 3, 5, 7, 11$ one gets:

- Corollary. If $3|n$, then $\Sigma_*(n) \geq 2$.
- If $4|n$, then $\Sigma_*(n) \geq 3$.
- If $6|n$, then $\Sigma_*(n) \geq 5$.
- If $8|n$, then $\Sigma_*(n) \geq 7$.
- If $12|n$, then $\Sigma_*(n) \geq 11$.

Remark. If $7|n$, then $\Sigma_*(n) \geq 4$.

Indeed, $\sigma(4) = 7|n$.

If $15|n$, then $\Sigma_*(n) \geq 8$.

Indeed, $\sigma(8) = 15|n$.

It is immediate that $\Sigma(n) = 1$ only for $n = 1$. On the other hand, there exist many integers m with $\Sigma_*(m) = 1$.

Theorem 4. Let p be a prime such that

$$p \notin \sigma(\mathbb{N}^*)$$

Then

$$\Sigma_*(p) = 1$$

Proof. Remark that $\sigma(k)|p \iff \sigma(k) = 1$ or $\sigma(k) = p$. Now, if (28) is true, then the equation $\sigma(k) = p$ is impossible for all $k \geq 1$, so $\sigma(k) = 1$, i.e. $k = 1$, giving relation (29).
For example, \(p = 17, 19, 23 \) satisfy relation (28).

Theorem 5. If for all \(d > 1 \), \(d \mid n \) one has

\[
d \not\in \sigma(\mathbb{N}^*),
\]

then

\[
\Sigma_n(n) = 1
\]

Proof. Let \(d > 1 \), \(d \mid n \). If \(d \not\in \sigma(\mathbb{N}^*) \), then the equation \(\sigma(k) = d \) is impossible. But then \(\sigma(k) \mid n \) is also impossible for \(\sigma(k) > 1 \), yielding (31).

For example, \(n = 10, 22, 25 \) satisfy relation (30).

Theorem 6. Let \(n \) be odd and suppose that \(\Sigma_n(n) \neq 1, 2 \). Then

\[
\Sigma_n(n) \leq \left(\frac{-1 + \sqrt{3 + 4n}}{2} \right)^2
\]

Proof. We use the following well-known results:

Lemma 1. \(\sigma(k) \) is odd iff \(k = m^2 \) or \(k = 2^\alpha m^2 \), where \(\alpha \geq 1 \) and \(m \) is an odd integer.

Proof. Let \(k = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \). Then

\[
\sigma(k) = (1 + p_1 + \cdots + p_1^{\alpha_1}) \cdots (1 + p_r + \cdots + p_r^{\alpha_r}).
\]

If \(k \) is odd, the \(\sigma(k) \) is odd if each term \(1+p_1+\cdots+p_1^{\alpha_1}, \ldots, 1+p_r+\cdots+p_r^{\alpha_r} \) is odd, and since \(p_i (1 = 1, r) \) are all odd numbers, we must have \(\alpha_1 = \text{even}, \ldots, \alpha_r = \text{even} \). This gives \(k = m^2 \), with \(m = \text{odd} \). When \(k \) is even, then \(k = 2^\alpha p_1^{\alpha_1} \cdots p_r^{\alpha_r} \), and since \(\sigma(2^\alpha) = 2^\alpha + 1 = \text{odd} \), by the same argument as above, \(k = 2^\alpha m^2 \), with \(m = \text{odd} \).

Lemma 2. If \(k \) is composite, then

\[
\sigma(k) \geq k + \sqrt{k} + 1
\]
Proof. Write $k = ab$, where $1 < a \leq b < k$. Then $k \leq b^2$, so $b \geq \sqrt{k}$, implying $\sigma(k) \geq 1 + b + k \geq 1 + \sqrt{k} + k$, i.e. relation (34). When $k = p^2$, with p an odd prime, one has equality since $\sigma(p^2) = p^2 + p + 1$.

Now, if $\sigma(k)|n$ and n is odd, then clearly $\sigma(k)$ must be odd, too. Now, by (33) this is possible only when $k = m^2$ or $k = 2^a m^2$, with $m \geq 1$ odd. If $m > 1$, then $k = m^2$ is composite, while if $m = 1$ in $k = 2^a m^2$, then $k = 2^a$ is prime only if $a = 1$, i.e. if $k = 2$. Supposing $k \neq 1, 2$ then k is always composite, so $\sigma(k) \geq k + \sqrt{k} + 1$. Since $\sigma(1) \leq n$, we get $k + \sqrt{k} + 1 - n \leq 0$ so $\sqrt{k} \leq \frac{-1 + \sqrt{-3 + 4n}}{2}$, and this gives (32).

Remark. For example, by (26), for $7|n$, n odd, (32) is true.

Theorem 7. If $n \geq 4$, then $\Sigma(n) \geq 3$. For all $n \geq 4$,
\[\Sigma(n) > n^{2/3} \] (35)

Proof. $\Sigma(n) = 1$ iff $n|1$, when $n = 1$. For $\Sigma(n) = 2$ we have $\sigma(2) = 3$ so $n|3 \iff n = 1, 3$. Thus for $n \geq 4$, we have $k = \Sigma(n) \geq 3$. Now, if $n|\sigma(k)$, then clearly $n \leq \sigma(k)$. Let $k \geq 3$. Then, it is known (see [3]) that
\[\sigma(k) < k\sqrt{k} \] (36)

By $n < k\sqrt{k} = k^{3/2}$, inequality (35) follows.

Corollary. For all $m \geq 2$ (left side), and $m \geq 1$ (right side):
\[(2^{m+1} - 1)^{2/3} < \Sigma(2^{m+1} - 1) \leq 2^m \] (37)

Proof. $2^{m+1} - 1 > 4$ for $m \geq 2$, and the left side is a consequence of (35). Now, the right side follows by $(2^{m+1} - 1)|\sigma(2^m)$, since $\sigma(2^m) = 2^{m+1} - 1$, and apply definition (14).
Theorem 8. Let \(f : [1, \infty) \to [1, \infty) \) be given by \(f(x) = x + x \log x \). Then for all \(n \geq 1 \),

\[
\Sigma(n) \geq f^{-1}(n),
\]

where \(f^{-1} \) is the inverse function of \(f \).

Proof. \(\sigma(n) = \sum_{d|n} d = \sum_{d|n} \frac{n}{d} = n \sum_{d|n} \frac{1}{d} \leq n \sum_{1 \leq d \leq n} \frac{1}{d} \leq n(1 + \log n) \)
as it is well known that \(1 + \frac{1}{2} + \cdots + \frac{1}{n} \leq 1 + \log n \) for all \(n \geq 1 \). Thus if \(n|\sigma(k) \), then \(n \leq \sigma(k) \leq f(k) \), so (38) follows. The function \(f \) is strictly increasing and continuous, so it is bijective, having an inverse function \(f^{-1} : [1, \infty) \to [1, \infty) \).

Remark. The inequality \(f(x) < x\sqrt{x} \), i.e. \(\log x < \sqrt{x} - 1 \) is true for \(x \) sufficiently large (e.g. \(x \geq e^3 \)). Indeed, let \(g(x) = \sqrt{x} - \log x - 1 \), when \(g(e^3) = e^{3/2} - 4 > 0 \) by \(e^3 \approx 19.6 > 4^2 = 16 \), and \(g'(x) = \frac{\sqrt{x} - 2}{2x} > 0 \) for \(x > 4 \). So \(g(x) \geq g(e^3) > 0 \) for \(x \geq e^3 \). Thus \(x + x \log x < x\sqrt{x} \). By putting \(x = n^{2/3} \) we get \(f(n^{2/3}) < n \), i.e. for \(n^{2/3} \geq e^3 \) (\(m \geq e^{9/2} \)) we get:

\[
f^{-1}(n) > n^{2/3} \text{ for } n \geq e^{9/2}
\]

which improves, by (38), inequality (35).

For values of \(\Sigma(n) \) and \(\Sigma_*(n) \) at primes \(n = p \) the following is true:

Theorem 9. For all primes \(p \geq 5 \),

\[
1 \leq \Sigma_*(p) \leq p - 2
\]

and

\[
\Sigma_*(p) \leq \left(\frac{-1 + \sqrt{-3 + 4p}}{2}\right)^2
\]

Proof. The inequality \(\Sigma_*(n) \geq 1 \) is true for all \(n \) (but remains an Open Problem the determination of all \(n \) with equality). Now, remark that \(\sigma(k)|p \iff \sigma(k) = 1 \) or \(\sigma(k) = p \). If \(\sigma(k) > 1 \), then by \(\sigma(k) \geq k + 1 \)
we get \(k \leq p - 1 \). But we cannot have equality, since then \(k = q = \text{prime} \), when \(\sigma(q) = q + 1 = p \geq 5 \) and this is impossible, since \(q + 1 \) is even for \(q \geq 3 \), while for \(q = 2 \), \(q + 1 = 3 < 5 \). Thus \(k \leq p - 2 \), so (40) follows. By applying the inequality \(\sigma(k) \geq k + \sqrt{k} + 1 \) (see (34)) then one arrives at (41), which is sharp, since e.g. \(\Sigma_s(7) = 4 \leq 4 \).

Theorem 10. For all Mersenne primes \(p \) one has

\[
\Sigma(p) \leq \frac{p + 1}{2}
\]

(42)

Proof. This follows from the right side of (37), by remarking that when \(p = 2^{m+1} - 1 \) is a prime, by \(\Sigma(2^{m+1} - 1) \leq 2^m = \frac{p + 1}{2} \) we get (42).

References

