On Modified Hyperperfect Numbers

József Sándor and Mihály Bencze
Babes-Bolyai University of Cluj, Romania
Str. Harmanului 6, 505600 Sacele, Brasov, Romania

Abstract

We introduce the so-called modified hyperperfect numbers, and completely determine their form in the case of classical divisors, unitary, biunitary, and e-divisors, respectively.

AMS Subject classification (2000): 11A25.

1. Introduction.

Let d be a positive divisor of the integer $n>1$. If $\left(d, \frac{n}{d}\right)=1$, then d is called a unitary divisor of n. If the greatest common unitary divisor of d and n / d is 1 , then d is called a bi-unitary divisor of n. If $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}>1$ is the prime factorization of n, a divisor d of n is called an exponential divisor (or e-divisor, for short), if $d=p_{1}^{b_{1}} \ldots p_{r}^{b_{r}}>1$ with $b_{i} \mid a_{i}(i=\overline{1, r})$. For the history of these notions, as well as the connected arithmetical functions, see e.g. [1], [2]. In what follows $\sigma(n), \sigma^{*}(n), \sigma^{* *}(n), \sigma_{e}(n)$ will denote the sum of divisors, -unitary divisors, -bi-unitary divisors, and e-divisors, respectively. It is wellknown that a positive integer m is called n-hyperperfect (HP-for short), if
(1). $m=1+n[\sigma(m)-m-1]$

For $n=1$ one has $\sigma(m)=2 m$, i.e. the 1-HP numbers coincide with the classical perfect numbers. For results on HP-numbers, see [2].

Let $f: N^{*} \rightarrow N^{*}=\{1,2, \ldots\}$ be an arithmetical function. Then m will be called f-n-hyperperfect number, if
(2). $m=1+n[f(m)-m-1]$
for some integer $n \geq 1$. For $f(m)=\sigma(m)$ one obtains the HP-numbers, while for $f(m)=\sigma^{*}(m)$, we get the unitary hyperperfect numbers (UHP) introduced by P. Hagis [2]. When $f(m)=\sigma^{* *}(m)$, we get the bi-unitary hyperperfect numbers (BHP), introduced by the first author ([3]). For $f(m)=$ $\sigma_{e}(m)$, we get the e-hyperperfect numbers (e-HP), introduced also by the first author [4].

2. Modified hyperperfect numbers.

In what follows, m will be called a modified f -n-hyperperfect number, if
(3). $m=n[f(m)-m]$

For $f(m)=\sigma(m)$, we get the modified hyperperfect numbers (MHP). Since for $n=1$ one has in (3) $f(m)=2 m$, one obtains again a generalization of f perfect numbers. First we prove:

Theorem 1. All MHP numbers are the classical perfect numbers, as well as the prime numbers.

Proof. Since (3) implies $n \mid m$, put $m=k n$, giving $k=f(k n)-k n$, so
(3'). $f(k n)=k(n+1)$

For $f \equiv \sigma$ this gives
(4). $\sigma(k n)=k(n+1)$

For $n=1,(4)$ gives $\sigma(k)=2 k$, so $m=k$ is the classical perfect number.
For $k=1$, relation (4) implies $\sigma(n)=n+1$, which is possible only for $n=p$ (prime), since $\sigma(n) \geq n+1$, with equality if n has only two distinct divisors namely 1 and $n-$, so n is a prime. Thus $m=p$ is a modified p-hyperperfect number.

Assume now that, $k>1, n>1$ in (4). Then it is well known that $\sigma(k n)>$ $k \sigma(n)$ (see e.g. [2]). Since $\sigma(n) \geq n+1$ for all $n>1$, we can infern that $\sigma(k n)>k(n+1)$, in contradiction with (4).

For the case of unitary divisors, one can state:
Theorem 2. All UMHP-numbers are the unitary perfect numbers, as well as, the prime powers.

Proof. (3') now becomes
(5). $\sigma^{*}(k n)=k(n+1)$

For $n=1$ we get $\sigma^{*}(k)=2 k$, i.e. k is a unitary perfect number.
For $k=1$ we get $\sigma^{*}(n)=n+1$, which is true only for $n=p^{a}$ (prime power), by $\sigma^{*}(n)=\prod_{p^{a} \| n}\left(p^{a}+1\right)$.

Let us now assume that $n, k>1$. Since $k(n+1)=k n+k$, and k is not only a divisor, but a unitary one of $k n$, one can write $\left(k, \frac{n k}{k}\right)=1$, i.e. $(k, n)=1$. But then, σ^{*} being multiplicative, $\sigma^{*}(k n)=\sigma^{*}(k) \sigma^{*}(n) \geq(k+1)(n+1)>$ $k(n+1)$ for $k>1, n>1$. This contradicts (5), so Theorem 2 is proved.

For bi-unitary divisors we can state:
Theorem 3. All BMHP-numbers are $6,60,90$; as well as all primes or squares of primes.

Proof. (3') now is
(6). $\sigma^{* *}(k n)=k(n+1)$

Where $\sigma^{* *}(n)$ denotes the sum of bi-unitary divisors of n. For $n=1$ we get $\sigma^{* *}(k)=2 k$, so by a result of Ch. Wall (see [2]) one can write $k \in\{6,60,90\}$.

For $k=1$ we get $\sigma^{* *}(n)=n+1$, which is possible only for $n=p$ or $n=p^{2}$ ($\mathrm{p}=$ prime). This is well-known, but we note that it follows also from $\sigma^{*}\left(p^{a}\right)=\sigma\left(p^{a}\right)$, if a is odd ($\mathrm{p}=\mathrm{prime}$), $\sigma^{* *}\left(p^{a}\right)=\sigma\left(p^{a}\right)-p^{a / 2}$ if a is even; and the multiplicativity of $\sigma^{* *}$.

Let now $k>1, n>1$. Then $k n \neq k, k n \neq n$, and $\left(k, \frac{n k}{k}\right)_{*}=(k, n)_{*}=1$ where $(k, n)_{*}$ denotes the greatest common unitary divisors of k and n. Since $k \neq n$, by $(k, n)_{*}=1$, and n is also a divisor of n, but not a bi-unitary one, by (5) (i.e. $\sigma^{* *}(k n)=k n+k$ - which means that the only bi-unitary divisors of $k n$ are $k n$ and k). But then $\left(n, \frac{k n}{n}\right)_{*} \neq 1$, i.e. $(n, k)_{*} \neq 1$, in contradiction with $(k, n)_{*}=1$.

Finally, the case of e-divisors is contained in:
Theorem 4. All modified exponentially n-hyperperfect numbers m are given by $m=k n$, where $k=p_{1} p_{2} \ldots p_{r}, n=p_{1}^{q-1} p_{2} \ldots p_{r}$, with $p_{1}, p_{2}, \ldots, p_{r}$ distinct primes, and q an arbitrary primes; as well as the e-perfect numbers.

Proof. We have to study the equation:
(7). $\sigma_{e}(k n)=k(n+1)$

For $n=1$ we have $\sigma_{e}(k)=2 k$, i.e. the e-perfect numbers.
For $k=1$ we get $\sigma_{e}(n)=n+1$. For $n=$ squarefree, one has $\sigma_{e}(n)=n$, while for $n \neq$ squarefree, by the above lemma, $\sigma_{e}(n)>n+1$, giving a contradiction.

Lemma. If n is not squarefree, $n>1$ then $\sigma_{e}(n) \geq n+n / q^{a-1}$, where $q^{a} \| n$ and $a \geq 2$. There is equality only for $p_{1} \ldots p_{r} q^{p}$ with p_{1}, \ldots, p_{r}, q distinct primes, and p an arbitrary prime.

Proof. Let $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$, where $(\exists) a \in\left\{a_{1}, \ldots a_{r}\right\}$ with $a \geq 2$. Thus $\sigma_{e}(n) \geq$ $p_{1}^{a_{1}} \ldots / \ldots p_{r}^{a_{r}}\left(q^{a}+q\right)=n+\underbrace{p_{1}^{a_{1}} \ldots q \ldots p_{r}^{a_{r}}}_{n / q^{a-1}}$ since $\sigma_{e}\left(q^{a}\right) \geq q^{1}+q^{a}$ with equality only if $a=$ prime, while $\sigma_{e}\left(p^{b}\right) \geq p^{b}$, with equality only for $b=1$.

Corollary. $\sigma_{e}(n) \geq n+\gamma(n)$ for $n \neq$ squarefree, where $\gamma(n)=\prod_{p \mid n} p=$ product of distinct prime divisors of n.
a). Now, suppose that $(n, k)=1$. Since σ_{e} is multiplicative, (7) becomes $\sigma_{e}(n) \sigma_{e}(k)=k(n+1)$. If $k>1$ is squarefree, then $\sigma_{e}(k)=k$, so this is $\sigma_{e}(n)=n+1$, which is impossible. If k is not squarefree, but n is squarefree, then $\sigma_{e}(n)=n$, so (7) becomes $n \sigma_{e}(k)=k(n+1)$. Since $(n, k)=1$ and $(n, n+1)=1$, this is again impossible.

By summarizing, if (n, k) $=1$ for $n>1, k>1$, the equation is unsolvable.
b). Let $(n, k)>1$. Writing $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}} q_{1}^{b_{1}} \ldots q_{s}^{b_{s}}, k=p_{1}^{a_{1}^{\prime}} \ldots p_{r}^{a_{r}^{\prime}} \gamma_{1}^{c_{1}} \ldots \gamma_{t}^{c_{t}}$, where p_{i}, q_{j}, γ_{k} are distinct prime, and a_{i}, b_{j}, c_{k} are nonnegative integers $(1 \leq i \leq r, 1 \leq$ $j \leq s, 1 \leq k \leq t)$. Since by (7) written in the form $\sigma_{e}(k n)=k n+k-k$ is an edivisor of $n k=p_{1}^{a_{1}+a_{1}^{\prime}} \ldots p_{r}^{a_{r}+a_{r}^{\prime}} \cdot q_{1}^{b_{1}} \ldots q_{s}^{b_{s}} \cdot \gamma_{1}^{c_{1}} \ldots \gamma_{t}^{c_{t}}$, we must have $b_{1}=\ldots=b_{s}=0$. Also $a_{1}^{\prime}\left|\left(a_{1}+a_{1}^{\prime}\right), \ldots, a_{r}^{\prime}\right|\left(a_{r}+a_{r}^{\prime}\right)$, i.e. $a_{1}=\left(m_{1}-1\right) a_{1}^{\prime}, \ldots, a_{r}=\left(m_{r}-1\right) a_{r}^{\prime}$, with $m_{i}(1 \leq i \leq r)$ positive integers.

We note that, since $a_{1} \geq 1, \ldots, a_{r} \geq 1$, we have $m_{1}>1, \ldots, m_{r}>1$. Since $\gamma_{1}^{c_{1}} \neq k$ is also an e-divisor of $n k$, we must have $c_{1}=0$. Similarly, $c_{2}=\ldots=$ $c_{r}=0$. Thus, $n=p_{1}^{\left(m_{1}-1\right) a_{1}^{\prime}} \ldots p_{r}^{\left(m_{r}-1\right) a_{r}^{\prime}}, k=p_{1}^{a_{1}^{\prime}} \ldots p_{r}^{a_{r}^{\prime}} ; n k=p_{1}^{m_{1} a_{1}^{\prime}} \ldots p_{r}^{m_{r} a_{r}^{\prime}}$. Remark that by $m_{1}>1$, if one assumes $a_{1}^{\prime}>1$, then $1 \mid m_{1} a_{1}^{\prime}$ implies that $p_{1} \ldots p_{r}$ is also an e-divisor of $n k$, with $p_{1} \ldots p_{k} \neq k$. Thus we must have necessarily $a_{1}^{\prime}=\ldots=a_{r}^{\prime}=1$, so $k=p_{1} \ldots p_{r}$ and $n k=p_{1}^{m_{1}} \ldots p_{r}^{m_{r}}$. Since $n>1$, at least one of m_{1}, \ldots, m_{r} is >1. Put $m_{1}>1$. Then, if at least one of m_{2}, \ldots, m_{r} is >1, then $\mathrm{p}_{1} p_{2}^{m_{2}} \ldots p_{r}^{m_{r}} \neq k$ is another e-divisor of $n k$. If $m_{1}>1$ is not a prime, then m_{1} can have also a divisor $1<a<m_{1}$ so $p_{1}^{a} p_{2} \ldots p_{r}$ will be another e-divisor, contradiction. Thus $a=q=$ prime, which finishes the proof of Theorem 4.

For results and/or open problems on perfect, unitary perfect, e-perfect numbers; as well as on hyperperfect or unitary hyperperfect numbers, see the monographs [1], [2].

References.

[1]. R.K. Guy: Unsolved problems in number theory, Third ed., 2004, Springer-Verlag.
[2]. József Sándor: Handbook of number theory, II., Springer-Verlag (in coop. with B. Crstici).
[3]. József Sándor: On bi-unitary hyperperfect numbers, submitted.
[4]. József Sándor: On e-hyperperfect numbers, in preparation.
[5]. Mihály Bencze: On perfect numbers, Studia Mathematica, Univ. BabesBolyai, No. 4, 1981, pp. 14-18.
[6]. Collection Octogon Mathematical Magazine 1993-2005.

