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Abstract. In this paper we find some lower and upper bounds of the form
n

Hn−c
for the function π(n), in which Hn =

∑n
k=1

1
k
. Then, considering

H(x) = Ψ(x+1)+γ as generalization of Hn, in which Ψ(x) = d
dx

log Γ(x) and
γ is Euler constant, we find some lower and upper bounds of the form x

Ψ(x)−c

for the function π(x).

1. Introduction

As usual, let P be the set of all primes and π(x) = #P∩ [2, x]. If Hn =
∑n

k=1
1
k ,

then easily we have

(1.1) γ + log n < Hn < 1 + log n (n > 1),

in which γ is Euler constant. So, Hn = log n + O(1) and considering the prime
number theorem [1], we obtain

π(n) =
n

Hn + O(1)
+ o

(
n

log n

)
.

Thus, comparing n
Hn+O(1) with π(n) seems to be a nice problem. In 1959, L.

Locker-Ernst [3] affirms that n
Hn− 3

2
is very close to π(n) and in 1999, L. Panaitopol

[5] proved that for n ≥ 1429 it is actually a lower bound for π(n).
In this paper we improve Panaitopol’s result by proving n

Hn−a < π(n) for every
n ≥ 3299, in which a ≈ 1.546356705. Also, we find same upper bound for π(n).
Then we consider generalization of Hn as a real value function which has been
studied by J. Sándor [6] in 1988; for x > 0 let Ψ(x) = d

dx log Γ(x), in which
Γ(x) =

∫∞
0

e−ttx−1dt is well-known gamma function. Since Γ(x + 1) = xΓ(x) and
Γ(1) = −γ, we have Hn = Ψ(n + 1) + γ, and this relation led him to define

(1.2)

{
H : (0, 1) −→ R,

H(x) = Ψ(x + 1) + γ,

as a natural generalization of Hn, and more naturally, it motivated us to find some
bounds for π(x) concerning Ψ(x). In our proofs, we use the obvious relation

(1.3) Ψ(x + 1) = Ψ(x) +
1
x

.

Also, we need some bounds of the form x
log x−1− c

log x
, which we yield them by using

the following known sharp bounds [2] for π(x)

(1.4)
x

log x

(
1 +

1
log x

+
1.8

log2 x

)
≤ π(x) (x ≥ 32299),
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and

(1.5) π(x) ≤ x

log x

(
1 +

1
log x

+
2.51

log2 x

)
(x ≥ 355991).

2. Bounds of the form x
log x−1− c

log x

Lower Bounds. We are going to find suitable values of a, in which x
log x−1− a

log x
≤

π(x). Considering (1.4) and letting y = log x, we should study the inequality
1

y−1− a
y
≤ 1

y (1 + 1
y + 9

5y2 ), which is equivalent with y4

y2−y−a ≤ y2 + y + 9
5 and sup-

posing y2 − y− a > 0, it will be equivalent with ( 4
5 − a)y2 − (a + 9

5 )y− 9a
5 ≥ 0 and

this force 4
5 − a > 0, or a < 4

5 . Let a = 4
5 − ε for some ε > 0. Therefore we should

study 1

y−1−
4
5−ε

y

≤ 1
y (1 + 1

y + 9
5y2 ), which is equivalent with

(2.1)
25εy2 + (25ε− 65)y + (45ε− 36)

5y3
(
5y2 − 5y + (5ε− 4)

) ≥ 0.

The equation 25εy2 + (25ε − 65)y + (45ε − 36) = 0 has discriminant ∆1 = 169 +
14ε − 155ε2, which is non-negative for −1 ≤ ε ≤ 169

155 and the greater root of it,
is y1 = 13−5ε+

√
∆1

10ε . Also, the equation 5y2 − 5y + (5ε − 4) = 0 has discriminant
∆2 = 105 − 100ε, which is non-negative for ε ≤ 21

20 and the greater root of it, is
y2 = 1

2 +
√

∆2
10 . Thus, (2.1) holds for every 0 < ε ≤ min{ 169

155 , 21
20} = 21

20 , with
y ≥ max

0<ε≤ 21
20

{y1, y2} = y1. Therefore, we have proved the following theorem:

Theorem 2.1. For every 0 < ε ≤ 21
20 , the inequality
x

log x− 1−
4
5−ε

log x

≤ π(x),

holds for all

x ≥ max
{

32299, e
13−5ε+

√
169+14ε−155ε2
10ε

}
.

Corollary 2.2. For every x ≥ 3299, we have
x

log x− 1 + 1
4 log x

≤ π(x).

Proof. Taking ε = 21
20 in above theorem, we yield the result for x ≥ 32299. For

3299 ≤ x ≤ 32298 check it by computer. �

Upper Bounds. Similar to lower bounds, we should search suitable values of
b in which π(x) ≤ x

log x−1− b
log x

. Considering (1.5) and letting y = log x, we should

study 1
y (1 + 1

y + 251
100y2 ) ≤ 1

y−1− b
y

. Assuming y2 − y − b > 0, it will be equivalent

with ( 151
100 − b)y2 − (b + 251

100 )y − 251b
100 ≤ 0, which force b ≥ 151

100 . Let b = 151
100 + ε for

some ε ≥ 0. Therefore we should study 1
y (1 + 1

y + 251
100y2 ) ≤ 1

y−1−
151
100 +ε

y

, which is

equivalent with

(2.2)
10000εy2 + (10000ε + 40200)y + (25100ε + 37901)

100y3
(
100y2 − 100y − (100ε + 151)

) ≥ 0.
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The quadratic equation in numerator of (2.2) has discriminant ∆1 = 40401 −
17801ε − 22600ε2, which is non-negative for − 40401

22600 ≤ ε ≤ 1 and the greater root
of it, is y1 = −201−50ε+

√
∆1

100ε . Also, the quadratic equation in denominator of it, has
discriminant ∆2 = 44 + 25ε, which is non-negative for − 44

25 ≤ ε and the greater
root of it, is y2 = 1

2 +
√

∆2
5 . Thus, (2.2) holds for every 0 ≤ ε ≤ min{1,+∞} = 1,

with y ≥ max
0≤ε≤1

{y1, y2} = y2. Finally, we note that for 0 ≤ ε ≤ 1, y2(ε) is strictly

increasing and so, 6 < e
1
2+

√
44
5 = ey1(0) ≤ ey1(ε) ≤ ey1(1) = e

1
2+

√
69
5 < 9. Therefore,

we obtain the following theorem:

Theorem 2.3. For every 0 ≤ ε ≤ 1, we have

π(x) ≤ x

log x− 1−
151
100+ε

log x

(x ≥ 355991).

Corollary 2.4. For every x ≥ 7, we have

π(x) ≤ x

log x− 1− 151
100 log x

.

Proof. Taking ε = 0 in above theorem, we yield the result for x ≥ 355991. For
7 ≤ x ≤ 35991 it has been checked by computer [4]. �

3. Bounds of the form n
Hn−c and x

Ψ(x)−c

Theorem 3.1. (i) For every n ≥ 3299, we have
n

Hn − a
< π(n),

in which a = γ + 1− 1
4 log 3299 ≈ 1.546356705.

(ii) For every n ≥ 9, we have

π(n) <
n

Hn − b
,

in which b = 2 + 151
100 log 7 ≈ 2.775986497.

Proof. For n ≥ 3299, we have γ +log n > a+log n− 1+ 1
4 log n and considering this

with left hand side of (1.1), we obtain n
Hn−a < x

log x−1+ 1
4 log x

and this inequality

with corollary 2.2, yield the first part of theorem.
For n ≥ 9, we have b + log n − 1 − 151

100 log n ≥ 1 + log n and considering this with
right hand side of (1.1), we obtain x

log x−1− 151
100 log x

< n
Hn−b . Considering this, with

corollary 2.4, complete the proof. �

Theorem 3.2. (i) For every x ≥ 3299, we have
x

Ψ(x)−A
< π(x),

in which A = 3298
3299 −

1
4 log 3299 ≈ 0.9688379174.

(ii) For every x ≥ 9, we have

π(x) <
x

Ψ(x)−B
,

in which B = 2 + 151
100 log 7 − γ ≈ 2.198770832.
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Proof. Let Hx be the step function defined by Hx = Hn for n ≤ x < n + 1.
Considering (1.2) we have H(x− 1) < Hx ≤ H(x).
For x ≥ 3299 by considering part (i) of previous theorem, we have

π(x) >
x

Hx − a
≥ x

H(x)− a
=

x

Ψ(x + 1) + γ − a
.

Thus, by considering (1.3) we obtain

π(x) >
x

Ψ(x) + 1
x + γ − a

≥ x

Ψ(x) + 1
3299 + γ − a

=
x

Ψ(x)−A
,

in which A = a− γ − 1
3299 = 3298

3299 −
1

4 log 3299 .
For x ≥ 9 by considering second part of previous theorem, we obtain

π(x) <
x

Hx − b
<

x

H(x− 1)− b
=

x

Ψ(x) + γ − b
=

x

Ψ(x)−B
,

in which B = b− γ = 2 + 151
100 log 7 − γ, and this completes the proof. �

Inverse of this theorem seems to be nice; because using it, for every x ≥ 3299 we
obtain

x

π(x)
+ A < Ψ(x) <

x

π(x)
+ B.

Moreover, considering this inequality with (1.4) and (1.5), we yield the following
bounds for x ≥ 355991

log x

1 + 1
log x + 2.51

log2 x

+ A < Ψ(x) <
log x

1 + 1
log x + 1.8

log2 x

+ B.
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[6] József Sándor, Remark on a function which generalizes the harmonic series, C. R. Acad.
Bulgare Sci., 41(1988), no. 5, 19-21.

Institute for Advanced, Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran.
E-mail address: mhassani@iasbs.ac.ir


