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Abstract. We introduce the so-called modified hyperperfect numbers, and
completely determine their form in the case of classical divisors, unitary, bi-
unitary, and e-divisors, respectively.
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1. Introduction.

Let d be a positive divisor of the integer n > 1. If
(
d, n

d

)
= 1, then d is

called a unitary divisor of n. If the greatest common unitary divisor of d and
n/d is 1, then d is called a bi-unitary divisor of n. If n = pa1

1 ...par
r > 1 is the

prime factorization of n, a divisor d of n is called an exponential divisor (or
e-divisor, for short), if d = pb1

1 ...pbr
r > 1 with bi|ai

(
i = 1, r

)
. For the history

of these notions, as well as the connected arithmetical functions, see e.g. [1],
[2]. In what follows σ (n) , σ∗ (n) , σ∗∗ (n) , σe (n) will denote the sum of divisors,
-unitary divisors, -bi-unitary divisors, and e-divisors, respectively. It is well-
known that a positive integer m is called n-hyperperfect (HP-for short), if

(1). m = 1 + n [σ (m)−m− 1]
For n = 1 one has σ (m) = 2m, i.e. the 1-HP numbers coincide with the

classical perfect numbers. For results on HP-numbers, see [2].
Let f : N∗ → N∗ = {1, 2, ...} be an arithmetical function. Then m will be

called f-n-hyperperfect number, if
(2). m = 1 + n [f (m)−m− 1]
for some integer n ≥ 1. For f (m) = σ (m) one obtains the HP-numbers,

while for f (m) = σ∗ (m), we get the unitary hyperperfect numbers (UHP)
introduced by P. Hagis [2]. When f (m) = σ∗∗ (m) , we get the bi-unitary
hyperperfect numbers (BHP), introduced by the first author ([3]). For f (m) =
σe (m), we get the e-hyperperfect numbers (e-HP), introduced also by the first
author [4].

2. Modified hyperperfect numbers.

In what follows, m will be called a modified f-n-hyperperfect number, if
(3). m = n [f (m)−m]
For f (m) = σ (m) , we get the modified hyperperfect numbers (MHP). Since

for n = 1 one has in (3) f (m) = 2m, one obtains again a generalization of f-
perfect numbers. First we prove:

Theorem 1. All MHP numbers are the classical perfect numbers, as well
as the prime numbers.

Proof. Since (3) implies n|m, put m = kn, giving k = f (kn)− kn, so
(3’). f (kn) = k (n + 1)
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For f ≡ σ this gives
(4). σ (kn) = k (n + 1)
For n = 1, (4) gives σ (k) = 2k, so m = k is the classical perfect number.
For k = 1, relation (4) implies σ (n) = n+1, which is possible only for n = p

(prime), since σ (n) ≥ n + 1, with equality if n has only two distinct divisors -
namely 1 and n -, so n is a prime. Thus m = p is a modified p-hyperperfect
number.

Assume now that, k > 1, n > 1 in (4). Then it is well known that σ (kn) >
kσ (n) (see e.g. [2]). Since σ (n) ≥ n + 1 for all n > 1, we can infern that
σ (kn) > k (n + 1) , in contradiction with (4).

For the case of unitary divisors, one can state:
Theorem 2. All UMHP-numbers are the unitary perfect numbers, as well

as, the prime powers.
Proof. (3’) now becomes
(5). σ∗ (kn) = k (n + 1)
For n = 1 we get σ∗ (k) = 2k, i.e. k is a unitary perfect number.
For k = 1 we get σ∗ (n) = n+1, which is true only for n = pa (prime power),

by σ∗ (n) =
∏

pa‖n

(pa + 1) .

Let us now assume that n, k > 1. Since k (n + 1) = kn+k, and k is not only
a divisor, but a unitary one of kn, one can write

(
k, nk

k

)
= 1, i.e. (k, n) = 1.

But then, σ∗ being multiplicative, σ∗ (kn) = σ∗ (k) σ∗ (n) ≥ (k + 1) (n + 1) >
k (n + 1) for k > 1, n > 1. This contradicts (5), so Theorem 2 is proved.

For bi-unitary divisors we can state:
Theorem 3. All BMHP-numbers are 6, 60, 90; as well as all primes or

squares of primes.
Proof. (3’) now is
(6). σ∗∗ (kn) = k (n + 1)
Where σ∗∗ (n) denotes the sum of bi-unitary divisors of n. For n = 1 we get

σ∗∗ (k) = 2k, so by a result of Ch. Wall (see [2]) one can write k ∈ {6, 60, 90} .
For k = 1 we get σ∗∗ (n) = n + 1, which is possible only for n = p or

n = p2 (p=prime). This is well-known, but we note that it follows also from
σ∗ (pa) = σ (pa) , if a is odd (p=prime), σ∗∗ (pa) = σ (pa) − pa/2 if a is even;
and the multiplicativity of σ∗∗.

Let now k > 1, n > 1. Then kn 6= k, kn 6= n, and
(
k, nk

k

)
∗ = (k, n)∗ = 1

where (k, n)∗ denotes the greatest common unitary divisors of k and n. Since
k 6= n, by (k, n)∗ = 1, and n is also a divisor of n, but not a bi-unitary one, by
(5) (i.e. σ∗∗ (kn) = kn + k - which means that the only bi-unitary divisors of
kn are kn and k). But then

(
n, kn

n

)
∗ 6= 1, i.e. (n, k)∗ 6= 1, in contradiction with

(k, n)∗ = 1.
Finally, the case of e-divisors is contained in:
Theorem 4. All modified exponentially n-hyperperfect numbers m are

given by m = kn, where k = p1p2...pr, n = pq−1
1 p2...pr, with p1, p2, ..., pr distinct

primes, and q an arbitrary primes; as well as the e-perfect numbers.
Proof. We have to study the equation:
(7). σe (kn) = k (n + 1)
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For n = 1 we have σe (k) = 2k, i.e. the e-perfect numbers.
For k = 1 we get σe (n) = n+1. For n = squarefree, one has σe (n) = n, while

for n 6= squarefree, by the above lemma, σe (n) > n + 1, giving a contradiction.
Lemma. If n is not squarefree, n > 1 then σe (n) ≥ n + n/qa−1, where

qa ‖ n and a ≥ 2. There is equality only for p1...prq
p with p1, ..., pr, q distinct

primes, and p an arbitrary prime.
Proof. Let n = pa1

1 ...par
r , where (∃) a ∈ {a1, ...ar} with a ≥ 2. Thus σe (n) ≥

pa1
1 .../...par

r (qa + q) = n+pa1
1 ...q...par

r︸ ︷︷ ︸
n/qa−1

since σe (qa) ≥ q1 + qa with equality only

if a =prime, while σe

(
pb

)
≥ pb, with equality only for b = 1.

Corollary. σe (n) ≥ n + γ (n) for n 6= squarefree, where γ (n) =
∏
p|n

p =

product of distinct prime divisors of n.
a). Now, suppose that (n, k) = 1. Since σe is multiplicative, (7) becomes

σe (n) σe (k) = k (n + 1) . If k > 1 is squarefree, then σe (k) = k, so this is
σe (n) = n + 1, which is impossible. If k is not squarefree, but n is squarefree,
then σe (n) = n, so (7) becomes nσe (k) = k (n + 1) . Since (n, k) = 1 and
(n, n + 1) = 1, this is again impossible.

By summarizing, if (n, k) = 1 for n > 1, k > 1, the equation is unsolvable.
b). Let (n, k) > 1. Writing n = pa1

1 ...par
r qb1

1 ...qbs
s , k = p

a′1
1 ...p

a′r
r γc1

1 ...γct
t , where

pi, qj , γk are distinct prime, and ai, bj , ck are nonnegative integers (1 ≤ i ≤ r, 1 ≤
j ≤ s, 1 ≤ k ≤ t). Since by (7) written in the form σe (kn) = kn+ k− k is an e-
divisor of nk = p

a1+a′1
1 ...p

ar+a′r
r ·qb1

1 ...qbs
s ·γc1

1 ...γct
t , we must have b1 = ... = bs = 0.

Also a′1| (a1 + a′1) , ..., a′r| (ar + a′r) , i.e. a1 = (m1 − 1) a′1, ..., ar = (mr − 1) a′r,
with mi (1 ≤ i ≤ r) positive integers.

We note that, since a1 ≥ 1, ..., ar ≥ 1, we have m1 > 1, ...,mr > 1. Since
γc1
1 6= k is also an e-divisor of nk, we must have c1 = 0. Similarly, c2 = ... =

cr = 0. Thus, n = p
(m1−1)a′1
1 ...p

(mr−1)a′r
r , k = p

a′1
1 ...p

a′r
r ; nk = p

m1a′1
1 ...p

mra′r
r .

Remark that by m1 > 1, if one assumes a′1 > 1, then 1|m1a
′
1 implies that p1...pr

is also an e-divisor of nk, with p1...pk 6= k. Thus we must have necessarily
a′1 = ... = a′r = 1, so k = p1...pr and nk = pm1

1 ...pmr
r . Since n > 1, at least

one of m1, ...,mr is > 1. Put m1 > 1. Then, if at least one of m2, ...,mr is > 1,
then p1p

m2
2 ...pmr

r 6= k is another e-divisor of nk. If m1 > 1 is not a prime, then
m1 can have also a divisor 1 < a < m1 so pa

1p2...pr will be another e-divisor,
contradiction. Thus a = q =prime, which finishes the proof of Theorem 4.

For results and/or open problems on perfect, unitary perfect, e-perfect num-
bers; as well as on hyperperfect or unitary hyperperfect numbers, see the mono-
graphs [1], [2].
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