PROBLEMS OF DIFFRACTION TYPE FOR ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS WITH VARIABLE SYMBOLS

IGOR FEDOTOV AND YING GAI

Abstract

In this paper we consider problems of diffraction type for elliptic pseudo-differential operators with variable symbols depending on parameters. We compare the regularizators of a diffraction and a Dirichlet problem, and we prove that the regularizator of a diffraction problem tends to the regularizator of a Dirichlet problem as the parameter of the external domain tends to zero.

1. Introduction

In this paper we consider problems of diffraction type for elliptic pseudo-differential operators. In more details, we consider simultaneously two pseudo-differential equations elliptic with parameters in different domains with a common boundary. A classical diffraction problem for differential operators was considered, for example, by A.N.Tichonov and A.A. Samarsky ([6]). In the statement of this problem, the homogeneity of a medium is broken by a bounded domain provided that the solution satisfies the conditions of a maximal smoothness on the boundary of this domain. In [3] the analogous problem for pseudo-differential equations was studied, but the main result was obtained only for the case of pseudo-differential operators with constant symbols. In this article we consider the same problem for pseudodifferential equations with variable symbols depending on two parameters, under the condition that one of the parameters tends to infinity.

For example, we consider a diffraction problem in $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}, x_{n} \geq 0\right\}$ and in $\mathbb{R}_{-}^{n}\left(\right.$ where $\left.\mathbb{R}_{-}^{n}=\mathbb{R}-\mathbb{R}_{+}^{n}\right)$ as follows:

$$
\begin{cases}P^{+} A(x, D, q) u_{+}=f_{+}, & x \in \mathbb{R}_{+}^{n} \tag{1.1}\\ P^{-} B(x, D, p) u_{-}=f_{-}, & x \in \mathbb{R}_{-}^{n}\end{cases}
$$

where A and B are pseudo-differential operators of order m_{1} and m_{2} elliptic with parameter q and p, respectively. If p is big, then the solution in the half space \mathbb{R}_{-}^{n} has the form of a boundary layer with respect to x_{n}. For instance, the function $e^{\frac{x_{n}}{\varepsilon}}\left(x_{n}<0\right)$ is boundary layer function. If $\varepsilon=1 / p$ tends to zero, this function approaches zero for $x_{n}<0$.

It is possible to prove that if the symbols of operators A and B don't depend on x, then we can find an exact solution of problem (1.1) (see [3]) which is defined by the inverse operator. That is, if we write the problem (1.1) in the form

$$
\mathfrak{A} u=\mathfrak{f}
$$

[^0]where
$$
\mathfrak{A}=\left\{P^{+} A, P^{-} B\right\},
$$
then
$$
u=\mathfrak{A}^{-1} \mathfrak{f}
$$

In the case when A and B depend on x, the inverse operator can not be defined explicitly but if we can find an operator \mathfrak{R} such that

$$
\mathfrak{R f}=\mathfrak{f}+\mathfrak{T f}
$$

where the operator \mathfrak{T} has the small norm, we say that the operator \mathfrak{R} is the regularizator ${ }^{1}$ of problem (1.1).

We are going to evaluate the difference between the regularizators for problem (1.1) and the Dirichlet problem (1.2) below:

$$
\begin{equation*}
P^{+} A(D, x, q) u_{+}^{(0)}=f_{+}(x) \tag{1.2}
\end{equation*}
$$

We prove that the regularizator of the Dirichlet problem (1.2) can be obtained as a limit case in the diffraction problem (1.1) as $p=(1 / \varepsilon)$ tends to infinity $(\varepsilon \rightarrow 0)$. We shall use the technique of the theory of pseudo-differential operators developed in [5], [7] and the notations of [2].

2. Notations and properties

Let $\mathcal{H}_{l_{1}, l_{2}}\left(\mathbb{R}^{n}\right)$ be a space of distributions $u(x)$,

$$
x=\left(x^{\prime}, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right) \in \mathbb{R}^{n}
$$

with the norm

$$
\begin{equation*}
\|u(x)\|_{l_{1}, l_{2}}=\left\|(q+|\xi|)^{l_{1}}(p+|\xi|)^{l_{2}} \tilde{u}(\xi)\right\|_{\mathcal{L}_{2}} \tag{2.1}
\end{equation*}
$$

where p, q are real non-negative parameters,

$$
\begin{gathered}
\xi=\left(\xi^{\prime}, \xi_{n}\right)=\left(\xi_{1}, \xi_{2}, \ldots \xi_{n}\right),\langle x, \xi\rangle=x_{1} \xi_{1}+x_{2} \xi_{2}+\cdots \cdots x_{n} \xi_{n} \\
|\xi|=\sqrt{\left|\xi^{\prime}\right|^{2}+\xi_{n}^{2}}=\sqrt{\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n-1}^{2}+\xi_{n}^{2}}
\end{gathered}
$$

and

$$
\begin{equation*}
\tilde{u}(\xi)=\mathcal{F}_{x \rightarrow \xi}[u(x)]=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{i\langle x, \xi\rangle} u(x) d x \tag{2.2}
\end{equation*}
$$

The norm on the right-hand side of (2.1) is the usual norm in $\mathcal{L}_{2}\left(\mathbb{R}_{\xi}^{n}\right)$.
If $p=q=1$, then the space $\mathcal{H}_{l_{1}, l_{2}}\left(\mathbb{R}^{n}\right)$ coincides with the ordinary Sobolev space $\mathcal{H}_{l_{1}+l_{2}}\left(\mathbb{R}^{n}\right)=\mathcal{W}_{l_{1}+l_{2}}^{(2)}\left(\mathbb{R}^{n}\right)$. Since \mathcal{L}_{2} and \mathcal{H}_{0} are the notations of the same space we shall write further $\|\cdot\|_{0}$ instead of $\|\cdot\|_{\mathcal{L}_{2}}$. We introduce also the spaces $\mathcal{H}_{s}\left(\mathbb{R}_{+}^{n}\right)$ and $\mathcal{H}_{s}\left(\mathbb{R}_{-}^{n}\right)$ of functions f_{+}and f_{-}defined in $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{n}>0\right\}, \mathbb{R}_{-}^{n}=$ $\left\{x \in \mathbb{R}^{n}: x_{n}<0\right\}, \mathbb{R}_{-}^{n}=\mathbb{R}^{n} \backslash \mathbb{R}_{+}^{n}$, respectively, with the norms

$$
\left\|f_{+}\right\|_{s}^{+}=\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{s} \widetilde{E f_{+}}\right\|_{0},\left\|f_{-}\right\|_{s}^{-}=\left\|\Pi^{-}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{s} \widetilde{E f_{-}}\right\|_{0}
$$

where

$$
\left|\xi_{q}^{\prime}\right|=\sqrt{\left|\xi^{\prime}\right|^{2}+q^{2}}, \quad\left|\xi_{p}^{\prime}\right|=\sqrt{\left|\xi^{\prime}\right|^{2}+p^{2}}
$$

[^1]\[

$$
\begin{align*}
\Pi^{ \pm} \tilde{u}(\xi) & =\mathcal{F}_{x \rightarrow \xi}\left[\theta^{ \pm} u(x)\right]= \pm \frac{i}{2 \pi} \int_{-\infty}^{\infty} \frac{\tilde{u}\left(\xi^{\prime}, \eta_{n}\right)}{\xi_{n}+i 0-\eta_{n}} d \eta_{n} \\
& = \pm \frac{i}{2 \pi} V . P . \int_{-\infty}^{\infty} \frac{\tilde{u}\left(\xi^{\prime}, \eta_{n}\right)}{\xi_{n}+i 0-\eta_{n}} d \eta_{n}+\frac{1}{2} \tilde{u}(0) \tag{2.3}
\end{align*}
$$
\]

and

$$
\theta^{+}(x)=\left\{\begin{array}{cc}
1, & \text { if } x_{n} \geq 0 \\
0, & \text { if } x_{n}<0
\end{array}, \theta^{-}(x)=\left\{\begin{array}{cc}
0, & \text { if } x_{n}>0 \\
1, & \text { if } x_{n}<0
\end{array}\right.\right.
$$

and $\widetilde{E f_{ \pm}}$is the extension of the function $f_{ \pm}$on the whole Euclidean space \mathbb{R}^{n} such that the extension belongs to $\mathcal{H}_{l_{1}, l_{2}}\left(\mathbb{R}^{n}\right)$.

We state some properties of the operator $\Pi^{ \pm}$:

- (1) The operator $\Pi^{ \pm}$is defined on smooth decreasing functions by the formula (2.3). Since the operator of multiplication of the Heaviside function $\theta^{ \pm}(x)$ is bounded in $\mathcal{H}_{0}\left(\mathbb{R}_{x}^{n}\right)$, the operator $\Pi^{ \pm}$is bounded in the space $\mathcal{H}_{0}\left(\mathbb{R}_{\xi}^{n}\right)$ being the dual of $\mathcal{H}_{0}\left(\mathbb{R}_{x}^{n}\right)$ with respect to the Fourier transform. For arbitrary function $\tilde{u}(\xi) \in \mathcal{H}_{0}\left(\mathbb{R}_{\xi}^{n}\right)$ the formula (2.3) is understood as the closure of the opeator $\Pi^{ \pm}$.
(2) If $\tilde{u}(\xi) \in \mathcal{H}_{0}\left(\mathbb{R}_{\xi}^{n}\right)$, then this function can be represented as the sum $\tilde{u}(\xi)=\tilde{u}_{+}(\xi)+\tilde{u}_{-}(\xi)$, where $\tilde{u}_{ \pm}(\xi)=\Pi^{ \pm} \tilde{u}(\xi)$.
(3) Since $\theta^{+}(x)=0$ for $x_{n}<0\left(\theta^{-}(x)=0\right.$ for $\left.x_{n}>0\right)$, the function $\Pi^{+} \tilde{u}(\xi)\left(\Pi^{-} \tilde{u}(\xi)\right)$ admits an analytic continuation in the half-plane $\operatorname{Im} \xi_{n}>0\left(\operatorname{Im} \xi_{n}<0\right)$.
(4) If a function $\tilde{v}_{+}(\xi)\left(\tilde{v}_{-}(\xi)\right) \in \mathcal{H}_{0}\left(\mathbb{R}_{\xi}^{n}\right)$ and may be extended in the half-plane $\operatorname{Im} \xi_{n}>0\left(\operatorname{Im} \xi_{n}<0\right)$, then $\Pi^{ \pm} \tilde{v}_{\mp}=0$
(5) If the functions $\Pi^{ \pm} \tilde{u}(\xi)$ and $\Pi^{ \pm}\left[\tilde{v}_{ \pm}(\xi) \tilde{u}(\xi)\right]$ make sense, where $\tilde{v}_{+}(\xi)$ $\left(\tilde{v}_{-}(\xi)\right)$ admit an analytic continuation in the half-plane $\operatorname{Im} \xi_{n}>0$ $\left.\left(\operatorname{Im} \xi_{n}<0\right)\right)$, then

$$
\Pi^{ \pm}\left[\tilde{v}_{ \pm}(\xi) \tilde{u}(\xi)\right]=\Pi^{ \pm}\left[\tilde{v}_{ \pm}(\xi) \Pi^{ \pm} \tilde{u}(\xi)\right]
$$

Let $\mathfrak{f}=\left\{f_{+}, f_{-}\right\} \in \mathcal{H}_{l_{1}}\left(\mathbb{R}_{+}^{n}\right) \times \mathcal{H}_{l_{2}}\left(\mathbb{R}_{-}^{n}\right)$. On this product space we can introduce a natural operation of addition and multiplication by a function $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ by the following rule: If $\mathfrak{f}=\left\{f_{+}, f_{-}\right\}$and $\mathfrak{g}=\left\{g_{+}, g_{-}\right\}$, then $\mathfrak{f}+\mathfrak{g}=\left\{f_{+}+g_{+}, f_{-}+g_{-}\right\}$ and $\varphi \mathfrak{f}=\left\{\varphi f_{+}, \varphi f_{-}\right\}$. We can also introduce a natural norm on this set.

Let A and B be two pseudo-differential operators whose symbols are $\sigma(A)=$ $a(x, \xi, q)$ and $\sigma(B)=b(x, \xi, p)$, respectively. Recall that a pseudo-differential operator corresponding to the symbol $a(x, \xi)$ is defined by

$$
\begin{equation*}
A(x, D) u \equiv(A u)(x)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{-i\langle x, \xi\rangle} a(x, \xi) \tilde{u}(\xi) d \xi \tag{2.4}
\end{equation*}
$$

We suppose that the symbols a and b depend on parameters q and p (where $q \leq p$), respectively, and satisfy the following conditions:

- (1) $a(x, \xi, q) \in \mathcal{C}^{\infty}\left[\mathbb{R}_{x}^{n} \times\left(\mathbb{R}_{\xi, q}^{n+1} \backslash 0\right)\right], b(x, \xi, p) \in \mathcal{C}^{\infty}\left[\mathbb{R}_{x}^{n} \times\left(\mathbb{R}_{\xi, p}^{n+1} \backslash 0\right)\right]$.
(2) The functions $a(x, \xi, q)$ and $b(x, \xi, p)$ are homogeneous of order m_{1} and $m_{2},\left(m_{1}\right.$ and m_{2} are positive) with respect to ξ, q and ξ, p, respectively.
(3) The operators A and B are elliptic with parameter, i.e. $a(x, \xi, q) \neq 0$ for real ξ and for $q+|\xi| \neq 0$, and $b(x, \xi, p) \neq 0$ for real ξ and for $p+|\xi| \neq 0$.
(4) For every value of multi-indexes $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$, the following estimations hold:

$$
\begin{align*}
\left|\partial^{\alpha} D^{\beta} a(x, \xi, q)\right| & <C_{\alpha, \beta}^{1}(q+|\xi|)^{m_{1}-|\alpha|} \tag{2.5}\\
\left|\partial^{\alpha} D^{\beta} b(x, \xi, p)\right| & <C_{\alpha, \beta}^{2}(p+|\xi|)^{m_{2}-|\alpha|}
\end{align*}
$$

where

$$
\begin{aligned}
\partial^{\alpha} & =\left[\frac{\partial}{\partial \xi_{1}}\right]^{\alpha_{1}}\left[\frac{\partial}{\partial \xi_{2}}\right]^{\alpha_{2}} \cdots\left[\frac{\partial}{\partial \xi_{n}}\right]^{\alpha_{n}} \\
D^{\beta} & =\left[-i \frac{\partial}{\partial x_{1}}\right]^{\beta_{1}}\left[-i \frac{\partial}{\partial x_{2}}\right]^{\beta_{2}} \cdots\left[-i \frac{\partial}{\partial x_{n}}\right]^{\beta_{n}}
\end{aligned}
$$

and

$$
|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}, \quad|\beta|=\beta_{1}+\beta_{2}+\cdots+\beta_{n} .
$$

(5) The symbols a and b can be represented in the form

$$
\begin{aligned}
a(x, \xi, q) & =a(\infty, \xi, q)+a^{\prime}(x, \xi, q) \\
b(x, \xi, p) & =b(\infty, \xi, p)+b^{\prime}(x, \xi, p)
\end{aligned}
$$

where $a^{\prime}(x, \xi, q)$ and $b^{\prime}(x, \xi, p)$ are infinitely differentiable functions with respect to x, with compact support, i.e. they belong to $\mathcal{C}_{0}^{\infty}\left(\mathbb{R}_{x}^{n}\right)$.
We remark that a pseudo-differential operator with a symbol satisfying the condition (5) can be defined by the following formula, which is equivalent to the formula (2.4):

$$
\begin{equation*}
(\tilde{A} u)(\xi)=a(\infty, \xi, q) \tilde{u}(\xi)+\int_{\mathbb{R}^{n}} \tilde{a^{\prime}}(\xi-\eta, \eta, q) \tilde{u}(\eta) d \eta \tag{2.5}
\end{equation*}
$$

where the tilde " \sim " dentoes the Fourier transform with respect to the first argument. In [7] M.Vishik and G. Eskin have proved that symbols satisfying the conditions (1) - (5) admit the following factorization:

$$
\begin{equation*}
a(x, \xi, q)=a_{+}\left(x, \xi^{\prime}, \xi_{n}, q\right) a_{-}\left(x, \xi^{\prime}, \xi_{n}, q\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
b(x, \xi, p)=b_{+}\left(x, \xi^{\prime}, \xi_{n}, p\right) b_{-}\left(x, \xi^{\prime}, \xi_{n}, p\right) \tag{2.7}
\end{equation*}
$$

where $a_{+}\left(x, \xi^{\prime}, \xi_{n}, q\right), b_{+}\left(x, \xi^{\prime}, \xi_{n}, p\right)\left(a_{-}\left(x, \xi^{\prime}, \xi_{n}, q\right), b_{-}\left(x, \xi^{\prime}, \xi_{n}, p\right)\right)$ are functions admitting an analytic continuation in the half-plane $\operatorname{Im} \xi_{n}>0\left(\operatorname{Im} \xi_{n}<0\right)$ and they remain homogeneous with respect to $\xi, q(\xi, p)$. Suppose that

$$
\operatorname{ord} a_{+}\left(x, \xi^{\prime}, \xi_{n}, q\right)=\kappa_{1}, \text { ord } b_{-}\left(x, \xi^{\prime}, \xi_{n}, p\right)=\kappa_{2} \geq 0, \quad\left(\kappa=\kappa_{1}+\kappa_{2}>0\right)
$$

and the orders do not depend on x.

3. Evaluation of the difference between the regularizators of

 diffraction and of Dirichlet ProblemsConsider a function

$$
\mathfrak{f} \in \mathfrak{H}_{\kappa-m}=\mathcal{H}_{\kappa-m_{1}}\left(\mathbb{R}_{+}^{n}\right) \times \mathcal{H}_{\kappa-m_{2}}\left(\mathbb{R}_{-}^{n}\right)
$$

with the norm

$$
|\mathfrak{f}|_{\kappa-m}=\left\|\Pi^{+} \mu_{-}\left(\xi^{\prime}, \xi_{n}, q, p\right) \widetilde{E f_{+}}\right\|_{0}+\left\|\Pi^{-} \mu_{+}\left(\xi^{\prime}, \xi_{n}, q, p\right) \widetilde{E f_{-}}\right\|_{0}
$$

where

$$
\begin{aligned}
& \mu_{-}\left(\xi^{\prime}, \xi_{n}, q, p\right)=\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}-m_{1}}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}} \\
& \mu_{+}\left(\xi^{\prime}, \xi_{n}, q, p\right)=\left(\xi_{n}+i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}}\left(\xi_{n}+i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}-m_{2}}
\end{aligned}
$$

We also introduce the couple operator ([3])

$$
\mathfrak{A} u=\left\{P^{+} A u, P^{-} B u\right\}
$$

where $P^{+}\left(P^{-}\right)$is the restriction operator of distributions on $\mathbb{R}_{+}\left(\mathbb{R}_{-}\right)$(it is clear that for ordinary functions it coincides with Heaviside function $\theta^{+}\left(\theta^{-}\right)$) and the operator $A(B)$ has the symbol $a(x, \xi, q)(b(x, \xi, p))$.

We consider the following diffraction problem

$$
\begin{equation*}
\mathfrak{A} u=\mathfrak{f} \in \mathfrak{H}_{\kappa-m}, u \in \mathcal{H}_{\kappa}\left(\mathbb{R}^{n}\right) \tag{3.1}
\end{equation*}
$$

It follows from [3] that problem (3.1) has a unique solution for sufficiently large values of parameters p and q. The proof is based on construction of the regularizator of this problem which has the following form:

$$
\Re \mathfrak{f}=\mathcal{R}_{1}\left[\theta^{+} \mathcal{R}_{-} E f_{+}+\theta^{-} \mathcal{R}_{+} E f_{-}\right]
$$

Or equivalently,

$$
\begin{equation*}
\Re \mathfrak{f}=\frac{1}{A_{+}(x, D, q) B_{-}(x, D, p)}\left[\theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x)+\theta^{-} \frac{A_{+}(x, D, q)}{B_{+}(x, D, p)} E f_{-}(x)\right] \tag{3.2}
\end{equation*}
$$

where $\mathcal{R}_{1}, \mathcal{R}_{-}$and \mathcal{R}_{+}are pseudo-differential operators with symbols

$$
\left[a_{+}\left(x, \xi^{\prime}, \xi_{n}, q\right) b_{-}\left(x, \xi^{\prime}, \xi_{n}, p\right)\right]^{-1}, b_{-}\left(x, \xi^{\prime}, \xi_{n}, p\right)\left[a_{-}\left(x, \xi^{\prime}, \xi_{n}, q\right)\right]^{-1}
$$

and

$$
a_{+}\left(x, \xi^{\prime}, \xi_{n}, q\right)\left[b_{+}\left(x, \xi^{\prime}, \xi_{n}, p\right)\right]^{-1}
$$

respectively.
Consider at the same time with problem (3.1) the following Dirichlet problem

$$
\begin{equation*}
P^{+} A(D, x, q) u_{+}^{(0)}=f_{+}(x), \quad u_{+}^{(0)} \in \mathcal{H}_{\kappa_{1}}\left(\mathbb{R}_{+}^{n}\right) \tag{3.3}
\end{equation*}
$$

here $\mathcal{H}_{\kappa_{1}}\left(\mathbb{R}_{+}^{n}\right)$ is the subspace of the space $\mathcal{H}_{\kappa_{1}}\left(\mathbb{R}^{n}\right)\left(\kappa_{1} \geq 0\right)$ of functions, which vanish on \mathbb{R}_{-}^{n}. The regularizator of this equation was constructed by M.Vishik and G. Eskin in [7] and it has the form:

$$
\begin{equation*}
R_{+} f_{+}=\frac{1}{A_{+}(x, D, q)} \theta^{+} \frac{1}{A_{-}(x, D, q)} E f_{+}(x) \tag{3.4}
\end{equation*}
$$

We shall prove that if $p \rightarrow \infty$, then $\Re \mathfrak{f} \rightarrow R_{+} f_{+}$. It means that the regularizator of Dirichlet problem (3.3) may be obtained as a limit case of the problem (3.1) when
p approaches infinity. We represent the difference of these two operators (3.2) and (3.4) as follows:

$$
\begin{aligned}
\mathcal{I} f \equiv & \Re \mathfrak{f}-R_{+} f_{+} \\
= & \frac{1}{A_{+}(x, D, q)}\left[\frac{1}{B_{-}(x, D, p)} \theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x)-\theta^{+} \frac{1}{A_{-}(x, D, q)} E f_{+}(x)\right] \\
& +\frac{1}{A_{+}(x, D, q) B_{-}(x, D, p)} \theta^{-} \frac{A_{+}(x, D, q)}{B_{+}(x, D, p)} E f_{-}(x)
\end{aligned}
$$

Since the smoothness of this difference is κ_{1}, we estimate the norm of $\mathcal{I} f$ in the space $\mathcal{H}_{\kappa_{1}}\left(\mathbb{R}^{n}\right)$. We have

$$
\begin{align*}
& \left\|\Re \mathfrak{f}-R_{+} f_{+}\right\|_{\kappa_{1}} \\
= & \left\|\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}}\left(\Re \mathfrak{f}-\Re_{+} \mathfrak{f}_{+}\right)\right\|_{0} \\
\leq & C\left\|\frac{1}{B_{-}(x, D, p)} \theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x)-\theta^{+} \frac{1}{A_{-}(x, D, q)} E f_{+}(x)\right\|_{0} \tag{3.6}\\
& +C\left\|\frac{1}{B_{-}(x, D, p)} \theta^{-} \frac{A_{+}(x, D, q)}{B_{+}(x, D, p)} E f_{-}(x)\right\|_{0}
\end{align*}
$$

Using $1=\theta^{+}+\theta^{-}$, we transform the term $\frac{1}{B_{-}(x, D, p)} \theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x)$ as follows

$$
\begin{align*}
& \frac{1}{B_{-}(x, D, p)} \theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x) \\
= & \theta^{+} \frac{1}{A_{-}(x, D, q)} E f_{+}(x)+\theta^{-} \frac{1}{B_{-}(x, D, p)} \theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x) \tag{3.7}
\end{align*}
$$

Substituting (3.7) into (3.6) we obtain

$$
\begin{equation*}
\left\|\Re \mathfrak{f}-R_{+} f_{+}\right\|_{\kappa_{1}} \leq C N_{1}+C N_{2} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{align*}
& N_{1}=\left\|\theta^{-} \frac{1}{B_{-}(x, D, p)} \theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x)\right\|_{0} \\
& N_{2}=\left\|\frac{1}{B_{-}(x, D, p)} \theta^{-} \frac{A_{+}(x, D, q)}{B_{+}(x, D, p)} E f_{-}(x)\right\|_{0} \tag{3.9}
\end{align*}
$$

We consider separately the operator $\frac{1}{B_{-}(x, D, p)}$. Let us set $p=1 / \varepsilon$ and transform this operator as follows:

$$
\begin{equation*}
\frac{1}{B_{-}(x, D, p)}=\frac{\varepsilon^{\kappa_{2}}}{B_{-}(x, \varepsilon D, 1)}=\varepsilon^{\kappa_{2}} \frac{1}{B_{-}(x, 0,1)}\left[1-\frac{B_{-}(x, \varepsilon D, 1)-B_{-}(x, 0,1)}{B_{-}(x, \varepsilon D, 1)}\right] \tag{3.10}
\end{equation*}
$$

Moreover we have

$$
\left\|\frac{1}{B_{-}(x, D, p)}\right\| \leq C \frac{1}{\left(p+\left|\xi^{\prime}\right|\right)^{\kappa_{2}}}=C \varepsilon^{\kappa_{2}} \frac{1}{\left(1+\varepsilon\left|\xi^{\prime}\right|\right)^{\kappa_{2}}} \leq C \varepsilon^{\kappa_{2}}
$$

Consequently, for N_{2} we have

$$
\begin{equation*}
N_{2} \leq C \varepsilon^{\kappa_{2}}\left\|\Pi^{-}\left(\xi_{n}+i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}}\left(\xi_{n}+i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}-m_{2}} \widetilde{E f}-\right\|_{0} \tag{3.11}
\end{equation*}
$$

PROBLEMS OF DIFFRACTION TYPE FOR ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS

Substituting (3.10) into (3.9), for N_{1} we obtain

$$
\begin{align*}
N_{1} & =\varepsilon^{\kappa_{2}}\left\|\theta^{-} \frac{1}{B_{-}(x, 0,1)} \theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x)-\theta^{-} T_{-} \theta^{+} \frac{B_{-}(x, D, p)}{A_{-}(x, D, q)} E f_{+}(x)\right\|_{0} \\
& =\left\|\theta^{-} T_{-} \theta^{+} \frac{B_{-}(x, \varepsilon D, 1)}{A_{-}(x, D, q)} E f_{+}(x)\right\|_{0} \tag{3.12}
\end{align*}
$$

where we denote

$$
\begin{equation*}
T_{-}=\frac{B_{-}(x, \varepsilon D, 1)-B_{-}(x, 0,1)}{B_{-}(x, 0,1) B_{-}(x, \varepsilon D, 1)} \tag{3.13}
\end{equation*}
$$

with the symbol

$$
\begin{equation*}
\sigma\left(T_{-}\right)=\frac{b_{-}(x, \varepsilon \xi, 1)-b_{-}(x, 0,1)}{b_{-}(x, 0,1) b_{-}(x, \varepsilon \xi, 1)} \tag{3.14}
\end{equation*}
$$

We expand this symbol $\sigma\left(T_{-}\right)$as follows

$$
\begin{equation*}
\sigma\left(T_{-}\right)=\frac{\varepsilon \sum_{k=1}^{n} \partial_{k} b_{-}(x, \varepsilon \theta \xi, 1) \xi_{k}}{b_{-}(x, 0,1) b_{-}(x, \varepsilon \xi, 1)} \tag{3.15}
\end{equation*}
$$

By virtue of assumption (4) for homogeneous symbols given in section 2, we have the following inequality

$$
\begin{align*}
\left|\sigma\left(T_{-}\right)\right| & \leq C \varepsilon \frac{(1+\varepsilon|\xi|)^{\kappa_{2}-1}|\xi|}{(1+\varepsilon|\xi|)^{\kappa_{2}}}=C \varepsilon \frac{|\xi|}{1+\varepsilon|\xi|} \\
& \leq C \varepsilon \frac{\left|\xi_{n}\right|}{1+\varepsilon\left|\xi_{n}\right|}+C \varepsilon\left|\xi^{\prime}\right| \tag{3.16}\\
& \leq C\left|\frac{-i \varepsilon}{\left(\varepsilon \xi_{n}-i\right)}\left(-i \xi_{n}\right)\right|+C \varepsilon\left|\xi^{\prime}\right|
\end{align*}
$$

Denoting

$$
\begin{equation*}
\tilde{h}(\xi, \varepsilon)=\mathcal{F}\left[\frac{B_{-}(x, \varepsilon D, 1)}{A_{-}(x, D, q)} E f_{+}(x)\right]=\mathcal{F}[h(x, \varepsilon)] \tag{3.17}
\end{equation*}
$$

and applying the estimation (3.16) to (3.12), by the extension theory we can obtain

$$
\begin{equation*}
N_{1} \leq C\left\|\Pi^{-} \sigma\left(T_{-}\right) \Pi^{+} \tilde{h}(\xi, \varepsilon)\right\|_{0} \leq C\left\|\sigma\left(T_{-}\right) \Pi^{+} \tilde{h}(\xi, \varepsilon)\right\|_{0} \leq C N_{3}+C \varepsilon N_{4} \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{3}=\left\|\frac{-i \varepsilon}{\left(\varepsilon \xi_{n}-i\right)}\left(-i \xi_{n}\right) \Pi^{+} \tilde{h}(\xi, \varepsilon)\right\|_{0}, \quad N_{4}=\left\|\Pi^{+}\left|\xi^{\prime}\right| \tilde{h}(\xi, \varepsilon)\right\|_{0} \tag{3.19}
\end{equation*}
$$

Considering (3.10) and (3.17) it is easy to verify that the norm N_{4} admits the estimation

$$
\begin{equation*}
N_{4} \leq C \varepsilon^{\kappa_{2}}\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}-m_{1}+1} \widetilde{E f}+\right\|_{0} \tag{3.20}
\end{equation*}
$$

So it remains to evaluate N_{3}. We remark that

$$
\mathcal{F}^{-1}\left[\frac{-i \varepsilon}{\left(\varepsilon \xi_{n}-i\right)}\right]=\theta^{-} e^{\frac{x_{n}}{\varepsilon}}
$$

is the so called function in the type of boundary layer. It follows (3.19) that

$$
\begin{align*}
N_{3} & \leq C\left\|\theta^{-} e^{\frac{x_{n}}{\varepsilon}} * \frac{\partial}{\partial x_{n}} \theta^{+} h(x, \varepsilon)\right\|_{0} \\
& =C\left\|\theta^{-} e^{\frac{x_{n}}{\varepsilon}} *\left[\left.\delta\left(x_{n}\right) h(x, \varepsilon)\right|_{x_{n}=0+0}+\theta^{+} \frac{\partial}{\partial x_{n}} h(x, \varepsilon)\right]\right\|_{0} \tag{3.21}
\end{align*}
$$

It follows that

$$
\begin{equation*}
N_{3} \leq C\left\|\theta^{-} e^{\frac{x_{n}}{\varepsilon}}\right\|_{0}\left\|h\left(x^{\prime}, 0, \varepsilon\right)\right\|_{0}^{\prime}+C\left\|\frac{-i \varepsilon}{\left(\varepsilon \xi_{n}-i\right)} \Pi^{+} \xi_{n} \tilde{h}(\xi, \varepsilon)\right\|_{0} \tag{3.22}
\end{equation*}
$$

Here "prime" denotes the norm over the boundary. Using the formula

$$
\left\|h\left(x^{\prime}, 0, \varepsilon\right)\right\|_{0}^{\prime} \leq c\|h(x, \varepsilon)\|_{\delta+\frac{1}{2}}^{+}
$$

where $0<\delta<\frac{1}{2}$, " + " denotes the norm over the upper half-space. Taking into account the norm of boundary layer function

$$
\left\|\theta^{-} e^{\frac{x_{n}}{\varepsilon}}\right\|_{0}=\sqrt{\frac{\varepsilon}{2}}
$$

it follows (3.16) that

$$
\begin{equation*}
N_{3} \leq C \sqrt{\varepsilon}\|h(x, \varepsilon)\|_{\delta+\frac{1}{2}}^{+}+C \varepsilon\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right) \tilde{h}(\xi, \varepsilon)\right\|_{0} \tag{3.23}
\end{equation*}
$$

Substituting (3.17) into (3.23) we can obtain

$$
\begin{aligned}
N_{3} \leq & c \varepsilon^{\kappa_{2}+\frac{1}{2}}\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\delta+\frac{1}{2}}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}}\left[\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right]^{\kappa_{1}-m_{1}} \widetilde{E f_{+}}\right\|_{0} \\
& +c \varepsilon^{\kappa_{2}+1}\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}}\left[\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right]^{\kappa_{1}-m_{1}+1} \widetilde{E f_{+}}\right\|_{0}
\end{aligned}
$$

it follows that

$$
\begin{equation*}
N_{3} \leq C \varepsilon^{\kappa_{2}+\frac{1}{2}}\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}-m_{1}+1} \widetilde{E f_{+}}\right\|_{0} \tag{3.24}
\end{equation*}
$$

Using the evaluation (3.18), (3.20) and (3.24) we obtain

$$
\begin{aligned}
N_{1} \leq & C \varepsilon^{\kappa_{2}+\frac{1}{2}}\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}-m_{1}+1} \widetilde{E f}+\right\|_{0} \\
& +C \varepsilon^{\kappa_{2}+1}\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}-m_{1}+1} \widetilde{E f_{+}}\right\|_{0}
\end{aligned}
$$

or more roughly

$$
\begin{equation*}
N_{1} \leq C \varepsilon^{\kappa_{2}+\frac{1}{2}}\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}-m_{1}+1} \widetilde{E f}+\right\|_{0} \tag{3.25}
\end{equation*}
$$

Considering the inequality (3.11) for N_{2} and the inequality (3.25) for N_{1}, it follows (3.8) that

$$
\begin{aligned}
& \left\|\Re \mathfrak{f}-R_{+} f_{+}\right\|_{\kappa_{1}} \leq C N_{1}+C N_{2} \\
\leq & C \varepsilon^{\kappa_{2}+\frac{1}{2}}\left\|\Pi^{+}\left(\xi_{n}-i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}-m_{1}+1}\left(\xi_{n}-i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}} \widetilde{E f}+\right\|_{0} \\
& +C \varepsilon^{\kappa_{2}}\left\|\Pi^{-}\left(\xi_{n}+i\left|\xi_{q}^{\prime}\right|\right)^{\kappa_{1}}\left(\xi_{n}+i\left|\xi_{p}^{\prime}\right|\right)^{\kappa_{2}-m_{2}} \widetilde{E f}\right\|_{0}
\end{aligned}
$$

That is to say

$$
\begin{equation*}
\|\mathcal{I f}\|=\left\|\Re \mathfrak{f}-R_{+} f_{+}\right\|_{\kappa_{1}} \leq C\left[\varepsilon^{\kappa_{2}+\frac{1}{2}}\left\|f_{+}\right\|_{\kappa_{1}-m_{1}+1, \kappa_{2}}^{+}+\varepsilon^{\kappa_{2}}\left\|f_{-}\right\|_{\kappa_{1}, \kappa_{2}-m_{2}}^{-}\right] \tag{3.26}
\end{equation*}
$$

Thus the following theorem is true, which is the generalization of the result in [3]:
Theorem 1. Let

$$
\begin{equation*}
\mathfrak{f} \in\left\{f_{+}, f_{-}\right\} \in \mathcal{H}_{\kappa_{1}-m_{1}+1, \kappa_{2}}\left(\mathbb{R}_{+}^{n}\right) \times \mathcal{H}_{\kappa_{1}, \kappa_{2}-m_{2}}\left(\mathbb{R}_{-}^{n}\right) \equiv \mathcal{H} \tag{3.27}
\end{equation*}
$$

and \Re be the regularizator of problem (3.1) provided the condition $f \in \mathfrak{H}_{\kappa-m}$ is replaced by (3.27). Further, let R_{+}be the regularizator of problem (3.3) with $f_{+} \in$ $\mathcal{H}_{\kappa_{1}-m_{1}+1, \kappa_{2}}\left(\mathbb{R}_{+}^{n}\right)$, then for the operator \mathcal{I}

$$
\mathcal{I f}=\Re \mathfrak{f}-R_{+} f_{+}
$$

defined by (3.5), the estimation (3.26) is true.

References

[1] ADAMS, R.A. 1975. Sobolev space. New York: Academic Press.
[2] FEDOTOV, I.A. 2002. Diffraction problems and the extension of \mathcal{H}_{s}-functions. Math. Nachr. 241: 56-64.
[3] FEDOTOV, I.A. 1970. Discontinuous pseudo-differential operators. Uspekhi Mat. Nauk 24, 6: 193-194. (Math Review, Vol. 50, (6017)).
[4] GEL'FAND, I.M. \& ŠILOV, G.E. 1968. Generalized funcitons. New York: Academic Press.
[5] KOHN, J.J. \& NIRENBERG, L. 1965. An algebra of pseudo-differential operators. Comm.Pure and Applied Math. 18: 269-305.
[6] TICHONOV, A.N. \& SAMARSKI, A.A. 1990. Equations of mathematical physics. Dover, New York.
[7] VISHIK, M.I. \& ESKIN, G.I. 1965. Convolution Equations in a Bounded Domain (Russian). Uspekhi Mat. Nauk 20, 3: 89-152. English transl. in: Russian Math. Surv. 20 (1964), 85-151.
[8] VLADIMIROV, V.S. 2002. Methods of the theory of generalized functions. London: Taylor \& Francis Inc: 6-109.

Department of Mathematical Technology, Tshwane University of Technology, South Africa, Private Bag X680, Pretoria, 0001, Republic of South Africa

E-mail address, Igor Fedotov: fedotovi@tut.ac.za
E-mail address, Ying Gai: yingandy@yahoo.com.cn

[^0]: Date: March 1, 2005.
 Key words and phrases. Pseudo-differential, Diffraction, Elliptic, Regularizator.

[^1]: ${ }^{1}$ More general definition of regularizator is given, for example, in [3] or [7].

