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Abstract. In this paper we consider problems of diffraction type for elliptic

pseudo-differential operators with variable symbols depending on parameters.
We compare the regularizators of a diffraction and a Dirichlet problem, and we

prove that the regularizator of a diffraction problem tends to the regularizator
of a Dirichlet problem as the parameter of the external domain tends to zero.

1. Introduction

In this paper we consider problems of diffraction type for elliptic pseudo-differential
operators. In more details, we consider simultaneously two pseudo-differential equa-
tions elliptic with parameters in different domains with a common boundary. A
classical diffraction problem for differential operators was considered, for exam-
ple, by A.N.Tichonov and A.A. Samarsky ([6]). In the statement of this problem,
the homogeneity of a medium is broken by a bounded domain provided that the
solution satisfies the conditions of a maximal smoothness on the boundary of this
domain. In [3] the analogous problem for pseudo-differential equations was studied,
but the main result was obtained only for the case of pseudo-differential operators
with constant symbols. In this article we consider the same problem for pseudo-
differential equations with variable symbols depending on two parameters, under
the condition that one of the parameters tends to infinity.

For example, we consider a diffraction problem in Rn
+ = {x ∈ Rn, xn ≥ 0} and

in Rn
− (where Rn

− = R− Rn
+) as follows:

(1.1)
{

P+A(x,D, q)u+ = f+, x ∈ Rn
+

P−B(x,D, p)u− = f−, x ∈ Rn
−

where A and B are pseudo-differential operators of order m1 and m2 elliptic with
parameter q and p, respectively. If p is big, then the solution in the half space Rn

−
has the form of a boundary layer with respect to xn. For instance, the function
e

xn
ε (xn < 0) is boundary layer function. If ε = 1/p tends to zero, this function

approaches zero for xn < 0.
It is possible to prove that if the symbols of operators A and B don’t depend on

x, then we can find an exact solution of problem (1.1) (see [3])which is defined by
the inverse operator. That is, if we write the problem (1.1) in the form

Au = f
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where
A =

{
P+A,P−B

}
,

then
u = A−1f

In the case when A and B depend on x, the inverse operator can not be defined
explicitly but if we can find an operator R such that

Rf = f + Tf

where the operator T has the small norm, we say that the operator R is the regu-
larizator 1 of problem (1.1).

We are going to evaluate the difference between the regularizators for problem
(1.1) and the Dirichlet problem (1.2) below:

(1.2) P+A(D,x, q)u(0)
+ = f+(x)

We prove that the regularizator of the Dirichlet problem (1.2) can be obtained as
a limit case in the diffraction problem (1.1) as p = (1/ε) tends to infinity (ε → 0).
We shall use the technique of the theory of pseudo-differential operators developed
in [5], [7] and the notations of [2].

2. Notations and properties

Let Hl1,l2 (Rn) be a space of distributions u(x),

x = (x′, xn) = (x1, x2, ..., xn−1, xn) ∈ Rn

with the norm

(2.1) ‖u(x)‖l1,l2
=

∥∥∥(q + |ξ|)l1 (p + |ξ|)l2 ũ (ξ)
∥∥∥
L2

where p, q are real non-negative parameters,

ξ =
(
ξ′, ξn

)
= (ξ1, ξ2, ...ξn) , 〈x, ξ〉 = x1ξ1 + x2ξ2 + · · · · · ·xnξn;

|ξ| =
√∣∣ξ′∣∣2 + ξ2

n =
√

ξ2
1 + ξ2

2 + · · ·+ ξ2
n−1 + ξ2

n

and

(2.2) ũ (ξ) = Fx→ξ [u(x)] = (2π)−
n
2

∫
Rn

ei〈x,ξ〉u(x)dx

The norm on the right-hand side of (2.1) is the usual norm in L2

(
Rn

ξ

)
.

If p = q = 1, then the space Hl1,l2 (Rn) coincides with the ordinary Sobolev space
Hl1+l2 (Rn) = W(2)

l1+l2
(Rn) . Since L2 and H0 are the notations of the same space

we shall write further ‖·‖0 instead of ‖·‖L2
. We introduce also the spaces Hs

(
Rn

+

)
and Hs

(
Rn
−

)
of functions f+ and f− defined in Rn

+ = {x ∈ Rn : xn > 0} , Rn
− =

{x ∈ Rn : xn < 0} , Rn
− = Rn\Rn

+, respectively, with the norms

‖f+‖+s =
∥∥∥Π+

(
ξn − i

∣∣ξ′q∣∣)s
Ẽf+

∥∥∥
0
, ‖f−‖−s =

∥∥∥Π− (
ξn − i

∣∣ξ′p∣∣)s
Ẽf−

∥∥∥
0

where ∣∣ξ′q∣∣ =
√∣∣ξ′∣∣2 + q2,

∣∣ξ′p∣∣ =
√∣∣ξ′∣∣2 + p2,

1More general definition of regularizator is given, for example, in [3] or [7].
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Π±ũ (ξ) = Fx→ξ

[
θ±u(x)

]
= ± i

2π

∫ ∞

−∞

ũ(ξ′, ηn)
ξn + i0− ηn

dηn

= ± i

2π
V.P.

∫ ∞

−∞

ũ(ξ′, ηn)
ξn + i0− ηn

dηn +
1
2
ũ (0) (2.3)

and

θ+(x) =
{

1, if xn ≥ 0
0, if xn < 0 , θ−(x) =

{
0, if xn > 0
1, if xn < 0

and Ẽf± is the extension of the function f± on the whole Euclidean space Rn such
that the extension belongs to Hl1,l2 (Rn) .

We state some properties of the operator Π± :

• (1) The operator Π± is defined on smooth decreasing functions by the
formula (2.3) . Since the operator of multiplication of the Heaviside
function θ±(x) is bounded in H0 (Rn

x), the operator Π± is bounded
in the space H0

(
Rn

ξ

)
being the dual of H0 (Rn

x) with respect to the

Fourier transform. For arbitrary function ũ (ξ) ∈ H0

(
Rn

ξ

)
the formula

(2.3) is understood as the closure of the opeator Π±.

(2) If ũ (ξ) ∈ H0

(
Rn

ξ

)
, then this function can be represented as the sum

ũ (ξ) = ũ+ (ξ) + ũ− (ξ) , where ũ± (ξ) = Π±ũ (ξ) .
(3) Since θ+(x) = 0 for xn < 0

(
θ−(x) = 0 for xn > 0

)
, the function

Π+ũ (ξ) (Π−ũ (ξ)) admits an analytic continuation in the half-plane
Imξn > 0 (Imξn < 0) .

(4) If a function ṽ+ (ξ) (ṽ− (ξ)) ∈ H0

(
Rn

ξ

)
and may be extended in the

half-plane Imξn > 0 (Imξn < 0) , then Π±ṽ∓ = 0
(5) If the functions Π±ũ (ξ) and Π± [ṽ± (ξ) ũ (ξ)] make sense, where ṽ+ (ξ)

(ṽ− (ξ)) admit an analytic continuation in the half-plane Imξn > 0
(Imξn < 0)), then

Π± [ṽ± (ξ) ũ (ξ)] = Π± [
ṽ± (ξ) Π±ũ (ξ)

]
Let f ={f+, f−} ∈ Hl1

(
Rn

+

)
×Hl2

(
Rn
−

)
. On this product space we can introduce

a natural operation of addition and multiplication by a function ϕ ∈ C∞ (Rn) by
the following rule: If f ={f+, f−} and g ={g+, g−}, then f + g ={f+ + g+, f−+ g−}
and ϕf ={ϕf+, ϕf−}. We can also introduce a natural norm on this set.

Let A and B be two pseudo-differential operators whose symbols are σ (A) =
a(x, ξ, q) and σ (B) = b(x, ξ, p), respectively. Recall that a pseudo-differential op-
erator corresponding to the symbol a(x, ξ) is defined by

(2.4) A(x,D)u ≡ (Au)(x) = (2π)−
n
2

∫
Rn

e−i〈x,ξ〉a(x, ξ)ũ (ξ) dξ

We suppose that the symbols a and b depend on parameters q and p (where q ≤ p),
respectively, and satisfy the following conditions:

• (1) a(x, ξ, q) ∈ C∞
[
Rn

x ×
(
Rn+1

ξ,q \0
)]

, b(x, ξ, p) ∈ C∞
[
Rn

x ×
(
Rn+1

ξ,p \0
)]

.

(2) The functions a(x, ξ, q) and b(x, ξ, p) are homogeneous of order m1 and
m2, (m1 and m2 are positive) with respect to ξ, q and ξ, p, respectively.
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(3) The operators A and B are elliptic with parameter, i.e. a(x, ξ, q) 6= 0
for real ξ and for q + |ξ| 6= 0, and b(x, ξ, p) 6= 0 for real ξ and for
p + |ξ| 6= 0.

(4) For every value of multi-indexes α = (α1, α2, ..., αn) , β = (β1, β2, ..., βn) ,
the following estimations hold:∣∣∂αDβa(x, ξ, q)

∣∣ < C1
α,β (q + |ξ|)m1−|α| , (2.5)∣∣∂αDβb(x, ξ, p)

∣∣ < C2
α,β (p + |ξ|)m2−|α|

where

∂α =
[

∂

∂ξ1

]α1
[

∂

∂ξ2

]α2

· · ·
[

∂

∂ξn

]αn

,

Dβ =
[
−i

∂

∂x1

]β1
[
−i

∂

∂x2

]β2

· · ·
[
−i

∂

∂xn

]βn

and

|α| = α1 + α2 + · · ·+ αn, |β| = β1 + β2 + · · ·+ βn.

(5) The symbols a and b can be represented in the form

a(x, ξ, q) = a(∞, ξ, q) + a′(x, ξ, q),
b(x, ξ, p) = b(∞, ξ, p) + b′(x, ξ, p)

where a′(x, ξ, q) and b′(x, ξ, p) are infinitely differentiable functions
with respect to x, with compact support, i.e. they belong to C∞0 (Rn

x) .

We remark that a pseudo-differential operator with a symbol satisfying the con-
dition (5) can be defined by the following formula, which is equivalent to the formula
(2.4):

(2.5)
(
Ãu

)
(ξ) = a(∞, ξ, q)ũ (ξ) +

∫
Rn

ã′(ξ − η, η, q)ũ (η) dη

where the tilde “˜”dentoes the Fourier transform with respect to the first argument.
In [7] M.Vishik and G. Eskin have proved that symbols satisfying the conditions
(1)− (5) admit the following factorization:

(2.6) a(x, ξ, q) = a+(x, ξ′, ξn, q)a−(x, ξ′, ξn, q),

and

(2.7) b(x, ξ, p) = b+(x, ξ′, ξn, p)b−(x, ξ′, ξn, p)

where a+(x, ξ′, ξn, q), b+(x, ξ′, ξn, p)
(
a−(x, ξ′, ξn, q), b−(x, ξ′, ξn, p)

)
are functions

admitting an analytic continuation in the half-plane Imξn > 0 (Imξn < 0) and they
remain homogeneous with respect to ξ, q (ξ, p) . Suppose that

ord a+(x, ξ′, ξn, q) = κ1, ord b−(x, ξ′, ξn, p) = κ2 ≥ 0, (κ = κ1 + κ2 > 0)

and the orders do not depend on x.
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3. Evaluation of the difference between the regularizators of
diffraction and of Dirichlet Problems

Consider a function

f ∈ Hκ−m = Hκ−m1

(
Rn

+

)
×Hκ−m2

(
Rn
−

)
with the norm

|f|κ−m =
∥∥∥Π+µ−

(
ξ′, ξn, q, p

)
Ẽf+

∥∥∥
0

+
∥∥∥Π−µ+

(
ξ′, ξn, q, p

)
Ẽf−

∥∥∥
0

where

µ−
(
ξ′, ξn, q, p

)
=

(
ξn − i

∣∣ξ′q∣∣)κ1−m1
(
ξn − i

∣∣ξ′p∣∣)κ2
,

µ+

(
ξ′, ξn, q, p

)
=

(
ξn + i

∣∣ξ′q∣∣)κ1
(
ξn + i

∣∣ξ′p∣∣)κ2−m2
.

We also introduce the couple operator ([3])

Au = {P+Au, P−Bu}

where P+ (P−) is the restriction operator of distributions on R+ (R−) (it is clear
that for ordinary functions it coincides with Heaviside function θ+

(
θ−

)
) and the

operator A (B) has the symbol a(x, ξ, q) (b(x, ξ, p)).
We consider the following diffraction problem

(3.1) Au = f ∈ Hκ−m, u ∈ Hκ (Rn)

It follows from [3] that problem (3.1) has a unique solution for sufficiently large
values of parameters p and q. The proof is based on construction of the regularizator
of this problem which has the following form:

<f =R1

[
θ+R−Ef+ + θ−R+Ef−

]
Or equivalently,
(3.2)

<f =
1

A+(x, D, q)B−(x,D, p)

[
θ+ B−(x, D, p)

A−(x,D, q)
Ef+(x) + θ−

A+(x, D, q)
B+(x,D, p)

Ef−(x)
]

where R1, R− and R+ are pseudo-differential operators with symbols[
a+(x, ξ′, ξn, q)b−(x, ξ′, ξn, p)

]−1
, b−(x, ξ′, ξn, p)

[
a−(x, ξ′, ξn, q)

]−1

and
a+(x, ξ′, ξn, q)

[
b+(x, ξ′, ξn, p)

]−1

respectively.
Consider at the same time with problem (3.1) the following Dirichlet problem

(3.3) P+A(D,x, q)u(0)
+ = f+(x), u

(0)
+ ∈ Hκ1

(
Rn

+

)
here Hκ1

(
Rn

+

)
is the subspace of the space Hκ1 (Rn) (κ1 ≥ 0) of functions, which

vanish on Rn
−. The regularizator of this equation was constructed by M.Vishik and

G. Eskin in [7] and it has the form:

(3.4) R+f+=
1

A+(x,D, q)
θ+ 1

A−(x,D, q)
Ef+(x)

We shall prove that if p → ∞,then <f →R+f+. It means that the regularizator of
Dirichlet problem (3.3) may be obtained as a limit case of the problem (3.1) when
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p approaches infinity. We represent the difference of these two operators (3.2) and
(3.4) as follows:

If ≡ <f−R+f+ (3.5)

=
1

A+(x, D, q)

[
1

B−(x, D, p)
θ+ B−(x,D, p)

A−(x,D, q)
Ef+(x)− θ+ 1

A−(x, D, q)
Ef+(x)

]
+

1
A+(x,D, q)B−(x,D, p)

θ−
A+(x, D, q)
B+(x,D, p)

Ef−(x)

Since the smoothness of this difference is κ1, we estimate the norm of If in the
space Hκ1 (Rn) . We have

‖<f−R+f+‖κ1

=
∥∥(

ξn − i
∣∣ξ′q∣∣)κ1 (<f−<+f+)

∥∥
0

≤ C

∥∥∥∥ 1
B−(x,D, p)

θ+ B−(x,D, p)
A−(x,D, q)

Ef+(x)− θ+ 1
A−(x, D, q)

Ef+(x)
∥∥∥∥

0

(3.6)

+C

∥∥∥∥ 1
B−(x, D, p)

θ−
A+(x,D, q)
B+(x, D, p)

Ef−(x)
∥∥∥∥

0

Using 1 = θ+ + θ−, we transform the term 1
B−(x,D,p)θ

+ B−(x,D,p)
A−(x,D,q)Ef+(x) as follows

1
B−(x,D, p)

θ+ B−(x,D, p)
A−(x,D, q)

Ef+(x)

= θ+ 1
A−(x,D, q)

Ef+(x) + θ−
1

B−(x,D, p)
θ+ B−(x, D, p)

A−(x,D, q)
Ef+(x) (3.7)

Substituting (3.7) into (3.6) we obtain

(3.8) ‖<f−R+f+‖κ1
≤ CN1 + CN2

where

N1 =
∥∥∥∥θ−

1
B−(x,D, p)

θ+ B−(x,D, p)
A−(x,D, q)

Ef+(x)
∥∥∥∥

0

N2 =
∥∥∥∥ 1

B−(x, D, p)
θ−

A+(x,D, q)
B+(x, D, p)

Ef−(x)
∥∥∥∥

0

(3.9)

We consider separately the operator 1
B−(x,D,p) . Let us set p = 1/ε and transform

this operator as follows:
(3.10)

1
B−(x,D, p)

=
εκ2

B−(x, εD, 1)
= εκ2

1
B−(x, 0, 1)

[
1− B−(x, εD, 1)−B−(x, 0, 1)

B−(x, εD, 1)

]
Moreover we have∥∥∥∥ 1

B−(x, D, p)

∥∥∥∥ ≤ C
1(

p +
∣∣ξ′∣∣)κ2 = Cεκ2

1(
1 + ε

∣∣ξ′∣∣)κ2 ≤ Cεκ2

Consequently, for N2 we have

(3.11) N2 ≤ Cεκ2

∥∥∥Π− (
ξn + i

∣∣ξ′q∣∣)κ1
(
ξn + i

∣∣ξ′p∣∣)κ2−m2
Ẽf−

∥∥∥
0
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Substituting (3.10) into (3.9), for N1 we obtain

N1 = εκ2

∥∥∥∥θ−
1

B−(x, 0, 1)
θ+ B−(x,D, p)

A−(x, D, q)
Ef+(x)− θ−T−θ+ B−(x,D, p)

A−(x,D, q)
Ef+(x)

∥∥∥∥
0

=
∥∥∥∥θ−T−θ+ B−(x, εD, 1)

A−(x,D, q)
Ef+(x)

∥∥∥∥
0

(3.12)

where we denote

(3.13) T− =
B−(x, εD, 1)−B−(x, 0, 1)
B−(x, 0, 1)B−(x, εD, 1)

with the symbol

(3.14) σ(T−) =
b−(x, εξ, 1)− b−(x, 0, 1)
b−(x, 0, 1)b−(x, εξ, 1)

We expand this symbol σ(T−) as follows

(3.15) σ(T−) =
ε

n∑
k=1

∂kb−(x, εθξ, 1)ξk

b−(x, 0, 1)b−(x, εξ, 1)

By virtue of assumption (4) for homogeneous symbols given in section 2, we have
the following inequality

|σ(T−)| ≤ Cε
(1 + ε |ξ|)κ2−1 |ξ|

(1 + ε |ξ|)κ2 = Cε
|ξ|

1 + ε |ξ|

≤ Cε
|ξn|

1 + ε |ξn|
+ Cε

∣∣ξ′∣∣ (3.16)

≤ C

∣∣∣∣ −iε

(εξn − i)
(−iξn)

∣∣∣∣ + Cε
∣∣ξ′∣∣

Denoting

(3.17) h̃(ξ, ε) = F
[
B−(x, εD, 1)
A−(x,D, q)

Ef+(x)
]

= F [h(x, ε)]

and applying the estimation (3.16) to (3.12), by the extension theory we can obtain

(3.18) N1 ≤ C
∥∥∥Π−σ (T−) Π+h̃(ξ, ε)

∥∥∥
0
≤ C

∥∥∥σ (T−) Π+h̃(ξ, ε)
∥∥∥

0
≤ CN3 + CεN4

where

(3.19) N3 =
∥∥∥∥ −iε

(εξn − i)
(−iξn)Π+h̃(ξ, ε)

∥∥∥∥
0

, N4 =
∥∥∥Π+

∣∣ξ′∣∣ h̃(ξ, ε)
∥∥∥

0

Considering (3.10) and (3.17) it is easy to verify that the norm N4 admits the
estimation

(3.20) N4 ≤ Cεκ2

∥∥∥Π+
(
ξn − i

∣∣ξ′p∣∣)κ2
(
ξn − i

∣∣ξ′q∣∣)κ1−m1+1
Ẽf+

∥∥∥
0

So it remains to evaluate N3. We remark that

F−1

[
−iε

(εξn − i)

]
= θ−e

xn
ε
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is the so called function in the type of boundary layer. It follows (3.19) that

N3 ≤ C

∥∥∥∥θ−e
xn
ε ∗ ∂

∂xn
θ+h(x, ε)

∥∥∥∥
0

= C

∥∥∥∥θ−e
xn
ε ∗

[
δ(xn)h(x, ε)|xn=0+0 + θ+ ∂

∂xn
h(x, ε)

]∥∥∥∥
0

(3.21)

It follows that

(3.22) N3 ≤ C
∥∥∥θ−e

xn
ε

∥∥∥
0
‖h(x′, 0, ε)‖′0 + C

∥∥∥∥ −iε

(εξn − i)
Π+ξnh̃(ξ, ε)

∥∥∥∥
0

Here “prime” denotes the norm over the boundary. Using the formula

‖h(x′, 0, ε)‖′0 ≤ c ‖h(x, ε)‖+δ+ 1
2

where 0 < δ < 1
2 , “+” denotes the norm over the upper half-space. Taking into

account the norm of boundary layer function∥∥∥θ−e
xn
ε

∥∥∥
0

=
√

ε

2

it follows (3.16) that

(3.23) N3 ≤ C
√

ε ‖h(x, ε)‖+δ+ 1
2

+ Cε
∥∥∥Π+

(
ξn − i

∣∣ξ′q∣∣) h̃(ξ, ε)
∥∥∥

0

Substituting (3.17) into (3.23) we can obtain

N3 ≤ cεκ2+
1
2

∥∥∥Π+
(
ξn − i

∣∣ξ′q∣∣)δ+ 1
2

(
ξn − i

∣∣ξ′p∣∣)κ2
[
ξn − i

∣∣ξ′q∣∣]κ1−m1
Ẽf+

∥∥∥
0

+cεκ2+1
∥∥∥Π+

(
ξn − i

∣∣ξ′p∣∣)κ2
[
ξn − i

∣∣ξ′q∣∣]κ1−m1+1
Ẽf+

∥∥∥
0
,

it follows that

(3.24) N3 ≤ Cεκ2+
1
2

∥∥∥Π+
(
ξn − i

∣∣ξ′p∣∣)κ2
(
ξn − i

∣∣ξ′q∣∣)κ1−m1+1
Ẽf+

∥∥∥
0

Using the evaluation (3.18), (3.20) and (3.24) we obtain

N1 ≤ Cεκ2+
1
2

∥∥∥Π+
(
ξn − i

∣∣ξ′p∣∣)κ2
(
ξn − i

∣∣ξ′q∣∣)κ1−m1+1
Ẽf+

∥∥∥
0

+Cεκ2+1
∥∥∥Π+

(
ξn − i

∣∣ξ′p∣∣)κ2
(
ξn − i

∣∣ξ′q∣∣)κ1−m1+1
Ẽf+

∥∥∥
0
,

or more roughly

(3.25) N1 ≤ Cεκ2+
1
2

∥∥∥Π+
(
ξn − i

∣∣ξ′p∣∣)κ2
(
ξn − i

∣∣ξ′q∣∣)κ1−m1+1
Ẽf+

∥∥∥
0

Considering the inequality (3.11) for N2 and the inequality (3.25) for N1, it
follows (3.8) that

‖<f−R+f+‖κ1
≤ CN1 + CN2

≤ Cεκ2+
1
2

∥∥∥Π+
(
ξn − i

∣∣ξ′q∣∣)κ1−m1+1 (
ξn − i

∣∣ξ′p∣∣)κ2
Ẽf+

∥∥∥
0

+Cεκ2

∥∥∥Π− (
ξn + i

∣∣ξ′q∣∣)κ1
(
ξn + i

∣∣ξ′p∣∣)κ2−m2
Ẽf−

∥∥∥
0

That is to say

(3.26) ‖If‖ = ‖<f−R+f+‖κ1
≤ C

[
εκ2+

1
2 ‖f+‖+κ1−m1+1,κ2

+ εκ2 ‖f−‖−κ1,κ2−m2

]
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Thus the following theorem is true, which is the generalization of the result in
[3]:

Theorem 1. Let

(3.27) f ∈{f+, f−} ∈ Hκ1−m1+1,κ2

(
Rn

+

)
×Hκ1,κ2−m2

(
Rn
−

)
≡ H

and < be the regularizator of problem (3.1) provided the condition f ∈ Hκ−m is
replaced by (3.27). Further, let R+ be the regularizator of problem (3.3) with f+ ∈
Hκ1−m1+1,κ2

(
Rn

+

)
, then for the operator I

If =<f−R+f+

defined by (3.5), the estimation (3.26) is true.
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