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Abstract. We introduce the so-called modified hyperperfect numbers, and
completely determine their form in the case of classical divisors, unitary, bi-
unitary, and e-divisors, respectively.
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1. Introduction.

Let d be a positive divisor of the integer n > 1. If (d, %) = 1, then d is
called a unitary divisor of n. If the greatest common unitary divisor of d and
n/d is 1, then d is called a bi-unitary divisor of n. If n = p{*...p% > 1 is the
prime factorization of n, a divisor d of n is called an exponential divisor (or
e-divisor, for short), if d = pi*..pb > 1 with b;|a; (i =1,r). For the history
of these notions, as well as the connected arithmetical functions, see e.g. [1],
[2]. In what follows o (n),0* (n),0** (n),o. (n) will denote the sum of divisors,
-unitary divisors, -bi-unitary divisors, and e-divisors, respectively. It is well-
known that a positive integer m is called n-hyperperfect (HP-for short), if

(1). m=1+4+n[o(m)—m—1]

For n = 1 one has o (m) = 2m, i.e. the 1-HP numbers coincide with the
classical perfect numbers. For results on HP-numbers, see [2].

Let f: N* — N* ={1,2,...} be an arithmetical function. Then m will be
called f-n-hyperperfect number, if

(2). m=14+n[f(m)—m—1]

for some integer n > 1. For f(m) = o (m) one obtains the HP-numbers,
while for f(m) = o*(m), we get the unitary hyperperfect numbers (UHP)
introduced by P. Hagis [2]. When f(m) = o**(m), we get the bi-unitary
hyperperfect numbers (BHP), introduced by the first author ([3]). For f (m) =
o. (m), we get the e-hyperperfect numbers (e-HP), introduced also by the first
author [4].

2. Modified hyperperfect numbers.

In what follows, m will be called a modified f-n-hyperperfect number, if

(3). m =nl[f (m) —m]

For f (m) = o (m), we get the modified hyperperfect numbers (MHP). Since
for n = 1 one has in (3) f(m) = 2m, one obtains again a generalization of f-
perfect numbers. First we prove:

Theorem 1. All MHP numbers are the classical perfect numbers, as well
as the prime numbers.

Proof. Since (3) implies n|m, put m = kn, giving k = f (kn) — kn, so

(3). f(kn)=k(n+1)



For f = o this gives

(4). o (kn) =k(n+1)

For n =1, (4) gives o (k) = 2k, so m = k is the classical perfect number.

For k = 1, relation (4) implies o (n) = n+ 1, which is possible only for n = p
(prime), since o (n) > n + 1, with equality if n has only two distinct divisors -
namely 1 and n -, so n is a prime. Thus m = p is a modified p-hyperperfect
number.

Assume now that, ¥ > 1,n > 1 in (4). Then it is well known that o (kn) >
ko (n) (see e.g. [2]). Since o (n) > n+1 for all n > 1, we can infern that
o (kn) > k(n+1), in contradiction with (4).

For the case of unitary divisors, one can state:

Theorem 2. All UMHP-numbers are the unitary perfect numbers, as well
as, the prime powers.

Proof. (3’) now becomes

(5). o*(kn) =k(n+1)

For n =1 we get o* (k) = 2k, i.e. k is a unitary perfect number.

For k =1 we get o* (n) = n+1, which is true only for n = p® (prime power),
by o* (n) = 1_‘{ (p*+1).

p n
Let us now assume that n,k > 1. Since k (n + 1) = kn+k, and k is not only

) =
a divisor, but a unitary one of kn, one can write (k: ”k) =1,ie (kn) =1
But then, o* being multiplicative, o* (kn) = ¢* (k)o* (n) > (k+1)(n+1) >
k(n+1) for k> 1,n > 1. This contradicts (5), so Theorem 2 is proved.

For bi-unitary divisors we can state:

Theorem 3. All BMHP-numbers are 6, 60, 90; as well as all primes or
squares of primes.

Proof. (3’) now is

(6). o** (kn) =k(n+1)

Where o** (n) denotes the sum of bi-unitary divisors of n. For n = 1 we get
o** (k) = 2k, so by a result of Ch. Wall (see [2]) one can write k € {6,60,90} .

For k = 1 we get 0™ (n) = n + 1, which is possible only for n = p or
n = p? (p=prime). This is well-known, but we note that it follows also from
o* (p*) = o (p?), if a is odd ( =prime), o** (p®) = o (p®) — p*/? if a is even;
and the multiplicativity of o*

Let now k > 1,n > 1. Then kn # k,kn # n, and (k:,%k)* = (k,n), =1
where (k,n), denotes the greatest common unitary divisors of k and n. Since
k #n, by (k,n), =1, and n is also a divisor of n, but not a bi-unitary one, by
(5) (i.e. 0** (kn) = kn + k - which means that the only bi-unitary divisors of
kn are kn and k). But then (n, %")* #1,1ie. (n,k), # 1, in contradiction with
(kyn), = 1.

Finally, the case of e-divisors is contained in:

Theorem 4. All modified exponentially n-hyperperfect numbers m are
given by m = kn, where k = p1ps...p,, n = p({*lpg...pr, with p1, pa, ..., prr distinct
primes, and ¢ an arbitrary primes; as well as the e-perfect numbers.

Proof. We have to study the equation:

(7). e (kn) =k(n+1)



For n =1 we have o, (k) = 2k, i.e. the e-perfect numbers.

For k = 1 we get 0. (n) = n+1. For n = squarefree, one has o, (n) = n, while
for n # squarefree, by the above lemma, o, (n) > n + 1, giving a contradiction.

Lemma. If n is not squarefree, n > 1 then o, (n) > n + n/q*!, where
q* || n and a > 2. There is equality only for p;...p,.qP with pq, ..., p,, ¢ distinct
primes, and p an arbitrary prime.
Proof. Let n = pi*...p%", where (3) a € {aq, ...a,} with a > 2. Thus o, (n) >
) D% (q% + q) = n+pit...q..p%" since 0. (¢%) > ¢* + ¢* with equality only
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n/qafl
if @ =prime, while o, (pb) > p®, with equality only for b = 1.
Corollary. o.(n) > n+ v (n) for n # squarefree, where v(n) = [[p =
pln
product of distinct prime divisors of n.

a). Now, suppose that (n,k) = 1. Since o, is multiplicative, (7) becomes
oc(n)oe (k) = k(n+1). If & > 1 is squarefree, then o, (k) = k, so this is
0. (n) = n+ 1, which is impossible. If k is not squarefree, but n is squarefree,
then o, (n) = n, so (7) becomes no. (k) = k(n+1). Since (n,k) = 1 and
(n,n + 1) = 1, this is again impossible.

By summarizing, if (n,k) =1 for n > 1,k > 1, the equation is unsolvable.

b). Let (n, k) > 1. Writing n. = p§*..p%r 3t ...q%  k = ptllll ...pg;’yfl...yf", where
Di, qj, 7k are distinct prime, and a;, b;, ¢, are nonnegative integers (1 < i <r, 1 <
j<s,1<k<t). Since by (7) written in the form o, (kn) = kn+k —k is an e-

! !’
divisor of nk = p‘f1+a1...p?"'+ar~qll’1 @l AT Aft we must have by = ... = b, = 0.
- / / / / H _ / _ /
Also ai| (a1 +df),...,al| (ar +al), ie. a; = (my —1)d},...;ar = (m, — 1)al.,

with m; (1 <4 <r) positive integers.
We note that, since a; > 1,...,a, > 1, we have m; > 1,...,m, > 1. Since
it # k is also an e-divisor of nk, we must have ¢; = 0. Similarly, ¢ = ... =

(m1—1)a (my-—1)a’ mia) mral.
..Pr . .

¢ = 0. Thus, n = p; "ok = p‘f;...pg;; nk = p; Dr
Remark that by m; > 1, if one assumes a} > 1, then 1|m4a} implies that p;...p,
is also an e-divisor of nk, with p;...pr # k. Thus we must have necessarily
ay = ... =a. =180k = pi..p, and nk = p"..p" . Since n > 1, at least
one of myq,...,m;, is > 1. Put m; > 1. Then, if at least one of ms,...,m, is > 1,
then p1p32...pJ"" # k is another e-divisor of nk. If my > 1 is not a prime, then
mq can have also a divisor 1 < a < my so p{ps...p, will be another e-divisor,
contradiction. Thus a = ¢ =prime, which finishes the proof of Theorem 4.

For results and/or open problems on perfect, unitary perfect, e-perfect num-
bers; as well as on hyperperfect or unitary hyperperfect numbers, see the mono-
graphs [1], [2].
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