AN EQUIVALENT FOR PRIME NUMBER THEOREM

MEHDI HASSANI

ABSTRACT. In this short research report, we show that $\Psi(p_n) \sim \log n$, when $n \to \infty$ is equivalent with Prime Number Theorem, in which $\Psi(x) = \frac{d}{dx} \log \Gamma(x)$ is digamma function.

1. INTRODUCTION AND MAIN RESULT

As usual, let \mathbb{P} be the set of all primes and $\pi(x) = \#\mathbb{P} \cap [2, x]$. Also, for x > 0 define digamma function $\Psi(x)$ to be $\Psi(x) = \frac{d}{dx} \log \Gamma(x)$, in which $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$ is well-known gamma function [1].

In [4], it is shown that for every $x \ge 3299$, we have

$$\frac{x}{\Psi(x) - A} < \pi(x) < \frac{x}{\Psi(x) - B},$$

in which $A = \frac{3298}{3299} - \frac{1}{4 \log 3299} \approx 0.969$ and $B = 2 + \frac{151}{100 \log 7} - \gamma \approx 2.199$. So, for every $x \ge 3299$, we obtain

$$\frac{x}{\pi(x)} + A < \Psi(x) < \frac{x}{\pi(x)} + B,$$

and by putting $x = p_n$, n^{th} prime, for $n \ge 463$ we yield that

(1.1)
$$\frac{p_n}{n} + A < \Psi(p_n) < \frac{p_n}{n} + B.$$

In other hand, we have [3] the following sharp bounds for p_n , which holds for every $n \ge 27076$

$$\log n + \log_2 n - 1 + \frac{\log_2 n - 2.25}{\log n} \le \frac{p_n}{n} \le \log n + \log_2 n - 1 + \frac{\log_2 n - 1.8}{\log n},$$

in which $\log_2 = \log \log$ and base of all logarithms is e. Considering this inequality with (1.1), for every $n \ge 27076$ we obtain

$$\log n + \log_2 n + A - 1 + \frac{\log_2 n - 2.25}{\log n} < \Psi(p_n) < \log n + \log_2 n + B - 1 + \frac{\log_2 n - 1.8}{\log n}$$

This inequality is very strong form of an equivalent of Prime Number Theorem (PNT), which asserts $\pi(x) \sim \frac{x}{\log x}$ and is equivalent with $p_n \sim n \log n$ (see [2]). In this note, we show that $\Psi(p_n) \sim \log n$, when $n \to \infty$ is another equivalent for PNT. To do this, first suppose PNT. Thus, we have $p_n = n \log n + o(n \log n)$. Also, (1.1) yields that $\Psi(p_n) = \frac{p_n}{n} + O(1)$. Therefore, we have

$$\Psi(p_n) = \frac{n\log n + o(n\log n)}{n} + O(1) = \log n + o(\log n).$$

¹⁹⁹¹ Mathematics Subject Classification. 11A41, 26D15, 33B15.

Key words and phrases. Primes, Prime Number Theorem, Gamma function, Digamma function, Inequalities.

Conversely, suppose $\Psi(p_n) = \log n + o(\log n)$. By solving (1.1) according to p_n , we obtain

$$n\Psi(p_n) - Bn < p_n < n\Psi(p_n) - An.$$

Therefore, we have

 $p_n = n\Psi(p_n) + O(n) = n(\log n + o(\log n)) + O(n) = n\log n + o(n\log n),$

which, this is PNT.

References

- [1] M. Abramowitz and I.A. Stegun, HANDBOOK OF MATHEMATICAL FUNCTIONS: with Formulas, Graphs, and Mthematical Tables, Dover Publications, 1972.
- [2] Tom. M. Apostol, Introduction to Analytic Number Theory, Springer 2000.
- [3] P.Dusart, Inégalités explicites pour $\psi(X)$, $\theta(X)$, $\pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can., 21 (1999), no. 2, 53-59.
- [4] M. Hassani, Approximation of $\pi(x)$ by $\Psi(x)$, RGMIA Research Report Collection, 8(2), Article 2, 2005.

Institute for Advanced, Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran. $E\text{-}mail\ address:\ \texttt{mhassani@iasbs.ac.ir}$