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Abstract. By employing the convolution theorem of Laplace transforms,

some asymptotic formulas and integral representations of the gamma, psi and

polygamma functions, and other analytic techniques, this note provides an

alternative proof of a monotonicity and convexity property by N. Elezović,

C. Giordano and J. Pečarić in [4] to establish the best bounds in Gautschi-

Kershaw inequalities. Moreover, some (logarithmically) complete monotonic-

ity results on functions related to Gautschi-Kershaw inequalities are remarked.

1. Introduction

Let Γ denote the classical Euler gamma function and ψ = Γ′

Γ , the logarithmic

derivative of Γ. The first and second Gautschi-Kershaw inequalities state that(
x+

s

2

)1−s

<
Γ(x+ 1)
Γ(x+ s)

<

(
x− 1

2
+

√
s+

1
4

)1−s

(1)

and

exp
[
(1− s)ψ

(
x+

√
s
)]
<

Γ(x+ 1)
Γ(x+ s)

< exp
[
(1− s)ψ

(
x+

s+ 1
2

)]
. (2)

For more information on the background and history of these two inequalities,

please refer to [3, 4, 11].

Let s and t be nonnegative numbers and α = min{s, t}. For x ∈ (−α,∞), define

Ψs,t(x) =


[

Γ(x+ t)
Γ(x+ s)

]1/(t−s)
, s 6= t,

ψ(x+ s), s = t,

(3)
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and

zs,t(x) =

Ψs,t(x)− x, s 6= t,

eψ(x+s) − x, s = t.
(4)

In order to establish the best bounds in Gautschi-Kershaw inequalities above

N. Elezović, C. Giordano and J. Pečarić proved in [4] the following monotonicity

and convexity property of zs,t(x).

Theorem 1. The function zs,t(x) is either convex and decreasing for |t− s| < 1

or concave and increasing for |t− s| > 1.

The purpose of this note is to provide an alternative proof of Theorem 1 by us-

ing the convolution theorem of Laplace transforms, some asymptotic formulas and

integral representations of the gamma, psi and polygamma functions, and other

analytic techniques. Moreover, some (logarithmically) completely monotonicity re-

sults related to Ψs,t(x) and Gautschi-Kershaw inequalities (1) and (2) are remarked.

2. Lemmas

Define

ga,b(u) =


bu − au

u
, u 6= 0

ln b− ln a, u = 0
(5)

and

qs,t(u) =


e−su − e−tu

1− e−u
, u 6= 0

t− s, u = 0
(6)

in u ∈ R for b > a > 0 and t > s ≥ 0.

Remark 1. The positive function ga,b(u) has been researched in [18] and was applied

in [7, 10, 12, 17] to prove the logarithmic convexity or the Schur convexity of the

extended mean values. For more detailed information about ga,b(u), please refer to

the expository paper [13] and the references therein.

Lemma 1. If t−s > 1, then the positive function qs,t(u) defined by (6) is logarith-

mically convex in (0,∞) and logarithmically concave in (−∞, 0). If 0 < t− s < 1,

the function qs,t(u) is logarithmically concave in (0,∞) and logarithmically convex

in (−∞, 0).
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Proof. It is clear that qs,t(u) > 0. A simple computation shows

ge−t,e−s(u) = e−suges−t,1(u),

qs,t(u) =
e−suges−t,1(u)
ge−1,1(u)

,

[ln qs,t(u)]′ =
g′es−t,1(u)

ges−t,1(u)
−
g′e−1,1(u)

ge−1,1(u)
− s,

[ln qs,t(u)]′′ =
(
g′es−t,1(u)

ges−t,1(u)

)′
−
(
g′e−1,1(u)

ge−1,1(u)

)′
. (7)

Define

G(x, u) =
∂

∂u

(
1

gx,1(u)
∂gx,1(u)
∂u

)
=
∂2[ln gx,1(u)]

∂u2
(8)

for 1 > x > 0 and u ∈ R. By taking partial derivative with respect to x and

changing the order of partial derivatives between x and u, we obtain

∂G(x, u)
∂x

=
∂3[ln gx,1(u)]

∂x∂u2

=
∂2

∂u2

(
∂[ln gx,1(u)]

∂x

)
=

∂2

∂u2

(
uxu−1

xu − 1

)
=
xu−1[2− 2xu + u(1 + xu) lnx] lnx

(xu − 1)3

=
xu−1u(1 + xu) lnx

(xu − 1)3

[
2(1− xu)
u(1 + xu)

+ lnx
]

,
xu−1u(1 + xu) lnx

(xu − 1)3
[Φ(u, x) + lnx],

∂Φ(u, x)
∂u

=
2(x2u − 2uxu lnx− 1)

u2(1 + xu)2

,
2h(u, x)

u2(1 + xu)2
,

∂h(u, x)
∂u

= 2xu(xu − u lnx− 1) lnx

, 2xu`(u, x) lnx,

∂`(u, x)
∂u

= (xu − 1) lnx.

In the case of u ≥ 0, we have ∂`(u,x)
∂u ≥ 0 and the function `(u, x) is increasing

with u. Since `(0, x) = 0, we have `(u, x) ≥ 0, and ∂h(u,x)
∂u < 0, then h(u, x)

decreases with u and h(u, x) ≤ 0. Therefore, the function Φ(u, x) decreases with u,
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which is equivalent to ∂G(x,u)
∂x ≤ 0. Hence, the function G(x, u) is decreasing with

x ∈ (0, 1) for u ≥ 0.

In the case of u < 0, it is clear that ∂`(u,x)
∂u ≤ 0, `(u, x) decreases, `(u, x) < 0,

and ∂h(u,x)
∂u > 0, then h(u, x) increases with u and h(u, x) < 0. This means that

Φ(u, x) decreases with u and ∂G(x,u)
∂x > 0, and then G(x, u) increases with x ∈ (0, 1)

for u < 0.

Combination of (7) and (8) reveals

[ln qs,t(u)]′′ = G
(
es−t, u

)
−G

(
e−1, u

)
, (9)

where u ∈ R and t > s ≥ 0.

When t− s > 1, it is ready that es−t < e−1 < 1. If u > 0, we have G
(
es−t, u

)
>

G
(
e−1, u

)
, [ln qs,t(u)]′′ > 0, and the function qs,t(u) is logarithmically convex. If

u < 0, then G
(
es−t, u

)
< G

(
e−1, u

)
, [ln qs,t(u)]′′ > 0, and the function qs,t(u) is

logarithmically concave.

When 0 < t − s < 1, it is clear that 1 > es−t > e−1. If u > 0, it follows that

G
(
es−t, u

)
< G

(
e−1, u

)
, [ln qs,t(u)]′′ < 0, and the function qs,t(u) is logarithmically

concave. If u < 0, then G
(
es−t, u

)
> G

(
e−1, u

)
, [ln qs,t(u)]′′ > 0, and the function

qs,t(u) is logarithmically convex. The proof is complete. �

Lemma 2 ([1, 20, 21] and [6, p. 16]). The psi or digamma function ψ(x) and the

polygamma functions ψ(n)(x) can be expressed for x > 0 and n ∈ N as

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
d t, (10)

ψ(n)(x) = (−1)n+1

∫ ∞

0

tn

1− e−t
e−xt d t. (11)

Lemma 3 ([22]). Let fi(t) for i = 1, 2 be piecewise continuous in arbitrary finite

intervals included in (0,∞), suppose there exist some constants Mi > 0 and ci ≥ 0

such that |fi(t)| ≤Mie
cit for i = 1, 2. Then∫ ∞

0

[ ∫ t

0

f1(u)f2(t− u) du
]
e−st d t =

∫ ∞

0

f1(u)e−su du
∫ ∞

0

f2(v)e−sv dv. (12)

Remark 2. Lemma 3 is the convolution theorem of Laplace transforms. It can be

looked up in standard textbooks of integral transforms.

Lemma 4 ([1, p. 257 and p. 259] or [20, 21]). Let a and b be two constants. Then

xb−a
Γ(x+ a)
Γ(x+ b)

= 1 +
(a− b)(a+ b− 1)

2x
+O

(
1
x2

)
(13)
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and

ψ(x) = lnx− 1
2x

+O

(
1
x2

)
(14)

hold as x→∞.

3. Proof of Theorem 1

Firstly, let us consider the case of t > s ≥ 0. Direct computing yields

z′s,t(x) =
[zs,t(x) + x][ψ(x+ t)− ψ(x+ s)]

t− s
− 1, (15)

z′′s,t(x) =
zs,t(x) + x

t− s

{
[ψ(x+ t)− ψ(x+ s)]2

t− s
+ [ψ′(x+ t)− ψ′(x+ s)]

}
. (16)

By using (10) and (11) and simplifying, it follows that

z′′s,t(x) =
zs,t(x) + x

t− s

{
1

t− s

[ ∫ ∞

0

e−(x+s)u − e−(x+t)u

1− e−u
du
]2

−
∫ ∞

0

u[e−(x+s)u − e−(x+t)u]
1− e−u

du
}

=
zs,t(x) + x

t− s

{
1

t− s

[ ∫ ∞

0

qs,t(u)e−xu du
]2
−
∫ ∞

0

uqs,t(u)e−xu du
}
,

(17)

where qs,t(u) is defined by (6).

Applying Lemma 3, the convolution theorem for Laplace transforms, to the

square term in the final line of (17) gives

(t− s)z′′s,t(x)
zs,t(x) + x

=
1

t− s

∫ ∞

0

[∫ u

0

qs,t(r)qs,t(u− r) dr
]
e−xu du

−
∫ ∞

0

uqs,t(u)e−xu du

,
∫ ∞

0

ps,t(u)e−xu du,

where

ps,t(u) =
1

t− s

∫ u

0

qs,t(r)qs,t(u− r) dr − uqs,t(u). (18)

Let r = u
2 (1 + v) in (18). Then

ps,t(u) =
u

2(t− s)

∫ 1

−1

qs,t

(
u(1 + v)

2

)
qs,t

(
u(1− v)

2

)
dv − uqs,t(u)

=
u

t− s

∫ 1

0

qs,t

(
u(1 + v)

2

)
qs,t

(
u(1− v)

2

)
dv − uqs,t(u)

,
u

t− s

∫ 1

0

φu;s,t(v) dv − uqs,t(u),

(19)
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Straightforwardly calculating shows

2
uφu;s,t(v)

dφu;s,t(v)
dv

=
q′s,t
(
u(1 + v)/2

)
qs,t
(
u(1 + v)/2

) − q′s,t
(
u(1− v)/2

)
qs,t
(
u(1− v)/2

) . (20)

Lemma 1 tells that the function qs,t(u) is logarithmically convex in (0,∞) for

t − s > 1 and logarithmically concave in (0,∞) for 0 < t − s < 1, therefore, the

function q′s,t(u)

qs,t(u) is increasing in (0,∞) for t − s > 1 and decreasing in (0,∞) for

0 < t − s < 1. For t − s > 1, we obtain dφu;s,t(v)
dv ≥ 0, and φu;s,t(v) is increasing

with v, so

φu;s,t(v) ≤ φu;s,t(1) = qs,t(u)qs,t(0) = (t− s)qs,t(u),

this implies ps,t(u) ≤ 0, z′′s,t(x) ≤ 0, and the function zs,t(x) is concave; For 0 <

t− s < 1, by a similar argument, it is deduced that the function zs,t(x) is convex.

By (15) and Lemma 4, we have

lim
x→∞

z′s,t(x) = lim
x→∞

[(
Γ(x+ t)
Γ(x+ s)

)1/(t−s)
ψ(x+ t)− ψ(x+ s)

t− s

]
− 1

= lim
x→∞

[(
xs−t

Γ(x+ t)
Γ(x+ s)

)1/(t−s)
x[ψ(x+ t)− ψ(x+ s)]

t− s

]
− 1

=
[

lim
x→∞

(
xs−t

Γ(x+ t)
Γ(x+ s)

)]1/(t−s) lim
x→∞

{x[ψ(x+ t)− ψ(x+ s)]}

t− s
− 1

=
{

lim
x→∞

[
1 +

(t− s)(s+ t− 1)
2x

+O

(
1
x2

)]}1/(t−s)

× 1
t− s

lim
x→∞

{
x ln

x+ t

x+ s
+

(t− s)x
2(x+ t)(x+ s)

+ x

[
O

(
1

(x+ t)2

)
+O

(
1

(x+ s)2

)]}
− 1

=
1

t− s
lim
x→∞

(
x ln

x+ t

x+ s

)
− 1

= 0.

For t− s > 1, z′′s,t(x) ≤ 0 implies z′s,t(x) is decreasing, thus z′s,t(x) > 0 and zs,t(x)

is increasing. For 0 < t − s < 1, z′′s,t(x) ≥ 0 implies z′s,t(x) is increasing, thus

z′s,t(x) < 0 and zs,t(x) is decreasing.

Secondly, let us further consider the cases of s > t ≥ 0. For s − t > 1, the

function zs,t(x) = zt,s(x) is concave and increasing; For 0 < s− t < 1, the function

zs,t(x) = zt,s(x) is convex and decreasing.
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Summing up, the function zs,t(x) is convex and decreasing for |t− s| < 1 and

concave and increasing for |t− s| > 1. The proof is complete.

4. Some remarks

A function f is said to be completely monotonic on an interval I if f has deriva-

tives of all orders on I and

(−1)nf (n)(x) ≥ 0 (21)

for x ∈ I and n ≥ 0.

A positive function f is said to be logarithmically completely monotonic on an

interval I if its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 (22)

for k ∈ N on I.

The notion “logarithmically completely monotonic function” was introduced by

F. Qi, B.-N. Guo and Ch.-P. Chen in [14, 15, 16]. The following very useful,

important and key proposition was proved in [2, 14, 15, 16], which tells us that the

class of logarithmically completely monotonic functions is a subclass of completely

monotonic functions and then it is meaningful to study it.

Proposition 1 ([2, 14, 15, 16]). A logarithmically completely monotonic function

is also completely monotonic.

Since z′′s,t(x) = Ψ′′s,t(x), then from Theorem 1, the following is immediately

obtained.

Proposition 2. The function Ψs,t(x) is either convex for |t− s| < 1 or concave

for |t− s| > 1.

Remark 3. In the article [11], using some monotonicity results and inequalities

of the generalized weighted mean values with two parameters in [5, 8, 9, 19],

it was verified that the functions
[
Γ(s)

/
Γ(r)

]1/(s−r), [Γ(s, x)
/
Γ(r, x)

]1/(s−r) and[
γ(s, x)

/
γ(r, x)

]1/(s−r) are increasing in r > 0, s > 0 and x > 0, where Γ(s),

Γ(s, x) and γ(s, x) denote the gamma and incomplete gamma functions with usual

notation. From this, some monotonicity results of functions involving the gamma

or incomplete gamma functions and inequalities relating to Gautschi-Kershaw in-

equalities are deduced or extended.
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Proposition 3. The function 1
Ψs,t(x)

is logarithmically completely monotonic.

Proof. Taking logarithm of Ψs,t(x) reveals

lnΨs,t(x) =
lnΓ(x+ t)− ln Γ(x+ s)

t− s

=
1

t− s

∫ t

s

ψ(x+ u) du
(23)

and

[lnΨs,t(x)](k) =
1

t− s

∫ t

s

ψ(k)(x+ u) du =
∫ 1

0

ψ(k)
(
x+ (1− u)s+ ut

)
du (24)

for k ∈ N. It is clear that (−1)k[lnΨs,t(x)](k) ≤ 0, so, the reciprocal of Ψs,t(x) is

logarithmically completely monotonic. �

Let s and t be nonnegative numbers and α = min{s, t}. For x ∈ (−α,∞), define

µs,t(x) =
exp

[
ψ
(
x+ s+t

2

)]
Ψs,t(x)

(25)

and

Zs,t(x) =


exp

[
ψ

(
x+

s+ t

2

)]
−Ψs,t(x), s 6= t,

0, s = t.

(26)

The function Zs,t(x) can be rewritten as

Zs,t(x) = Ψs,t(x)
[
µs,t(x)− 1

]
. (27)

Using the terminology “logarithmically completely monotonic function” defined

as above, Theorem 5 on page 250 in [4] can be restated as follows.

Proposition 4 ([4, Theorem 5]). The function µs,t(x) is logarithmically completely

monotonic. Consequently,

exp
[
ψ

(
x+

s+ t

2

)]
>

[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)
. (28)

Proof. The function ν(x) in [4, Theorem 5] can be rewritten as

ν(x) = ln
{

exp
[
ψ

(
x+

s+ t

2

)]}
− lnΨs,t(x) = lnµs,t(x). (29)

Since ν(x) is completely monotonic, then by definition of completely monotonic

function we have

(−1)k[ν(x)](k) = (−1)k
[
lnµs,t(x)

](k) ≥ 0 (30)
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for all nonnegative integer k. The case of k = 0 means the inequality (28), the right

hand side of inequality (21) in [4, p. 247] with β = s+t
2 ; the case of k ≥ 1 shows

by definition of logarithmically completely monotonic function that the function

lnµs,t(x) is logarithmically completely monotonic. �

There are two open problems in [4]. The first one states that the function Zs,t(x)

is convex and decreasing. Although an affirmative or positive answer is not founded

at present, but there are several hints and clues to strongly support us to pose the

following more profound conjecture.

Open Problem 1. The function Zs,t(x) is completely monotonic.

In [4], as a corollary of Theorem 1 the following inequality was proved:

Ψs,t(x) ≤
t− s

ψ(x+ t)− ψ(x+ s)
(31)

holds for |t− s| < 1 and with reversed sign if |t− s| > 1.

Let s and t be nonnegative numbers and α = min{s, t}. Inequality (31) remainds

us to define

Ps,t(x) = Ψs,t(x)
ψ(x+ t)− ψ(x+ s)

t− s
(32)

and

Qs,t(x) =
t− s

ψ(x+ t)− ψ(x+ s)
−Ψs,t(x) (33)

for x ∈ (−α,∞) and to pose the following

Open Problem 2. The functions Ps,t(x) and Qs,t(x) are completely monotonic.
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