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Abstract. Classical inequalities like Jensen and its reverse are
used to obtain some elementary numerical inequalities for convex
functions. Furthermore, imposing restrictions on the data points
several new constrained inequalities are given.

1. Introduction

It is well known ([1],[2]) that a continous function, f, convex in a real
interval I ⊆ R has the property

(1.1) f

(
1

Pn

n∑
k=1

pkak

)
≤ 1

Pn

n∑
k=1

pkf(ak)

where ak ∈ I, 1 ≤ k ≤ n are given data points and p1, p2, · · · , pn is a
set of nonnegative real numbers constrained by

∑j
k=1 pk = Pj. If f is

concave the preceding inequality is reversed.
A broad consideration of inequalities for convex functions can be
found, among others, in ([3],[4]). Furthermore, in [5] a reverse of
Jensen’s inequality is presented. It states that if p1, p2, · · · , pn are real
numbers such that p1 > 0, pk ≤ 0 for 2 ≤ k ≤ n and Pn > 0, then
holds

(1.2) f

(
1

Pn

n∑
k=1

pkak

)
≥ 1

Pn

n∑
k=1

pkf(ak)

where f : I → R is a convex function in I and ak ∈ I, 1 ≤ k ≤ n are

such that
1

Pn

∑n
k=1 pkxk ∈ I. If f is concave (1.2) is reversed. Our aim

in this paper is to use the preceding results to get new inequalities
for convex functions. In addition, when the x′

ks are constrained some
inequalities are obtained.
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2. Unconstrained Inequalities

In the sequel, aplying the preceding results and some numerical iden-
tities, some elementary inequalities are obtained. We begin with:

Theorem 2.1. Let a0, a1, . . . , an be nonnegative real numbers. Then,
the following inequality

exp

[
n∑

k=0

(
n

k

)
ak

2n

]
≤ 1

8n

[
n∑

k=0

(
n

k

)
eak

(1 + ak)2

][
n∑

k=0

(
n

k

)
(1 + ak)

]2

holds.

Proof. Since f(t) =
et

(1 + t)2
is convex in [0, +∞), then setting pk =(

n
k

)
/2n, 0 ≤ k ≤ n, into (1.1) and taking into account the well known

identity
∑n

k=0

(
n
k

)
= 2n, we have

exp

((
n

k

)
ak

2n

)[
1 +

1

2n

n∑
k=0

(
n

k

)
ak

]−2

≤ 1

2n

n∑
k=0

(
n

k

)
eak

(1 + ak)2

After rearranging terms, the inequality claimed immediately follows
and the proof is complete. �

Theorem 2.2. Let p1, p2, · · · , pn be a set of nonnegative real num-
bers constrained by

∑j
k=1 pk = Pj. If a1, a2, · · · , an are positive real

numbers, then holds[
n∏

k=1

(
ak +

√
1 + a2

k

)pk

]1/Pn

≤ 1

Pn

n∑
k=1

pkak +

√√√√1 +

(
1

Pn

n∑
k=1

pkak

)2

Proof. Let f : (0, +∞) → R be the function defined by f(t) =

ln(t +
√

1 + t2). Then, we have f ′(t) =
1√

1 + t2
> 0 and f ′′(t) =

− t√
(1 + t2)3

≤ 0. Therefore, f is concave and applying (1.1) yields

ln

 1

Pn

n∑
k=1

pkak +

√√√√1 +

(
1

Pn

n∑
k=1

pkak

)2


≥ 1

Pn

n∑
k=1

pk ln

(
ak +

√
1 + a2

k

)
= ln

[
n∏

k=1

(
ak +

√
1 + a2

k

)pk

]1/Pn
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Taking into account that f(t) = log(t) is injective, the statement
immediately follows and this completes the proof. �

Setting pk =
1

n
, 1 ≤ k ≤ n into the preceding result we get

Corollary 2.3. Let a1, a2, · · · , an be a set of positive real numbers.
Then holds

n∏
k=1

(
ak +

√
1 + a2

k

)1/n

≤ 1

n

 n∑
k=1

ak +

√√√√n2 +

(
n∑

k=1

ak

)2


Let Tn be the nth triangular number defined by Tn =
n(n + 1)

2
. Then,

setting ak = Tk, 1 ≤ k ≤ n into the preceding result, we get

Corollary 2.4. For all n ≥ 1, holds
n∏

k=1

(
Tk +

√
1 + T 2

k

)1/n

≤ 1

3

(
Tn+1 +

√
9 + T 2

n+1

)
An interesting result involving Fibonacci numbers that can be proved
using convex functions is the following

Theorem 2.5. Let n be a positive integer and ` be a whole number.
Then, holds(

F `
1 + F `

2 + ... + F `
n

) [ 1

F `−4
1

+
1

F `−4
2

+ ... +
1

F `−4
n

]
≥ F 2

nF 2
n+1

where Fn is the nth Fibonacci number defined by F0 = 0, F1 = 1 and
for all n ≥ 2, Fn = Fn−1 + Fn−2.

Proof. Taking into account that F 2
1 + F 2

2 + · · · + F 2
n = FnFn+1, as it

is well known, and the fact that the function f : (0,∞) → R, defined

by f(t) = 1/t is convex, we get after setting pi =
F 2

i

FnFn+1

, 1 ≤ i ≤ n

and ai = FnF
`−2
i , 1 ≤ i ≤ n :

1
F `

1

Fn+1
+

F `
2

Fn+1
+ ... + F `

n

Fn+1

≤ 1

F 2
nFn+1

[
1

F `−4
1

+
1

F `−4
2

+ ... +
1

F `−4
n

]
From the preceding expression immediately follows(

F `
1 + F `

2 + ... + F `
n

) [ 1

F `−4
1

+
1

F `−4
2

+ ... +
1

F `−4
n

]
≥ F 2

nF 2
n+1

and this completes the proof. �
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Finally, using the reverse Jensen’s inequality, we state and proof

Theorem 2.6. Let a0, a1, . . . , an be positive real numbers such that
a0 ≥ a1 ≥ · · · ≥ an and let p0 = n(n+1) and pk = −k, k = 1, 2, . . . , n.
Then

(2.1)

(
n∑

k=0

pkak

)(
n∑

k=0

pk

ak

)
≤
(

n + 1

2

)2

Proof. Setting f(t) =
1

t
, that is convex in (0, +∞), and taking into

account that
n∑

k=1

k =
n(n + 1)

2
from (1.2) we have

f

(
2

n(n + 1)

n∑
k=0

pkak

)
≥ 2

n(n + 1)

n∑
k=0

pkf(ak)

or (
2

n(n + 1)

n∑
k=0

pkak

)−1

≥ 2

n(n + 1)

n∑
k=0

pk

ak

from which, after rearranging terms, (2.1) immediately follows and the
proof is complete. �

3. Constrained Inequalities

In the sequel, imposing restrictions on x1, x2, · · · , xn, some inequalities
with constraints are given. We begin with the following

Theorem 3.1. Let p1, p2, · · · , pn ∈ [0, 1) be a set of real numbers con-

strained by
∑j

k=1 pk = Pj. If x1, x2, · · · , xn are positive real numbers

such that
1

x1

+
1

x2

+ · · ·+ 1

xn

= 1, then holds(
n∑

k=1

pkxk

)(
n∑

k=1

1

xpk

k

)
≥ P 2

n .

Proof. Taking into account the weighted AM-HM inequality, we have

1

Pn

n∑
k=1

pkxk ≥
Pn∑n

k=1

(
pk

xk

)
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Since 0 ≤ pk < 1 for 1 ≤ k ≤ n, then
pk

xk

≤ 1

xpk

k

. From which, we get

Pn∑n
k=1

(
pk

xk

) ≥ Pn
n∑

k=1

1

xpk

k

Then,

1

Pn

n∑
k=1

pkxk ≥
Pn

n∑
k=1

1

xpk

k

and the statement immediately follows. �

Corollary 3.2. If x1, x2, · · · , xn are positive real numbers such that
1

x1

+
1

x2

+ · · ·+ 1

xn

= 1, then
1

n
≤

n∑
k=1

1

x
1/xk

k

.

Proof. Setting pk = 1/xk, 1 ≤ k ≤ n into Theorem 3.1 yields(
n∑

k=1

pkxk

)(
n∑

k=1

1

xpk

k

)
= n

(
n∑

k=1

1

x
1/xk

k

)
≥

(
n∑

k=1

1

xk

)2

= 1

completing the proof. �

Finally, we give two inequalities similar to the ones obtained in [6] for
the triangle.

Theorem 3.3. Let a, b and c be positive real numbers such that a +
b + c = 1. Then, the following inequality

aa(a+2b) · bb(b+2c) · cc(c+2a) ≥ 1

3
holds.

Proof. Since a + b + c = 1, then a2 + b2 + c2 + 2(ab + bc + ca) = 1.
Therefore, choosing p1 = a2, p2 = b2, p3 = c2, p4 = 2ab, p5 = 2bc, p6 =
2ca and x1 = 1/a, x2 = 1/b, x3 = 1/c, x4 = 1/a, x5 = 1/b, x6 = 1/c,
and applying Jensen’s inequality to the function f(t) = ln t that is
concave for all t ≥ 0, we obtain

ln

(
a2 1

a
+ b2 1

b
+ c2 1

c
+ 2ab

1

a
+ 2bc

1

b
+ 2ca

1

c

)
≥ a2 ln

1

a
+ b2 ln

1

b
+ c2 ln

1

c
+ 2ab ln

1

a
+ 2bc ln

1

b
+ 2ca ln

1

c
.
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From which, we get ln 3 ≥ ln

(
1

aa(a+2b) · bb(b+2c) · cc(c+2a)

)
and this

completes the proof. �

Theorem 3.4. Let a, b, c be positive numbers such that ab+ bc+ ca =
abc. Then, holds

b
√

a
c
√

b a
√

c(a + b + c) ≥ abc.

Proof. Since ab + bc + ca = abc, then 1
a

+ 1
b

+ 1
c

= 1. So, choosing

p1 = 1
a
, p2 = 1

b
, p3 = 1

c
and x1 = ab, x2 = bc, x3 = ca, and applying

Jensen’s inequality to f(t) = ln t again, we get

ln (a + b + c) ≥ 1

a
ln ab +

1

b
ln bc +

1

c
ln ca

or
a + b + c ≥ a

1
a
+ 1

c · b
1
b
+ 1

a · c
1
c
+ 1

b

Now, taking into account that 1
a

+ 1
b

+ 1
c

= 1, we obtain: a + b + c ≥
a1− 1

b · b1− 1
c · c1− 1

a , from which the statement immediately follows and
the proof is complete. �
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