APPROXIMATION OF $\pi(x)$ BY $\Psi(x)$

MEHDI HASSANI

Abstract

In this paper we find some lower and upper bounds of the form $\frac{n}{H_{n}-c}$ for the function $\pi(n)$, in which $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Then, considering $H(x)=\Psi(x+1)+\gamma$ as generalization of H_{n}, in which $\Psi(x)=\frac{d}{d x} \log \Gamma(x)$ and γ is Euler constant, we find some lower and upper bounds of the form $\frac{x}{\Psi(x)-c}$ for the function $\pi(x)$.

1. Introduction

As usual, let \mathbb{P} be the set of all primes and $\pi(x)=\# \mathbb{P} \cap[2, x]$. If $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$, then easily we have

$$
\begin{equation*}
\gamma+\log n<H_{n}<1+\log n \quad(n>1) \tag{1.1}
\end{equation*}
$$

in which γ is Euler constant. So, $H_{n}=\log n+O(1)$ and considering the prime number theorem [1], we obtain

$$
\pi(n)=\frac{n}{H_{n}+O(1)}+o\left(\frac{n}{\log n}\right)
$$

Thus, comparing $\frac{n}{H_{n}+O(1)}$ with $\pi(n)$ seems to be a nice problem. In 1959, L. Locker-Ernst [3] affirms that $\frac{n}{H_{n}-\frac{3}{2}}$ is very close to $\pi(n)$ and in 1999, L. Panaitopol [5] proved that for $n \geq 1429$ it is actually a lower bound for $\pi(n)$.
In this paper we improve Panaitopol's result by proving $\frac{n}{H_{n}-a}<\pi(n)$ for every $n \geq 3299$, in which $a \approx 1.546356705$. Also, we find same upper bound for $\pi(n)$. Then we consider generalization of H_{n} as a real value function which has been studied by J. Sándor [6] in 1988; for $x>0$ let $\Psi(x)=\frac{d}{d x} \log \Gamma(x)$, in which $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$ is well-known gamma function. Since $\Gamma(x+1)=x \Gamma(x)$ and $\Gamma(1)=-\gamma$, we have $H_{n}=\Psi(n+1)+\gamma$, and this relation led him to define

$$
\left\{\begin{array}{l}
H:(0,1) \longrightarrow \mathbb{R} \tag{1.2}\\
H(x)=\Psi(x+1)+\gamma
\end{array}\right.
$$

as a natural generalization of H_{n}, and more naturally, it motivated us to find some bounds for $\pi(x)$ concerning $\Psi(x)$. In our proofs, we use the obvious relation

$$
\begin{equation*}
\Psi(x+1)=\Psi(x)+\frac{1}{x} \tag{1.3}
\end{equation*}
$$

Also, we need some bounds of the form $\frac{x}{\log x-1-\frac{c}{\log x}}$, which we yield them by using the following known sharp bounds [2] for $\pi(x)$

$$
\begin{equation*}
\frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{1.8}{\log ^{2} x}\right) \leq \pi(x) \quad(x \geq 32299) \tag{1.4}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\pi(x) \leq \frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{2.51}{\log ^{2} x}\right) \quad(x \geq 355991) \tag{1.5}
\end{equation*}
$$

\]

2. BOUNDS OF THE FORM $\frac{x}{\log x-1-\frac{c}{\log x}}$

Lower Bounds. We are going to find suitable values of a, in which $\frac{x}{\log x-1-\frac{a}{\log x}} \leq$ $\pi(x)$. Considering (1.4) and letting $y=\log x$, we should study the inequality $\frac{1}{y-1-\frac{a}{y}} \leq \frac{1}{y}\left(1+\frac{1}{y}+\frac{9}{5 y^{2}}\right)$, which is equivalent with $\frac{y^{4}}{y^{2}-y-a} \leq y^{2}+y+\frac{9}{5}$ and supposing $y^{2}-y-a>0$, it will be equivalent with $\left(\frac{4}{5}-a\right) y^{2}-\left(a+\frac{9}{5}\right) y-\frac{9 a}{5} \geq 0$ and this force $\frac{4}{5}-a>0$, or $a<\frac{4}{5}$. Let $a=\frac{4}{5}-\epsilon$ for some $\epsilon>0$. Therefore we should study $\frac{1}{y-1-\frac{4}{5}-\epsilon} \leq \frac{1}{y}\left(1+\frac{1}{y}+\frac{9}{5 y^{2}}\right)$, which is equivalent with

$$
\begin{equation*}
\frac{25 \epsilon y^{2}+(25 \epsilon-65) y+(45 \epsilon-36)}{5 y^{3}\left(5 y^{2}-5 y+(5 \epsilon-4)\right)} \geq 0 \tag{2.1}
\end{equation*}
$$

The equation $25 \epsilon y^{2}+(25 \epsilon-65) y+(45 \epsilon-36)=0$ has discriminant $\Delta_{1}=169+$ $14 \epsilon-155 \epsilon^{2}$, which is non-negative for $-1 \leq \epsilon \leq \frac{169}{155}$ and the greater root of it, is $y_{1}=\frac{13-5 \epsilon+\sqrt{\Delta_{1}}}{10 \epsilon}$. Also, the equation $5 y^{2}-5 y+(5 \epsilon-4)=0$ has discriminant $\Delta_{2}=105-100 \epsilon$, which is non-negative for $\epsilon \leq \frac{21}{20}$ and the greater root of it, is $y_{2}=\frac{1}{2}+\frac{\sqrt{\Delta_{2}}}{10}$. Thus, (2.1) holds for every $0<\epsilon \leq \min \left\{\frac{169}{155}, \frac{21}{20}\right\}=\frac{21}{20}$, with $y \geq \max _{0<\epsilon \leq \frac{21}{20}}\left\{y_{1}, y_{2}\right\}=y_{1}$. Therefore, we have proved the following theorem:

Theorem 2.1. For every $0<\epsilon \leq \frac{21}{20}$, the inequality

$$
\frac{x}{\log x-1-\frac{\frac{4}{5}-\epsilon}{\log x}} \leq \pi(x)
$$

holds for all

$$
x \geq \max \left\{32299, e^{\frac{13-5 \epsilon+\sqrt{169+14 \epsilon-155 \epsilon^{2}}}{10 \epsilon}}\right\} .
$$

Corollary 2.2. For every $x \geq 3299$, we have

$$
\frac{x}{\log x-1+\frac{1}{4 \log x}} \leq \pi(x) .
$$

Proof. Taking $\epsilon=\frac{21}{20}$ in above theorem, we yield the result for $x \geq 32299$. For $3299 \leq x \leq 32298$ check it by computer.

Upper Bounds. Similar to lower bounds, we should search suitable values of b in which $\pi(x) \leq \frac{x}{\log x-1-\frac{b}{\log x}}$. Considering (1.5) and letting $y=\log x$, we should study $\frac{1}{y}\left(1+\frac{1}{y}+\frac{251}{100 y^{2}}\right) \leq \frac{1}{y-1-\frac{b}{y}}$. Assuming $y^{2}-y-b>0$, it will be equivalent with $\left(\frac{151}{100}-b\right) y^{2}-\left(b+\frac{251}{100}\right) y-\frac{251 b}{100} \leq 0$, which force $b \geq \frac{151}{100}$. Let $b=\frac{151}{100}+\epsilon$ for some $\epsilon \geq 0$. Therefore we should study $\frac{1}{y}\left(1+\frac{1}{y}+\frac{251}{100 y^{2}}\right) \leq \frac{1}{y-1-\frac{151}{\frac{100}{y}}}$, which is equivalent with

$$
\begin{equation*}
\frac{10000 \epsilon y^{2}+(10000 \epsilon+40200) y+(25100 \epsilon+37901)}{100 y^{3}\left(100 y^{2}-100 y-(100 \epsilon+151)\right)} \geq 0 \tag{2.2}
\end{equation*}
$$

The quadratic equation in numerator of (2.2) has discriminant $\Delta_{1}=40401-$ $17801 \epsilon-22600 \epsilon^{2}$, which is non-negative for $-\frac{40401}{22600} \leq \epsilon \leq 1$ and the greater root of it, is $y_{1}=\frac{-201-50 \epsilon+\sqrt{\Delta_{1}}}{100 \epsilon}$. Also, the quadratic equation in denominator of it, has discriminant $\Delta_{2}=44+25 \epsilon$, which is non-negative for $-\frac{44}{25} \leq \epsilon$ and the greater root of it, is $y_{2}=\frac{1}{2}+\frac{\sqrt{\Delta_{2}}}{5}$. Thus, (2.2) holds for every $0 \leq \epsilon \leq \min \{1,+\infty\}=1$, with $y \geq \max _{0 \leq \epsilon \leq 1}\left\{y_{1}, y_{2}\right\}=y_{2}$. Finally, we note that for $0 \leq \epsilon \leq 1, y_{2}(\epsilon)$ is strictly increasing and so, $6<e^{\frac{1}{2}+\frac{\sqrt{44}}{5}}=e^{y_{1}(0)} \leq e^{y_{1}(\epsilon)} \leq e^{y_{1}(1)}=e^{\frac{1}{2}+\frac{\sqrt{69}}{5}}<9$. Therefore, we obtain the following theorem:

Theorem 2.3. For every $0 \leq \epsilon \leq 1$, we have

$$
\pi(x) \leq \frac{x}{\log x-1-\frac{151}{\frac{100}{100} x}} \quad(x \geq 355991)
$$

Corollary 2.4. For every $x \geq 7$, we have

$$
\pi(x) \leq \frac{x}{\log x-1-\frac{151}{100 \log x}} .
$$

Proof. Taking $\epsilon=0$ in above theorem, we yield the result for $x \geq 355991$. For $7 \leq x \leq 35991$ it has been checked by computer [4].

$$
\text { 3. BOUNDS OF THE FORM } \frac{n}{H_{n}-c} \text { AND } \frac{x}{\Psi(x)-c}
$$

Theorem 3.1. (i) For every $n \geq 3299$, we have

$$
\frac{n}{H_{n}-a}<\pi(n)
$$

in which $a=\gamma+1-\frac{1}{4 \log 3299} \approx 1.546356705$.
(ii) For every $n \geq 9$, we have

$$
\pi(n)<\frac{n}{H_{n}-b},
$$

in which $b=2+\frac{151}{100 \log 7} \approx 2.775986497$.
Proof. For $n \geq 3299$, we have $\gamma+\log n>a+\log n-1+\frac{1}{4 \log n}$ and considering this with left hand side of (1.1), we obtain $\frac{n}{H_{n}-a}<\frac{x}{\log x-1+\frac{1}{4 \log x}}$ and this inequality with corollary 2.2 , yield the first part of theorem.
For $n \geq 9$, we have $b+\log n-1-\frac{151}{100 \log n} \geq 1+\log n$ and considering this with right hand side of (1.1), we obtain $\frac{x}{\log x-1-\frac{151}{100 \log x}}<\frac{n}{H_{n}-b}$. Considering this, with corollary 2.4 , complete the proof.

Theorem 3.2. (i) For every $x \geq 3299$, we have

$$
\frac{x}{\Psi(x)-A}<\pi(x)
$$

in which $A=\frac{3298}{3299}-\frac{1}{4 \log 3299} \approx 0.9688379174$.
(ii) For every $x \geq 9$, we have

$$
\pi(x)<\frac{x}{\Psi(x)-B}
$$

in which $B=2+\frac{151}{100 \log 7}-\gamma \approx 2.198770832$.

Proof. Let H_{x} be the step function defined by $H_{x}=H_{n}$ for $n \leq x<n+1$.
Considering (1.2) we have $H(x-1)<H_{x} \leq H(x)$.
For $x \geq 3299$ by considering part (i) of previous theorem, we have

$$
\pi(x)>\frac{x}{H_{x}-a} \geq \frac{x}{H(x)-a}=\frac{x}{\Psi(x+1)+\gamma-a} .
$$

Thus, by considering (1.3) we obtain

$$
\pi(x)>\frac{x}{\Psi(x)+\frac{1}{x}+\gamma-a} \geq \frac{x}{\Psi(x)+\frac{1}{3299}+\gamma-a}=\frac{x}{\Psi(x)-A}
$$

in which $A=a-\gamma-\frac{1}{3299}=\frac{3298}{3299}-\frac{1}{4 \log 3299}$.
For $x \geq 9$ by considering second part of previous theorem, we obtain

$$
\pi(x)<\frac{x}{H_{x}-b}<\frac{x}{H(x-1)-b}=\frac{x}{\Psi(x)+\gamma-b}=\frac{x}{\Psi(x)-B}
$$

in which $B=b-\gamma=2+\frac{151}{100 \log 7}-\gamma$, and this completes the proof.
Inverse of this theorem seems to be nice; because using it, for every $x \geq 3299$ we obtain

$$
\frac{x}{\pi(x)}+A<\Psi(x)<\frac{x}{\pi(x)}+B
$$

Moreover, considering this inequality with (1.4) and (1.5), we yield the following bounds for $x \geq 355991$

$$
\frac{\log x}{1+\frac{1}{\log x}+\frac{2.51}{\log ^{2} x}}+A<\Psi(x)<\frac{\log x}{1+\frac{1}{\log x}+\frac{1.8}{\log ^{2} x}}+B
$$

References

[1] H. Davenport, Multiplicative Number Theory (Second Edition), Springer-Verlag, 1980.
[2] P. Dusart, Inégalités explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59.
[3] L. Locker-Ernst, Bemerkungen über die Verteilung der Primzahlen, Elemente der Mathematik XIV, nr. 1, 1-5, Basel (1959).
[4] L. Panaitopol, A SPECIAL CASE OF THE HARDY-LITTLEWOOD CONJECTURE, Math. Reports, 4(54)(2002), 3, 265-258.
[5] L. Panaitopol, SEVERAL APPROXIMATION OF $\pi(x)$, Mathematical Inequalities \mathcal{E} Applications, Volume 2, Number 3 (1999), 317-324.
[6] József Sándor, Remark on a function which generalizes the harmonic series, C. R. Acad. Bulgare Sci., 41(1988), no. 5, 19-21.

Institute for Advanced, Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran. E-mail address: mhassani@iasbs.ac.ir

[^0]: 1991 Mathematics Subject Classification. 11A41, 26D15, 33B15.
 Key words and phrases. Primes, Harmonic series, Gamma function, Digamma function.

