On the composition of some arithmetic functions,

II.

József Sándor
Department of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca
e-mail: jsandor@math.ubbcluj.ro, jjsandor@hotmail.com

Abstract
We study certain properties and conjectures on the composition of the arithmetic functions \(\sigma, \varphi, \psi\), where \(\sigma\) is the sum of divisors function, \(\varphi\) is Euler’s totient, and \(\psi\) is Dedekind’s function.

AMS subject classification: 11A25, 11N37.

Key Words and Phrases: Arithmetic functions, Makowski-Schinzel conjecture, Sándor’s conjecture, inequalities.

1 Introduction
Let \(\sigma(n)\) denote the sum of divisors of the positive integer \(n\), i.e. \(\sigma(n) = \sum_{d|n} d\), where by convention \(\sigma(1) = 1\). It is well-known that \(n\) is called perfect if \(\sigma(n) = 2n\). Euclid and Euler ([10], [21]) have determined all even perfect numbers, by showing that they are of the form \(n = 2^k(2^{k+1} - 1)\), where \(2^{k+1} - 1\) is a prime \((k \geq 1)\). The primes of the form \(2^{k+1} - 1\) are the so-called Mersenne primes, and at this moment there are known exactly 41 such primes (for the recent discovery of the 41st Mersenne prime, see the site www.ams.org). Probably, there are infinitely many Mersenne primes, but the proof of this result seems unattackerable at present. On the other hand, no odd perfect number is known, and the existence of such numbers is one of the most difficult open problems of Mathematics. D. Suryanarayana [23] defined the notion of superperfect number, i.e. number \(n\) with property \(\sigma(\sigma(n)) = 2n\), and he and H.J. Kanold [23], [11] have obtained the general form of even superperfect numbers. These are \(n = 2^k\), where \(2^{k+1} - 1\) is a prime. Numbers \(n\) with the property \(\sigma(n) = 2n - 1\) have been called almost perfect, while that of \(\sigma(n) = 2n + 1\), quasi-perfect. For many results and conjectures on this topic, see [9], and the author’s book [21] (see Chapter 1).

For an arithmetic function \(f\), the number \(n\) is called \(f\)-perfect, if \(f(n) = 2n\). Thus, the superperfect numbers will be in fact the \(\sigma \circ \sigma\)-perfect numbers where ”\(\circ\)” denotes composition.

The Euler totient function, resp. Dedekind’s arithmetic function are given by
\[\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}), \psi(n) = n \prod_{p|n} (1 + \frac{1}{p}), \]

(1)

where \(p \) runs through the distinct prime divisors of \(n \). Let by convention, \(\varphi(1) = 1, \psi(1) = 1 \). All these functions are multiplicative, i.e. satisfy the functional equation \(f(mn) = f(m)f(n) \) for \((m,n) = 1\). For results on \(\psi \circ \psi \)-perfect, \(\psi \circ \sigma \)-perfect, \(\sigma \circ \psi \)-perfect, \(\psi \circ \varphi \)-perfect numbers, see the first part [18]. Let \(\sigma^*(n) \) be the sum of unitary divisors of \(n \), given by

\[\sigma^*(n) = \prod_{p^\alpha || n} (p^\alpha + 1), \]

(2)

where \(p^\alpha || n \) means that for the prime power \(p^\alpha \) one has \(p^\alpha | n \), but \(p^{\alpha+1} \nmid n \). Let by convention, \(\sigma^*(1) = 1 \). In [18] there are studied also the almost and quasi \(\sigma^* \circ \sigma^* \)-perfect numbers (i.e. satisfying \(\sigma^*(\sigma^*(n)) = 2n + 1 \)), where it is shown that for \(n > 3 \) there are no such numbers. This result has been rediscovered by V. Sitaramaiah and M.V. Subbarao [22].

In 1964, A. Makowski and A. Schinzel [13] conjectured that

\[\sigma(\varphi(n)) \geq \frac{n}{2}, \text{ for all } n \geq 1 \]

(3)

The first results after the Makowski and Schinzel paper were proved by J. Sándor [16], [17]. He proved that (3) holds if and only if

\[\sigma(\varphi(m)) \geq m, \text{ for all odd } m \geq 1 \]

(4)

and obtained a class of numbers satisfying (3) and (4). But (4) holds iff is it true for squarfree \(n \), see [17], [18]. This has been rediscovered by G.L. Cohen and R. Gupta ([4]). Many other partial results have been discovered by C. Pomerance [14], G.L. Cohen [4], A. Grytczuk, F. Luca and M. Wojtowicz [7], [8], F. Luca and C. Pomerance [12], K. Ford [6]. See also [2], [19], [20]. Kevin Ford proved that

\[\sigma(\varphi(n)) \geq \frac{n}{39.4}, \text{ for all } n \]

(5)

In 1988 J. Sándor [15], [16] conjectured that

\[\psi(\varphi(m)) \geq m, \text{ for all odd } m \]

(6)

He showed that (6) is equivalent to

\[\psi(\varphi(n)) \geq \frac{n}{2} \]

(7)

for all \(n \), and obtained a class of number satisfying these inequalities. In 1988 J. Sándor [15] conjectured also that

\[\varphi(\psi(n)) \leq n, \text{ for any } n \geq 2 \]

(8)
and V. Vitek [24] of Praha verified this conjecture for \(n \leq 10^4 \).

In 1990 P. Erdős [5] expressed his opinion that this new conjecture could be as difficult as the Makowski-Schinzel conjecture (3). In 1992 K. Atanassov [3] believed that he obtained a proof of (8), but his proof was valid only for certain special values of \(n \).

By using an advanced computer search, Lehel István Kovács has verified Sándor’s conjecture (8) for all \(n \leq 10^{10} \).

Though, as we will see, conjecture (6) (or (7)) is not generally true, it will be interesting to study classes of numbers, for which this is valid.

The aim of this paper is to study this conjecture and also certain new properties of the above – and related – composite functions.

Basic symbols and notations

- \(\sigma(n) \) = sum of divisors of \(n \),
- \(\sigma^*(n) \) = sum of unitary divisors of \(n \),
- \(\phi(n) \) = Euler’s totient function,
- \(\psi(n) \) = Dedekind’s arithmetic function,
- \(\lfloor x \rfloor \) = integer part of \(x \),
- \(\omega(n) \) = number of distinct divisors of \(n \),
- \(a | b \) = \(a \) divides \(b \),
- \(a \nmid b \) = \(a \) does not divides \(b \),
- \(\text{pr}\{n\} \) = set of distinct prime divisors of \(n \),
- \(f \circ g \) = composition of \(f \) and \(g \).

2 Basic lemmas

Lemma 2.1 \(\phi(ab) \leq a\phi(b) \), for any \(a, b \geq 2 \) \hspace{1cm} (9)
with equality only if \(\text{pr}\{a\} \subset \text{pr}\{b\} \), where \(\text{pr}\{a\} \) denotes the set of distinct prime factors of \(a \).

Proof. \(ab = \prod_{p|a,p \nmid b} p^\alpha \cdot \prod_{q|b,q \nmid a} q^\beta \cdot \prod_{r|b,r \nmid a} r^\gamma \), so \(\frac{\phi(ab)}{ab} = \prod (1 - \frac{1}{p}) \cdot \prod (1 - \frac{1}{q}) \cdot \prod (1 - \frac{1}{r}) \leq \prod (1 - \frac{1}{q}) \cdot \prod (1 - \frac{1}{r}) = \frac{\phi(b)}{b} \), so \(\phi(ab) \leq a\phi(b) \), with equality if "doesn’t exist \(p \)" , i.e. \(p \) with property \(p|a, p \nmid b \). Thus for all \(p|a \) one has also \(p|b \).

Lemma 2.2 If \(\text{pr}\{a\} \notin \text{pr}\{b\} \), then for any \(a, b \geq 2 \) one has
\[\phi(ab) \leq (a - 1)\phi(b), \] \hspace{1cm} (10)

and
\[\psi(ab) \geq (a + 1)\psi(b), \] \hspace{1cm} (11)
Proof. We give only the proof of (10).

Let \(a = \prod p^\alpha \cdot \prod q^\beta \), \(b = \prod r^\gamma \cdot \prod q^\beta' \), where the \(q \) are the common prime factors, and the \(p \in pr\{a\} \) are such that \(p \not\in pr\{b\} \), i.e. suppose that \(\alpha \geq 1 \).

Clearly \(\beta, \beta', \gamma \geq 0 \). Then \(\frac{\sigma(ab)}{\sigma(b)} = a \cdot \prod \left(1 - \frac{1}{p}\right) \leq a - 1 \) iff \(\prod \left(1 - \frac{1}{p}\right) \geq 1 - \frac{1}{a} \).

Now, \(1 - \frac{1}{a} \cdot \prod \left(1 - \frac{1}{p}\right) \geq 1 - \frac{1}{a} \cdot \prod \left(1 - \frac{1}{p}\right) \) by \(\alpha \geq 1 \). The inequality \(1 - \frac{1}{a} \cdot \prod \left(1 - \frac{1}{p}\right) \geq 1 - \frac{1}{a} \cdot \prod \left(1 - \frac{1}{p}\right) \) is trivial, since by putting e.g. \(p - 1 = u \), one gets \(\prod (u + 1) \geq 1 + \prod u \), and this is clear, since \(u > 0 \). There is equality only when there is a single \(u \), i.e. the set of \(p \) such that \(pr\{a\} \not\subset pr\{b\} \) has a single element, at the first power, and all \(\beta = 0 \), i.e. when \(a = p \nmid b \). Indeed: \(\psi(p^\beta) = \psi(p) \cdot \sigma(b) \).

Lemma 2.3 For all \(a, b \geq 1 \),

\[\sigma(ab) \geq \sigma(a) \cdot \sigma(b) \] \hspace{1cm} (12)

\[\psi(ab) \geq \psi(a) \cdot \sigma(b) \] \hspace{1cm} (13)

Proof. (12) is well-known, see e.g. [16], [18]. There is equality here, only for \(a = 1 \).

For (13), let \(u|v \). Then \(\frac{\psi(u)}{u} = \prod_{p|u} \left(1 + \frac{1}{p}\right) \leq \prod_{p|v, p|u} \left(1 + \frac{1}{p}\right) \cdot \prod_{q|v, q \nmid u} \left(1 + \frac{1}{q}\right) \leq \frac{\psi(v)}{v} \), with equality if doesn’t exist \(q \) with \(q|v, q \nmid v \). Put \(v = ab \) and \(u = b \). Then \(\frac{\psi(u)}{u} \leq \frac{\psi(v)}{v} \) becomes exactly (13). There is equality if for each \(p|a \) one has also \(p|b \), i.e. \(pr\{a\} \subset pr\{b\} \).

Remark 1. Therefore, there is a similary between the inequalities (9) and (13).

Lemma 2.4 If \(pr\{a\} \not\subset pr\{b\} \), then for any \(a, b \geq 2 \) one has

\[\sigma(ab) \geq \psi(a) \cdot \sigma(b) \] \hspace{1cm} (14)

Proof. This is given in [16].

3 Main results

Theorem 3.1 There are infinitely many \(n \) such that

\[\psi(\varphi(n)) < \varphi(\psi(n)) < n \] \hspace{1cm} (15)

For infinitely many \(m \) one has

\[\varphi(\psi(m)) < \psi(\varphi(m)) < m \] \hspace{1cm} (16)

There are infinitely many \(k \) such that

\[\varphi(\psi(k)) = \frac{1}{2} \psi(\varphi(k)) \] \hspace{1cm} (17)
Proof. We prove that (15) is valid for \(n = 3 \cdot 2^a \) for any \(a \geq 1 \). This follows from \(\varphi(3 \cdot 2^a) = 2^a \), \(\psi(2^a) = 3 \cdot 2^{a-1} \), \(\psi(3 \cdot 2^a) = 3 \cdot 2^{a+1} \), \(\varphi(3 \cdot 2^a) = 2^{a+1} \), so \(3 \cdot 2^a > \varphi(3 \cdot 2^a) > \psi(\varphi(3 \cdot 2^a)) \).

For the proof of (16), put \(m = 2^a \cdot 5^b (b \geq 2) \). Then an easy computation shows that \(\psi(\varphi(m)) = 2^{a+1} \cdot 3^2 \cdot 5^{b-2} \) and \(\varphi(\psi(m)) = 2^{a+2} \cdot 3 \cdot 5^{b-2} \) and the inequalities (16) will follow.

For \(h = 3^s \) remark that \(\varphi(\psi(h)) = \frac{4}{5} \cdot h \) and \(\psi(\varphi(h)) = \frac{4}{5} \cdot h \), so

\[
\varphi(\psi(h)) < h < \psi(\varphi(h)),
\]

which complete (15) and (16), in a certain sense.

Finally, for \(k = 2^a \cdot 7^b (b \geq 2) \) one can deduce \(\psi(\varphi(k)) = \frac{44}{49} \cdot k \), \(\varphi(\psi(k)) = \frac{24}{49} \cdot k \), so (17) follows. We remark that since

\[
\psi(\varphi(k)) < k,
\]

on base on (17) and (19) one can say that

\[
\varphi(\psi(k)) < \frac{k}{2},
\]

for the above values of \(k \). Remark also that for \(h \) in (18) one has

\[
\varphi(\psi(h)) = \frac{1}{3} \psi(\varphi(h))
\]

For the values \(m \) given by (16) one has

\[
\varphi(\psi(m)) = \frac{2}{3} \psi(\varphi(m))
\]

For \(n = 2^a \cdot 3^b (b \geq 2) \) one can remark that \(\varphi(\psi(n)) = \psi(\varphi(n)) \).

More generally, one can prove:

Theorem 3.2 Let \(1 < n = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) the prime factorisation of \(n \) and suppose that the odd part of \(n \) is squarefull, i.e. \(\alpha_i \geq 2 \) for all \(i \) with \(p_i \geq 3 \).

Then \(\varphi(\psi(n)) = \psi(\varphi(n)) \) is true if and only if

\[
pr\{(p_1-1)\cdots(p_r-1)\} \subset pr\{p_1, \ldots, p_r\} \text{ and } pr\{(p_1+1)\cdots(p_r+1)\} \subset pr\{p_1, \ldots, p_r\}.
\]

Proof. Since \(\varphi(n) = p_1^{\alpha_1-1} \cdots p_r^{\alpha_r-1} \cdot (p_1 - 1) \cdots (p_r - 1) \) and \(\psi(n) = p_1^{\alpha_1-1} \cdots p_r^{\alpha_r-1} \cdot (p_1 + 1) \cdots (p_r + 1) \cdot \prod_{i|\omega_{p_i}}(p_1^{\alpha_1-1} \cdots p_r^{\alpha_r-1} \cdot (p_1 - 1) \cdots (p_i - 1) \cdots (p_r - 1) \cdots (p_i - 1)) \frac{1}{2} \) and \(\psi(\varphi(n)) = p_1^{\alpha_1-1} \cdots p_r^{\alpha_r-1} \cdot (p_1 + 1) \cdots (p_r + 1) \cdot \prod_{i|\omega_{p_i}}(p_1^{\alpha_1-1} \cdots p_r^{\alpha_r-1} \cdot (p_1 - 1) \cdots (p_i - 1) \cdots (p_r - 1) \cdots (p_i - 1)) (1 - \frac{1}{p_i}) \).

Since \(\alpha_i \geq 1 \) when \(p_i \geq 3 \), the equality \(\psi(\varphi(n)) = \varphi(\psi(n)) \), by \((p_1 - 1) \cdots (p_r - 1) \cdot (1 + \frac{1}{p_1}) \cdots (1 + \frac{1}{p_r}) = (p_1 + 1) \cdots (p_r + 1) \cdot (1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_r}) \), can be written also as \(\prod_{i|\omega_{p_i}}(p_1 - 1) \cdots (p_i - 1) (1 + \frac{1}{p_i}) = \prod_{i|\omega_{p_i}}(p_1 + 1) \cdots (p_i + 1) (1 - \frac{1}{p_i}) \).
Since \(1 + \frac{1}{q} > 1\) and \(1 - \frac{1}{q} < 1\), this is impossible in general. It is possible only if all prime factors of \((p_1 + 1) \cdots (p_r - 1)\) are among \(p_1, \ldots, p_r\), and also the same for the prime factors of \((p_1 + 1) \cdots (p_r + 1)\).

Remark 2. For example, \(n = 2^a \cdot 3^b \cdot 5^c\) with \(a \geq 1, b \geq 2, c \geq 2\) satisfy (23). Indeed \(\text{pr}\{(2 - 1)(3 - 1)(5 - 1)\} = \{2\}, \text{pr}\{(2 + 1)(3 + 1)(5 + 1)\} = \{2, 3\}\). Similar examples are \(n = 2^a \cdot 3^b \cdot 5^c \cdot 7^d, n = 2^a \cdot 3^b \cdot 7^c \cdot 11^d\), \(n = 2^a \cdot 3^b \cdot 5^c \cdot 7^d \cdot 11^e \cdot 13^f\), \(n = 2^a \cdot 3^b \cdot 7^c\) etc.

Theorem 3.3 Let \(n\) be squarefull. Then inequality (8) is true.

Proof. Let \(n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}\) with \(\alpha_i \geq 2\) for all \(i = \overline{1, r}\). Then \(\varphi(\psi(n)) = \varphi(p_1^{\alpha_1 - 1} \cdots p_r^{\alpha_r - 1}(p_1 + 1) \cdots (p_r + 1)) \leq (p_1 + 1) \cdots (p_r + 1) \cdot \varphi(p_1^{\alpha_1 - 1} \cdots p_r^{\alpha_r - 1})\), by Lemma 1. But \(\varphi(p_1^{\alpha_1 - 1} \cdots p_r^{\alpha_r - 1}) = p_1^{\alpha_1 - 2} \cdots p_r^{\alpha_r - 2} \cdot (p_1 - 1) \cdots (p_r - 1)\), since \(\alpha_i \geq 2\). Then \(\varphi(\psi(n)) \leq (p_1^2 - 1) \cdots (p_r^2 - 1) \cdot p_1^{\alpha_1 - 2} \cdots p_r^{\alpha_r - 2} = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \cdot (1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_r})\), so

\[
\varphi(\psi(n)) \leq n \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right) \quad (24)
\]

There is equality in (24) if \(\text{pr}\{(p_1 + 1) \cdots (p_r + 1)\} \subset \{p_1, \ldots, p_r\}\).

Clearly, inequality (24) is best possible, and by \((1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_r}) < 1\), it implies inequality (8).

Theorem 3.4 For any \(n \geq 2\) one has

\[
\varphi(n \left\lfloor \frac{\psi(n)}{n} \right\rfloor) < n, \quad (25)
\]

where \(\lfloor x \rfloor\) denotes the integer part of \(x\).

Proof. It is immediate that \(\frac{\psi(n)}{n} = \prod_{p|n} \left(1 - \frac{1}{p}\right) < 1\), so \(\varphi(n) \psi(n) < n^2\) for any \(n \geq 2\). Now, by (9) one can write \(\varphi(n \left\lfloor \frac{\psi(n)}{n} \right\rfloor) \leq \left\lfloor \frac{\psi(n)}{n} \right\rfloor \varphi(n) \leq \frac{\psi(n)}{n} \cdot \varphi(n) < n\), by the above proved relation.

Remark 3. If \(n|\psi(n)\), i.e., when \(\left\lfloor \frac{\psi(n)}{n} \right\rfloor = \frac{\psi(n)}{n}\), relation (25) gives inequality (8), i.e. \(\varphi(\psi(n)) < n\). For the study of an equation

\[
\psi(n) = k \cdot n \quad (26)
\]

we shall use a notion and a method of Ch. Wall [25]. We say that \(n\) is \(\omega\)-multiple of \(m\) if \(n|\psi(n)\) and \(\text{pr}\{m\} = \text{pr}\{n\}\). We need a simple result, stated as:

Lemma 3.1 If \(m\) and \(n\) are squarefree, and \(\frac{\psi(n)}{n} = \frac{\psi(m)}{m}\), then \(n = m\).

Proof. Without loss of generality we may suppose \((m, n) = 1\); \(m, n > 1\), \(m = q_1 \cdots q_j\) \((q_j < \cdots < q_j)\) and \(n = p_1 \cdots p_k\) \((p_k < \cdots < p_k)\). Then the assumed equality has the form \(n(1 + q_1) \cdots (1 + q_j) = m(1 + p_1) \cdots (1 + p_k)\). Since \(p_k|n\), the relation \(p_k|(1 + p_1) \cdots (1 + p_{k-1})(1 + p_k)\) implies \(p_k|(1 + p_k)\) for
some $i \in \{1, 2, \cdots, k\}$. Here $1 + p_1 < \cdots < 1 + p_{k-1} < 1 + p_k$, so we must have $p_k|(1 + p_{k-1})$. This may happen only when $k = 2$, $p_1 = 2$, $p_2 = 3$; $j = 2$, $q_1 = 2$, $q_3 = 3$ (since for $k \geq 3$, $p_k - p_{k-1} \geq 2$, so $p_k \nmid (1 + p_{k-1})$). In this case $(n, m) = 6 > 1$, a contradiction. Thus $k = j$ and $p_k = q_j$.

Theorem 3.5 Assume that the least solution n_k of (26) is a squarefree number. Then all solutions of (26) are given by the ω-multiples of n_k.

Proof. If n is ω-multiple of n_k, then clearly $\frac{\psi(n)}{n} = \frac{\psi(n_k)}{n_k} = k$, by (1). Conversely, if n is a solution, set $m = \omega$-greatest squarefree divisor of n. Then $\frac{\psi(n)}{n} = \frac{\psi(m)}{m} = k = \frac{\psi(n_k)}{n_k}$. By Lemma 3.1, $m = n_k$, i.e. n is an ω-multiple of n_k.

Theorem 3.6 Let $n \geq 3$, and suppose that n is ψ-deficient, i.e. $\psi(n) < 2n$. Then inequality (8) is true.

Proof. First remark that for any $n \geq 3$, $\psi(n)$ is an even number. Indeed, if $n = 2^a$, then $\psi(n) = 2^{a-1} \cdot 3$, which is odd only for $a = 1$, i.e. $n = 2$. If n has at least an odd prime factor p, then by (1), $\psi(n)$ will be even.

Now, applying Lemma 2.1 for $b = 2$, one obtains $\varphi(2a) \leq a$, i.e. $\varphi(a) \leq \frac{a}{2}$ for $u = 2a$ (even). Here equality occurs only when $u = 2^k(k \geq 1)$. Now, $\varphi(\psi(n)) \leq \frac{\psi(n)}{2}$, $\psi(n)$ being even, and since n is ψ-deficient, the Theorem follows.

Remark 4. The inequality

$$\varphi(\psi(n)) \leq \frac{\psi(n)}{2}$$

is best possible, since we have equality for $\psi(n) = 2^k$. Let $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$; then $p_1^{\alpha_1-1} \cdots p_r^{\alpha_r-1} (p_1 + 1) \cdots (p_r + 1) = 2^k$ is possible only if $\alpha_1 = \cdots = \alpha_r = 1$, and $p_1 + 1 = 2^1, \cdots, p_r + 1 = 2^r$; i.e. when $p_1 = 2^1 - 1, \cdots, p_r = 2^r - 1$ are distinct Mersenne primes, and $n = p_1 \cdots p_r$. So, there is equality in (27) iff n is a product of distinct Mersenne primes. Since by Theorem 3.5 one has $\psi(n) = 2n$ iff $n = 2^a \cdot 3^b (a, b \geq 1)$, if one assumes $\psi(n) < 2n$, then by (27), inequality (8) follows again. Therefore, in Theorem 3.6 one may assume $\psi(n) \leq 2n$.

Let $\omega(n)$ denote the number of distinct prime factors of n. Theorem 3.6 and the above remark implies that when n is even, and $\omega(n) \leq 2$, (8) is true. Indeed, $1 + \frac{1}{2} = \frac{3}{2} < 2$, and $(1 + \frac{1}{2})(1 + \frac{1}{3}) = 2$. So e.g. when $n = p_1^{\alpha_1} \cdots p_2^{\alpha_2}$, then $\frac{\omega(n)}{n} = (1 + \frac{1}{p_1}) \cdot (1 + \frac{1}{p_2}) \leq 1 + \frac{1}{2}(1 + \frac{1}{3}) = 2$. On the other hand, if n is odd, and $\omega(n) \leq 4$, then (8) is valid. Indeed, $(1 + \frac{1}{2})(1 + \frac{2}{3})(1 + \frac{1}{5})(1 + \frac{1}{7}) = \frac{11}{2} \cdot \frac{11}{3} \cdot \frac{6}{5} \cdot \frac{12}{7} = \frac{2190}{1155} = 2.451 < 3$.

Another remark is the following:

If 2 and 3 do not divide n, and n has at most six prime factors, then $\varphi(\psi(n)) < n$. If 2, 3 and 5 do not divide n, and n has at most 12 prime factors, then the same result holds true. If 2, 3, 5 and 7 do not divide n, and n has at most 21 prime factors, then the inequality is true.

If 2 and 3 do not divide n, we prove that $\psi(n) < 2n$, and by the presented method the results will follow. E.g., when n is not divisible by 2 and 3, then the
least prime factor of \(n \) could be 5, so \(\frac{\psi(n)}{n} < \frac{5}{2} \cdot \frac{8}{7} \cdot \frac{12}{11} \cdot \frac{14}{13} \cdot \frac{18}{17} \cdot \frac{20}{19} \cdot \frac{24}{23} \cdot \frac{30}{29} \frac{32}{31} < 2 \), and the first result follows. The other affirmations can be proved in a similar way.

In [16] it is proved that

\[
\psi(n) \leq \begin{cases}
3^{\omega(n)} \cdot \varphi(n), & \text{if } n \text{ is even} \\
2^{\omega(n)} \cdot \varphi(n), & \text{if } n \text{ is odd}
\end{cases} \tag{28}
\]

Thus, as a corollary of (27) and (28) one can state that if \(\frac{3^{\omega(n)} \cdot \varphi(n)}{n} < n \) (or \(\leq n \), for \(n \) even; and \(2^{\omega(n)-1} \cdot \varphi(n) \) (or \(\leq n \)) for \(n \) odd, then relation (8) is valid.

By (27), if \(n \) is a product of distinct Mersenne primes, then \(\varphi(\psi(n)) = \frac{\psi(n)}{2} \).

We will prove that \(\psi(n) < 2n \) for such \(n \), thus obtaining:

Theorem 3.7 If \(n \) is a product of distinct Mersenne primes, then inequality (8) is valid.

Proof. Let \(n = M_1 \cdots M_s \), where \(M_i = 2^{p_i} - 1 \) (\(p_i \) primes, \(i = 1, 2, \ldots, s \)) are distinct Mersenne primes. We have to prove that \((2^{p_1} - 1) \cdots (2^{p_s} - 1) > 2^{p_1 + \cdots + p_s - 1} \), or equivalently, \((1 - \frac{1}{2^{p_1}}) \cdots (1 - \frac{1}{2^{p_s}}) > \frac{1}{2} \). Clearly \(p_1 \geq 2, p_2 \geq 3 \cdots, p_s \geq s + 1 \), so it is sufficient to prove that

\[
(1 - \frac{1}{2^2}) \cdots (1 - \frac{1}{2^{s+1}}) > \frac{1}{2} \tag{29}
\]

In the proof of (29) we will use the classical Weierstrass inequality

\[
\prod_{k=1}^{s} (1 - a_k) > 1 - \sum_{k=1}^{s} a_k, \tag{30}
\]

where \(a_k \in (0,1) \). (see e.g. D.S. Mitrinović: Analytic inequalities, Springer-Verlag, 1970).

Put \(a_k = \frac{1}{2^{p_k+1}} \) in (30). Since \(\sum_{k=1}^{s} \frac{1}{2^{p_k+1}} = \frac{1}{4} \cdot (1 + \frac{1}{2} + \cdots + \frac{1}{2^{s+1}}) = \frac{1}{4} \cdot \left(\frac{\frac{1}{2} - \frac{1}{2^{s+1}}}{1 - \frac{1}{2}} \right) = \frac{s}{2^{s+1}} \) \((29) \) becomes equivalent to \(1 - \frac{s}{2^{s+1}} > \frac{1}{2} \), or \(\frac{s}{2^{s+1}} > \frac{1}{2} \), i.e. \(2^k > 2^{k-1} \), which is true. Therefore, (29) follows, and the theorem is proved.

Remark 5. By Theorem 3.12 (see relation (43)), if \(n = M_1^{a_1} \cdots M_s^{a_s} \) (with arbitrary \(a_i \geq 1 \)), the inequality (8) holds true.

Related to the above theorems is the following result:

Theorem 3.8 Let \(n \) be even, and suppose that the greatest odd part \(m \) of \(n \) is \(\psi \)-deficient, and that \(3 \nmid \psi(m) \). Then (8) is true.

Proof. Let \(n = 2^k \cdot m \), when \(\psi(\psi(n)) = \psi(2^{k-1} \cdot 3 \psi(m)) = 2 \cdot \psi(2^{k-1} \cdot \psi(m)) \) since \((3, 2^{k-1} \cdot \psi(m)) = 1 \). But \(\psi(2^{k-1} \cdot \psi(m)) \leq 2^{k-2} \cdot \psi(m) < 2^{k-1} \cdot m \), so \(\psi(\psi(n)) < 2^k \cdot m = n \)
Remark 6. In [18] it is proved that for all $n \geq 2$ even one has

$$\varphi(\sigma(n)) \geq 2n,$$ \hfill (31)

with equality only if $n = 2^k$, where $2^{k+1} - 1 = \text{prime}$. The proof is based on Lemma 2.3. Since $\sigma(m) \geq \psi(m)$, clearly this implies

$$\sigma(\varphi(n)) \geq 2n,$$ \hfill (32)

with the above equalities. So, the Surayanarayana-Kanved theorem is reobtained, in an improved form.

In [18] it is proved also that for all $n \geq 2$ even one has

$$\sigma(\psi(n)) \geq 2n,$$ \hfill (33)

with equality only for $n = 2$. What are the odd solutions of $\sigma(\psi(n)) = 2n$?

We now prove:

Theorem 3.9 Let $n = 2^k \cdot m$ be even ($k \geq 1, m > 1$ odd), and suppose that m is not a product of distinct Fermat primes, and that m satisfies (6). Then

$$\sigma(\varphi(n)) \geq n - m \geq \frac{n}{2}$$ \hfill (34)

Proof. First remark that if m is not a product of distinct Fermat primes, then $\varphi(m)$ is not a power of 2. Indeed, if $m = p_1^{a_1} \cdots p_r^{a_r}$, then $\varphi(m) = p_1^{a_1-1} \cdots p_r^{a_r-1} (p_1-1) \cdots (p_r-1) = 2^s$ iff (since $p_i \geq 3$), $a_1-1 = \cdots = a_r-1 = 0$ and $p_1-1 = 2^{s_1}, \cdots, p_r-1 = 2^{s_r}$, i.e. $p_1 = 2^{s_1}+1, \cdots, p_r = 2^{s_r}+1$ are distinct Fermat primes. Thus there exists at least an odd prime divisor of $\varphi(m)$.

Now, by Lemma 2.4, $\sigma(\varphi(2^k \cdot m)) = \sigma(2^{k-1} \cdot \varphi(m)) \geq \psi(\varphi(m)) \cdot \sigma(2^{k-1}) \geq m \cdot (2^k - 1) = n - m$, by relation (6). The last inequality of (34) is trivial, since $m \leq \frac{n}{2} = 2^{k-1} \cdot m$, where $k-1 \geq 0$.

Remark 7. Relation (31) gives an improvement of (3) for certain values of n.

Theorem 3.10 Let p be an odd prime. Then

$$\varphi(p) \leq \frac{p+1}{2},$$ \hfill (35)

with equality only if p is a Mersenne prime, and $\psi(\varphi(p)) \geq \frac{3}{2} \cdot (p-1)$, with equality only if p is a Fermat prime.

Proof. $\psi(p) = p+1$ and $p+1$ being even, $\varphi(p+1) \leq \frac{p+1}{2}$, with equality only if $p+1 = 2^k$, i.e. when $p = 2^k - 1 = \text{Mersenne prime}$. Since $\frac{3}{2} \cdot (p-1) \geq p$, this inequality is better than (6) for $n = p$. Similarly, $\varphi(p) = p - 1$ is even, so $\psi(p-1) \geq \frac{3}{2} \cdot (p-1)$, on base of the following:
Lemma 3.2 If \(n \geq 2 \) is even, then

\[
\psi(n) \geq \frac{3}{2} \cdot n,
\]

with equality only if \(n = 2^a \) (power of 2).

Proof. If \(n = 2^a \cdot N \), with \(N \) odd, \(\psi(n) = \psi(2^a) \cdot \psi(N) = 2^{a-1} \cdot 3 \cdot \psi(N) \geq 2^{a-1} \cdot 3 \cdot \frac{3}{2} \cdot n \). Equality occurs only when \(N = 1 \), i.e. when \(n = 2^a \).

Since \(p - 1 = 2^a \) implies \(p = 2^a + 1 = \text{Fermat prime} \), (35) is completely proved. Since \(\frac{3}{2} \cdot (p - 1) \geq p \), this inequality is better than (6) for \(n = p \).

Remark 8. For \(p \geq 5 \) one has \(\frac{p+1}{2} < p < \frac{3}{2} \cdot (p - 1) \), so (35) implies, as a corollary that

\[
\varphi(\psi(p)) < p < \psi(\varphi(p)),
\]

for \(p \geq 5 \), prime.

This is related to relation (18). If \(n \) is even, and \(n \neq 2^a \) (power of 2), then since \(\psi(N) \geq N + 1 \), with equality only when \(N \) is a prime, (36) can be improved to

\[
\psi(n) \geq \frac{3}{2} \cdot (n + \frac{n}{N}),
\]

with equality only for \(n = 2^a \cdot N \), where \(N \) = prime.

Theorem 3.11 Let \(a, b \geq 1 \) and suppose that \(a \mid b \). Then \(\varphi(\psi(a)) \mid \varphi(\psi(b)) \) and \(\psi(\varphi(a)) \mid \psi(\varphi(b)) \). Particularly, if \(a \mid b \), then

\[
\varphi(\psi(a)) \leq \varphi(\psi(b)); \, \psi(\varphi(a)) \leq \psi(\varphi(b))
\]

Proof. The proof follows at once from the following:

Lemma 3.3 If \(a \mid b \), then

\[
\varphi(a) \mid \varphi(b),
\]

and

\[
\psi(a) \mid \psi(b),
\]

Proof. This follows on base of (1), see e.g. [16], [18].

Now, if \(a \mid b \), then \(\psi(a) \mid \psi(b) \) by (41), so by (40), \(\varphi(\psi(a)) \mid \varphi(\psi(b)) \). Similarly, \(a \mid b \) implies \(\varphi(a) \mid \varphi(b) \) by (40), so by (41), \(\psi(\varphi(a)) \mid \psi(\varphi(b)) \). The inequalities in (36) are trivial consequences.

Remark 9. Let \(a = p \) be a prime such that \(p \nmid k \), and put \(b = k^{p-1} - 1 \).

By Fermat’s little theorem one has \(a \mid b \), so all results of (39) are correct in this case. For example, \(\psi(\varphi(a)) \leq \psi(\varphi(b)) \) gives, in base of (39), and Theorem 3.9:

\[
\psi(\varphi(k^{p-1} - 1)) \geq \psi(\varphi(p)) \geq \frac{3}{2} \cdot (p - 1),
\]
for any prime \(p \nmid k \), and any positive integer \(k > 1 \).

Let \((n, k) = 1 \). Then by Euler’s divisibility theorem, one has similarly:

\[
\psi(\varphi(k\psi(n) - 1)) \geq \psi(\varphi(n)),
\]

(43)

for any positive integers \(n, k > 1 \) such that \((n, k) = 1 \).

Let \(n > 1 \) be a positive integer, having as distinct prime factors \(p_1, \ldots, p_r \).

Then, using (1) it is immediate that

\[
\varphi(n)\psi(n)
\]

(44)

iff \((p_1 - 1)\cdots(p_r - 1)((p_1 + 1)\cdots(p_r + 1). \) For example, (44) is true for \(n = 2^m, n = 2^m \cdot 5^s (m, s \geq 1), \) etc. Now assuming (44), by (40) one can write the following inequalities:

\[
\varphi(\psi(\varphi(n))) \leq \varphi(\psi(n)) \text{ and } \psi(\varphi(n)) \leq \psi(\psi(n))
\]

(45)

By studying the first 100 values of \(n \) with property (44), the following interesting example may be remarked: \(\varphi(15) = \varphi(16) = 8, \varphi(15) = \psi(16) = 24 \) and \(\varphi(15)\psi(15) \). Similarly \(\varphi(70) = \varphi(72) = 24, \varphi(70) = \psi(72) = 144, \) with \(\varphi(70)\psi(70) \).

Are there infinitely many such examples? Are there infinitely many \(n \) such that \(\varphi(n) = \varphi(n + 1) \) and \(\psi(n) = \psi(n + 1) \)? Or \(\varphi(n) = \varphi(n + 2) \) and \(\psi(n) = \psi(n + 2) \)?

Let \(a = 8, b = \sigma(8k - 1) \). Then \(a|b \) (see e.g. [18] for such relations), and since \(\psi(\psi(8)) = 6, \varphi(\psi(8)) = 12, \) by (39) we obtain the divisibility relations

\[
6|\psi(\varphi(\sigma(8k - 1))) \text{ and } 12|\varphi(\psi(\sigma(8k - 1)))
\]

(46)

for \(k \geq 1 \).

The second relation implies e.g. that if \(\varphi(\psi(\sigma(n))) = 2n \), then \(n \not\equiv -1 \pmod{8} \) and if \(\varphi(\psi(\sigma(n))) = 4n \), then \(n \not\equiv -1 \pmod{24} \).

Theorem 3.12 Inequality (8) is true for an \(n \geq 2 \) if it is true for the squarefree part of \(n \geq 2 \). Inequality (6) is true for an odd \(m \geq 3 \) if it is true for the squarefree part of \(m \geq 3 \).

Proof. As we have stated in the Introduction, such results were first proved by the author. We give here the proof for the sake of completeness.

Let \(n' \) be the squarefree part of \(n \), i.e. if \(n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \), then \(n' = p_1 \cdots p_r \).

Then \(\varphi(\psi(n)) = \varphi(p_1^{\alpha_1 - 1} \cdots p_r^{\alpha_r - 1}(p_1 + 1) \cdots (p_r + 1)) \leq p_1^{\alpha_1 - 1} \cdots p_r^{\alpha_r - 1}. \varphi((p_1 + 1) \cdots (p_r + 1)) = \frac{n'}{n} \cdot \varphi(\psi(n')). \) by inequality (9).

Thus

\[
\frac{\varphi(\psi(n))}{n} \leq \frac{\varphi(\psi(n'))}{n'}
\]

(47)

Therefore, if \(\frac{\varphi(\psi(n'))}{n'} < 1 \), then \(\frac{\varphi(\psi(n))}{n} < 1 \). Similarly one can prove that
\[
\frac{\psi(\varphi(m))}{m} \geq \frac{\psi(\varphi(m'))}{m'}, \tag{48}
\]

so if (6) is true for the squarefree part \(m'\) of \(m\), then (6) is true also for \(m\).
As a consequence, (8) is true for all \(n\) if and only if it is true for all squarefree \(n\).

As we have stated in the introduction, (6) is not generally true for all \(m\). Let e.g. \(m = 3 \cdot F\), where \(F > 3\) is a Fermat prime. Indeed, put \(F = 2^k + 1\). Then \(\varphi(m) = 2^{k+1}\), so \(\psi(\varphi(m)) = 2^k \cdot 3 < 3 \cdot (2^k + 1) = 3 \cdot F = m\), contradicting (6).

However, if \(m\) has the form \(m = 5 \cdot F\), where \(F > 5\) is again a Fermat prime, then (6) is valid, since in this case \(\psi(\varphi(m)) = 6 \cdot 2^k > 5 \cdot (2^k + 1) = m\).

More generally, we will prove now:

Theorem 3.13 Let \(5 \leq F_1 < \cdots < F_s\) be Fermat primes. Then inequality (6) is valid (with strict inequality) for \(m = F_1^{a_1} \cdots F_s^{a_s}\), with arbitrary \(a_i \geq 1\) \((i = 1, \ldots, s)\).

Proof. Let \(F_i = 1 + 2^{b_i}\) \((i \geq 1)\) be Fermat primes, where \(b_i \geq 1\). Since \(b_1 < b_2 < \cdots < b_s\), clearly \(b_i \geq i\) for any \(i = 1, 2, \cdots, s\). By (48) it is sufficient to prove the result for \(m' = F_1 \cdots F_s\), when (6) becomes, after some elementary computations:

\[
(1 + \frac{1}{2^{b_1}}) \cdots (1 + \frac{1}{2^{b_s}}) \leq \frac{3}{2}. \tag{49}
\]

We will prove that (49) holds with strict inequality. By the classical Weierstrass inequalities one has \(\prod_{k=1}^{s} (1 + a_k) < \frac{1}{1 - \sum_{k=1}^{s} a_k}\), where \(a_k \in (0, 1)\).

Since \(b_i \geq 1\), it is sufficient to prove that

\[
(1 + \frac{1}{2^{b_1}}) \cdots (1 + \frac{1}{2^{b_s}}) \leq \frac{3}{2}. \tag{50}
\]

Put \(a_k = 2^{b_k}\) \((k \geq 1)\), so by the above inequality, it is sufficient to prove that

\[
\sum \frac{1}{2^{b_1}} + \frac{1}{2^{b_2}} + \cdots + \frac{1}{2^{b_s}} < \frac{1}{3}. \tag{51}
\]

Clearly (51) is true for \(s = 1, 2\), since \(\frac{1}{2} < \frac{1}{2} + \frac{1}{2} < \frac{1}{3}\). Let \(s \geq 3\). Then, since \(2^s \geq s+5\) for \(s \geq 3\), we can write \(\sum \leq \frac{1}{2} + \frac{1}{2^5} + \frac{1}{128} \cdot (1 + \frac{1}{2} + \cdots + \frac{1}{2^s}) = \frac{5}{16} + \frac{1}{128} \cdot (1 - \frac{1}{2^s}) < \frac{5}{16} + \frac{1}{2^s} = \frac{41}{128} < \frac{1}{3}\), and the assertion is proved.

Remark 11. By Lemma 2.2, relation (10) one can write successively
\[\varphi((p_1 + 1)(p_2 + 1)) \leq p_2 \varphi(p_1 + 1) < p_1 p_2, \text{ if } pr\{p_2 + 1\} \not\subset pr\{p_1 + 1\} \]
\[\varphi((p_1 + 1)(p_2 + 1)(p_3 + 1)) \leq p_3 \varphi(p_1 + 1)(p_2 + 1) < p_1 p_2 p_3, \]
if in addition \(pr\{p_2 + 1\} \not\subset pr\{(p_1 + 1)(p_2 + 1)\} \)
\[\varphi((p_1 + 1) \cdots (p_{r-1} + 1)(p_r + 1)) \leq p_r \varphi((p_1 + 1) \cdots (p_{r-1} + 1)) < p_1 \cdots p_r, \text{ if } pr\{p_r + 1\} \not\subset pr\{(p_1 + 1) \cdots (p_{r-1} + 1)\} \]

is satisfied, then by Theorem 3.12, inequality (8) is valid.

Similarly, by using Lemma 2, (11), and Theorem 3.12, we can state that if
\[pr\{q_2 - 1\} \not\subset pr\{q_1 - 1\}, \]
\[pr\{q_3 - 1\} \not\subset pr\{(p_1 - 1)(p_2 - 1)\}, \]
\[\cdots, \]
\[pr\{q_r - 1\} \not\subset pr\{(p_1 - 1) \cdots (q_{r-1} - 1)\}, \]
then inequality (6) is valid. (Here \(q_1, q_2, \cdots, q_r \) are the prime divisors of the odd number \(m \geq 3 \).)

Now by using a method of L. Alaoglu and P. Erdős [1], we will prove that:

Theorem 3.14 For any \(\delta > 0 \), the inequality
\[\varphi(\psi(n)) < \delta \cdot n \]

is valid, excepting perhaps \(n \in S \), where \(S \) has asymptotic density zero.

Proof. We prove first that for any given prime \(p \), the set of \(n \) such that \(p|\psi(n) \), has density 1. This is similar to the proof given in [1].

On the other hand, since \(\sum_{n \leq x} \psi(n) \approx \frac{x^2}{2 \pi} \cdot x_2 \) as \(x \to \infty \) (see e.g. [16]), we can say that excepting at most a number of \(\epsilon \cdot x \) integers \(n < x \), one has \(\psi(n) < c(\epsilon) \cdot n \), where \(c(\epsilon) > 0 \).

Let \(p \) be a prime such that \(\prod_{q \leq p} (1 - \frac{1}{q}) < \frac{\delta}{c(\epsilon)} \) (this is possible, since \(\prod_{q \leq p} (1 - \frac{1}{q}) \to 0 \) as \(p \to \infty \)).

Then, if \(x \) is large, then for all \(n < x \), excepting perhaps a number of \(\eta \cdot x + \epsilon \cdot x \) integers one has \(\psi(n) < c(\epsilon) \cdot n \) and \(\psi(n) \equiv 0 (\text{mod } q) \) for any \(q \leq p \), \((\eta > 0) \).

But for these exceptions one has \(\varphi(\psi(n)) < \delta \cdot n \), and this finishes the proof; \(\eta, \epsilon > 0 \) being arbitrary.

Remark 12. It can be proved similarly that
\[\psi(\varphi(n)) > \delta \cdot n, \]

excepting perhaps a set of density zero.
Theorem 3.14 implies that \(\lim \inf_{n \to \infty} \frac{\nu(n)}{n} = 0 \), and so, one has \(\lim \sup_{n \to \infty} \frac{\psi(n)}{n} = +\infty \). For other proof of these results, see [16]. We cannot determine the following values: \(\lim \inf_{n \to \infty} \frac{\psi(n)}{n} = ? \), \(\lim \sup_{n \to \infty} \frac{\psi(n)}{n} = ? \). However, we can prove that:

Theorem 3.15

\[
\lim \inf_{n \to \infty} \frac{\psi(n)}{n} \leq \inf \left\{ \frac{\psi(k)}{k} : k \text{ is a multiple of 4} \right\} < \frac{1}{2} \tag{56}
\]

Proof. Let \(k \) be a multiple of 4, and \(p > \frac{k}{2} \). Then \(\varphi\left(\frac{k}{2}\right) = \varphi(k) \cdot \frac{k}{2} \), since \(2\varphi\left(\frac{k}{2}\right) = \varphi(k) \cdot \frac{1}{2} \). Now by \(\psi(ab) \leq \psi(a)\psi(b) \) one can write \(\psi(\frac{k}{2}) \leq \psi(\varphi(k)) \psi\left(\frac{k-1}{2}\right) \).

Since \(\psi\left(\frac{p-1}{2}\right) \leq \sigma\left(\frac{p-1}{2}\right) \), and by the known result of Makowski and Schinzel:

\[
\lim \inf_{n \to \infty} \frac{\psi(\varphi(n))}{n} \leq \inf \left\{ \frac{\psi(\varphi(k))}{k} : k \text{ is a multiple of 4} \right\} \tag{56}
\]

and now relation (56) follows, by taking \(\inf \) after \(k \).

Since \(2^{32} - 1 = F_0 \cdot F_1 \cdot F_2 \cdot F_3 \cdot F_4 \), where \(F_k = 2^{3^k} + 1 \), and all \(F_i \) \((0 \leq i \leq 4) \) are primes, it follows, that \(\varphi(2^{32} - 1) = 2^1 \cdot 2^2 \cdot 2^4 \cdot 2^8 \cdot 2^{16} = 2^{31} \). Thus \(\varphi(4(2^{32} - 1)) = 2^{32} \) by \(\varphi(4) = 2 \). Since \(\psi(2^{32}) = 2^{31} \cdot 3 \), by letting in (56) \(k = 4 \cdot (2^{32} - 1) \), we get the \(\inf \leq \frac{2^{31} \cdot 3}{4(2^{32} - 1)} < \frac{1}{2(1 - \theta)} \), where \(\theta > \frac{1}{3 \cdot \sqrt{2}} \). In any case we get in (56) that \(\lim \inf \psi < \frac{1}{2} \), and fact a value slightly greater than \(\frac{1}{2} \). In [16] it is asked the value of \(\lim \inf \psi \frac{\sigma(n)}{n} \leq 1 \). We now prove that this value is 1:

Theorem 3.16

\[
\lim \inf_{n \to \infty} \frac{\psi(n)}{n} = 1 \tag{57}
\]

Proof. Since \(\frac{\psi(n)}{n} \geq \frac{\sigma(n)}{n} \geq 1 \), clearly this \(\lim \) is \(\geq 1 \). By the above inequality, follows the result. However, we give here a new proof of this fact. Remark that, since \(\varphi(N) \leq \psi(N) \leq \sigma(N) \), and by the known result \(\lim_{p \to \infty} \frac{\varphi(N(a,p))}{N(a,p)} = \lim_{p \to \infty} \frac{\sigma(N(a,p))}{N(a,p)} = 1 \), where \(N(a,p) = \frac{p^{a-1}}{p-1} \), \((a > 1, \text{prime}) \) we get easily

\[
\lim_{p \to \infty} \frac{\varphi(N(a,p))}{N(a,p)} = 1 \tag{58}
\]

Let now \(a = q \) an arbitray prime in (58). Remark that \(N(q,p) = \frac{p^{q-1}}{q-1} = \sigma(q^{p-1}) \). Now, by \(\frac{\sigma(q^{p-1})}{q^{p-1}} = \frac{q^{p-1}}{(q-1)q^{p-1}} \to \frac{q}{q-1} \), as \(p \to \infty \), from (58) we can write:

\[
\lim_{p \to \infty} \frac{\psi(\sigma(q^{p-1}))}{q^{p-1}} = \frac{q}{q-1} < 1 + \epsilon, \tag{59}
\]
for \(q \geq q(\epsilon), \epsilon > 0 \). Now by (59), (57) follows.

Remark 13. In [16] it is proved, by assuming the infinitude of Mersenne primes, that

\[
\liminf_{n \to \infty} \frac{\psi(\psi(n))}{n} = \frac{3}{2}
\]

(60)

Could we prove (60) without any assumption?

We have conjectured in [16] that the following limit is true, but in the proof we have used the fact that there are infinitely many Mersenne primes. Now we prove this result without any assumptions:

Theorem 3.17 We have

\[
\liminf_{n \to \infty} \frac{\psi(\psi(n))}{n} = \frac{3}{2}
\]

(61)

Proof. Since \(\psi(n) \geq \frac{3}{2} n \) for all even \(n \), and \(\psi(n) \geq n \) for all \(n \), clearly \(\psi(\psi(n)) \geq \frac{3}{2} \cdot n \) for all \(n \), therefore it will be sufficient to find a sequence with limit \(\frac{3}{2} \). By using deep theorems on primes in arithmetical progressions, it can be proved, as in Makowski-Schinzel [13] that \(\limsup \frac{\sigma(a)}{a} = \liminf \frac{\sigma(a)}{a} = 1 \) as \(p \) tends to infinity, where \(a = \left(\frac{p+1}{2} \right) \), and \(p \equiv 1 \pmod{4} \).

Since \(\frac{(p+1)}{2} \) is odd, we get \(\sigma(p+1) = \sigma(2, \frac{(p+1)}{2}) = 3 \cdot \sigma(\frac{(p+1)}{2}) \), implying that \(\liminf \frac{\sigma(p+1)}{p} = \frac{3}{2} \). Since \(\psi(n) \leq \sigma(n) \), we can write that \(\liminf \frac{\psi(\psi(n+1))}{p} \leq \frac{3}{2} \)

By \(\frac{\psi(p+1)}{p} > \frac{3}{2} \), this yields \(\liminf \frac{\psi(p+1)}{p} = \frac{3}{2} \), finishing the proof of the theorem.

4 Acknowledgements

The author wishes to thank Professors P. Erdős, K. Atanassov, F. Luca and V. Vitek, for helpful conversations. He is indebted also to Professors A. Makowski, H.-J. Kanold, K. Ford, G.L. Cohen, Ch. Wall, for providing interesting reprints of their works. Finally, the author thanks his colleague Lehel István Kovács for a computer verification of conjecture (8) up to 10^{10}.

FINAL NOTES. After this paper was written, Professor L. Tóth (Univ. of Pecs, Hungary) has communicated to us, that inequality (8) is not true for \(n = 39270, n = 82110, or n = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \cdot M, \) where \(M \) is a Mersenne prime greater or equal than 31. However, since this inequality holds true for many values of \(n \), it remains open the question of the determination of most general classes of numbers with this property. For example, is it true for odd numbers? (or for numbers not divisible by 10?)
References

[19] J. Sándor: A note on the functions \(\varphi_k(n) \) and \(\sigma_k(n) \), Studia Babeş-Bolyai University, Math., 35 (1990), 3-6.

