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József Sándor
Department of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca
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1 Introduction

Let σ(n) denote the sum of divisors of the positive integer n, i.e. σ(n) =
∑
d/n d,

where by convention σ(1) = 1. It is well-known that n is called perfect if σ(n) =
2n. Euclid and Euler ([10], [21]) have determined all even perfect numbers, by
showing that they are of the form n = 2k(2k+1 − 1), where 2k+1 − 1 is a prime
(k ≥ 1). The primes of the form 2k+1 − 1 are the so-called Mersenne primes,
and at this moment there are known exactly 41 such primes (for the recent
discovery of the 41th Mersenne prime, see the site www.ams.org). Probably,
there are infinitely many Mersenne primes, but the proof of this result seems
unattackable at present. On the other hand, no odd perfect number is known,
and the existence of such numbers is one of the most difficult open problems of
Mathematics. D. Suryanarayana [23] defined the notion of superperfect number,
i.e. number n with property σ(σ(n)) = 2n, and he and H.J. Kanold [23], [11]
have obtained the general form of even superperfect numbers. These are n = 2k,
where 2k+1 − 1 is a prime. Numbers n with the property σ(n) = 2n − 1 have
been called almost perfect, while that of σ(n) = 2n+ 1, quasi-perfect. For many
results and conjectures on this topic, see [9], and the author’s book [21] (see
Chapter 1).

For an arithmetic function f , the number n is called f-perfect, if f(n) = 2n.
Thus, the superperfect numbers will be in fact the σ ◦ σ-perfect numbers where
”◦” denotes composition.

The Euler totient function, resp. Dedekind’s arithmetic function are given
by
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ϕ(n) = n
∏
p|n

(1− 1
p
), ψ(n) = n

∏
p|n

(1 +
1
p
), (1)

where p runs through the distinct prime divisors of n. Let by convention,
ϕ(1) = 1, ψ(1) = 1. All these functions are multiplicative, i.e. satisfy the
functional equation f(mn) = f(m)f(n) for (m,n) = 1. For results on ψ ◦ ψ-
perfect, ψ ◦ σ-perfect, σ ◦ ψ-perfect, ψ ◦ ϕ-perfect numbers, see the first part
[18]. Let σ∗(n) be the sum of unitary divisors of n, given by

σ∗(n) =
∏
pα||n

(pα + 1), (2)

where pα||n means that for the prime power pα one has pα|n, but pα+1 - n.
Let by convention, σ∗(1) = 1. In [18] there are studied also the almost and quasi
σ∗ ◦ σ∗-perfect numbers (i.e. satisfying σ∗(σ∗(n)) = 2n∓ 1), where it is shown
that for n > 3 there are no such numbers. This result has been rediscovered by
V. Sitaramaiah and M.V. Subbarao [22].

In 1964, A. Makowski and A. Schinzel [13] conjectured that

σ(ϕ(n)) ≥ n

2
, for all n ≥ 1 (3)

The first results after the Makowski and Schinzel paper were proved by J.
Sándor [16], [17]. He proved that (3) holds if and only if

σ(ϕ(m)) ≥ m, for all odd m ≥ 1 (4)

and obtained a class of numbers satisfying (3) and (4). But (4) holds iff
is it true for squarfree n, see [17], [18]. This has been rediscovered by G.L.
Cohen and R. Gupta ([4]). Many other partial results have been discovered by
C. Pomerance [14], G.L. Cohen [4], A. Grytczuk, F. Luca and M. Wojtowicz [7],
[8], F. Luca and C. Pomerance [12], K. Ford [6]. See also [2], [19], [20]. Kevin
Ford proved that

σ(ϕ(n)) ≥ n

39.4
, for all n (5)

In 1988 J. Sándor [15], [16] conjectured that

ψ(ϕ(m)) ≥ m, for all odd m (6)

He showed that (6) is equivalent to

ψ(ϕ(n)) ≥ n

2
(7)

for all n, and obtained a class of number satisfying these inequalities. In
1988 J. Sándor [15] conjectured also that

ϕ(ψ(n)) ≤ n, for any n ≥ 2 (8)
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and V. Vitek [24] of Praha verified this conjecture for n ≤ 104.
In 1990 P. Erdős [5] expressed his opinion that this new conjecture could be

as difficult as the Makowski-Schinzel conjecture (3). In 1992 K. Atanassov [3]
believed that he obtained a proof of (8), but his proof was valid only for certain
special values of n.

By using an advanced computer search, Lehel István Kovács has verified
Sándor’s conjecture (8) for all n ≤ 1010.

Though, as we will see, conjecture (6) (or (7)) is not generally true, it will
be interesting to study classes of numbers, for which this is valid.

The aim of this paper is to study this conjecture and also certain new prop-
erties of the above – and related – composite functions.

Basic symbols and notations
σ(n) = sum of divisors of n,
σ∗(n) = sum of unitary divisors of n,
ϕ(n) = Euler’s totient function,
ψ(n) = Dedekind’s arithmetic function,
[x] = integer part of x,
ω(n) = number of distinct divisors of n,
a|b = a divides b,
a - b = a does not divides b,
pr{n} = set of distinct prime divisors of n,
f ◦ g = composition of f and g.

2 Basic lemmas

Lemma 2.1
ϕ(ab) ≤ aϕ(b), for any a, b ≥ 2 (9)

with equality only if pr{a} ⊂ pr{b}, where pr{a} denotes the set of distinct
prime factors of a.

Proof. ab =
∏
p|a,p-b p

α ·
∏
q|a,q|b q

β ·
∏
r|b,r-a r

γ , so ϕ(ab)
ab =

∏
(1− 1

p ) ·∏
(1− 1

q ) ·
∏

(1− 1
r ) ≤

∏
(1− 1

q ) ·
∏

(1− 1
r ) = ϕ(b)

b , so ϕ(ab) ≤ aϕ(b), with
equality if ”doesn’t exist p”, i.e. p with property p|a, p - b. Thus for all p|a one
has also p|b.

Lemma 2.2 If pr{a} 6⊂ pr{b}, then for any a, b ≥ 2 one has

ϕ(ab) ≤ (a− 1)ϕ(b), (10)

and

ψ(ab) ≥ (a+ 1)ψ(b), (11)
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Proof. We give only the proof of (10).
Let a =

∏
pα ·

∏
qβ , b =

∏
rγ ·

∏
qβ

′
, wehere the q are the common prime

factors, and the p ∈ pr{a} are such that p 6∈ pr{b}, i.e. suppose that α ≥ 1.
Clearly β, β′, γ ≥ 0. Then ϕ(ab)

ϕ(b) = a ·
∏

(1− 1
p ) ≤ a− 1 iff

∏
(1− 1

p ) ≤ 1− 1
a =

1− 1∏
pα·

∏
qβ .

Now, 1− 1∏
pα·

∏
qβ ≥ 1− 1∏

pα ≥ 1− 1∏
p by α ≥ 1. The inequality 1− 1∏

p ≥∏
(1− 1

p ) is trivial, since by putting e.g. p−1 = u, one gets
∏

(u+ 1) ≥ 1+
∏
u,

and this is clear, since u > 0. There is equality only when there is a single u, i.e.
if the set of p such that pr{a} 6⊂ pr{b} has a single element, at the first power,
and all β = 0, i.e. when a = p - b. Indeed: ϕ(pb) = ϕ(p)ϕ(b) = (p− 1)ϕ(b).

Lemma 2.3 For all a, b ≥ 1,

σ(ab) ≥ aσ(b), (12)

and

ψ(ab) ≥ aψ(b) (13)

Proof. (12) is well-known, see e.g. [16], [18]. There is equality here, only
for a = 1.

For (13), let u|v. Then ψ(u)
u =

∏
p|u (1 + 1

p ) ≤
∏
p|v,p|u (1 + 1

p ) ·∏
q|v,q-u (1 + 1

q ) = ψ(v)
v , with equality if doesn’t exist q with q|v, q - v. Put

v = ab and u = b. Then ψ(u)
u ≤ ψ(v)

v becomes exactly (13). There is equality if
for each p|a one has also p|b, i.e. pr{a} ⊂ pr{b}.

Remark 1. Therefore, there is a similariry between the inequalities (9) and
(13).

Lemma 2.4 If pr{a} 6⊂ pr{b}, then for any a, b ≥ 2 one has

σ(ab) ≥ ψ(a) · σ(b) (14)

Proof. This is given in [16].

3 Main results

Theorem 3.1 There are infinitely many n such that

ψ(ϕ(n)) < ϕ(ψ(n)) < n (15)

For infinitely many m one has

ϕ(ψ(m)) < ψ(ϕ(m)) < m (16)

There are infinitely many k such that

ϕ(ψ(k)) =
1
2
ψ(ϕ(k)) (17)
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Proof. We prove that (15) is valid for n = 3 · 2a for any a ≥ 1. This follows
from ϕ(3 · 2a) = 2a, ψ(2a) = 3 · 2a−1, ψ(3 · 2a) = 3 · 2a+1, ϕ(3 · 2a+1) = 2a+1, so
3 · 2a > ϕ(ψ(3 · 2a)) > ψ(ϕ(3 · 2a)).

For the proof of (16), put m = 2a · 5b(b ≥ 2). Then an easy computation
shows that ψ(ϕ(m)) = 2a+1 · 32 · 5b−2, and ϕ(ψ(m)) = 2a+2 · 3 · 5b−2 and the
inequalities (16) will follow.

For h = 3s remark that ϕ(ψ(h)) = 4
9 · h and ψ(ϕ(h)) = 4

3 · h, so

ϕ(ψ(h)) < h < ψ(ϕ(h)), (18)

which complete (15) and (16), in a certain sense.
Finally, for k = 2a · 7b(b ≥ 2) one can deduce ψ(ϕ(k)) = 48

49 · k, ϕ(ψ(k)) =
24
49 · k, so (17) follows. We remark that since

ψ(ϕ(k)) < k, (19)

on base on (17) and (19) one can say that

ϕ(ψ(k)) <
k

2
, (20)

for the above values of k. Remark also that for h in (18) one has

ϕ(ψ(h)) =
1
3
ψ(ϕ(h)) (21)

For the values m given by (16) one has

ϕ(ψ(m)) =
2
3
ψ(ϕ(m)) (22)

For n = 2a · 3b(b ≥ 2) one cane remark that ϕ(ψ(n)) = ψ(ϕ(n)).
More generally, one can prove:

Theorem 3.2 Let 1 < n = pα1
1 pα2

2 · · · pαr
r the prime factorisation of n and

suppose that the odd part of n is squarefull, i.e. αi ≥ 2 for all i with pi ≥ 3.

Then ϕ(ψ(n)) = ψ(ϕ(n)) is true if and only if

pr{(p1−1) · · · (pr−1)} ⊂ pr{p1, · · · , pr} and pr{(p1+1) · · · (pr+1)} ⊂ pr{p1, · · · , pr}.
(23)

Proof. Since ϕ(n) = pα1−1
1 · · · pαr−1

r · (p1 − 1) · · · (pr − 1) and ψ(n) =
pα1−1
1 · · · pαr−1

r · (p1 + 1) · · · (pr + 1), one can write ψ(ϕ(n)) = pα1−1
1 · · · pαr−1

r ·
(p1 − 1) · · · (pr − 1) ·

∏
t|(pα1−1

1 ···pαr−1
r ·(p1−1)···(pr−1))

1 + 1
t and ϕ(ψ(n)) =

pα1−1
1 · · · pαr−1

r · (p1 + 1) · · · (pr + 1) ·
∏
q|(pα1−1

1 ···pαr−1
r ·(p1+1)···(pr−1))

(1− 1
q ).

Since αi − 1 ≥ 1 when pi ≥ 3, the equality ψ(ϕ(n)) = ϕ(ψ(n)), by (p1 −
1) · · · (pr − 1) · (1 + 1

p1
) · · · (1 + 1

pr
) = (p1 + 1) · · · (pr + 1) · (1− 1

p1
) · · · (1− 1

pr
),

can be written also as
∏
t|(p1−1)···(pr−1) (1 + 1

t ) =
∏
q|(p1+1)···(pr+1) (1− 1

q ).
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Since 1 + 1
t > 1 and 1 − 1

q < 1, this is impossible in general. It is possible
only if all prime factors of (p1 + 1) · · · (pr − 1) are among p1, · · · , pr, and also
the same for the prime factors of (p1 + 1) · · · (pr + 1).

Remark 2. For examle, n = 2a · 3b · 5c with a ≥ 1, b ≥ 2, c ≥ 2 satisfy (23).
Indeed pr{(2−1)(3−1)(5−1)} = {2}, pr{(2+1)(3+1)(5+1)} = {2, 3}. Similar
examples are n = 2a · 3b · 5c · 7d, n = 2a · 3b · 5c · 11d, n = 2a · 3b · 7c · 13d, n =
2a · 3b · 5c · 7d · 11e · 13f , n = 2a · 3b · 17c etc.

Theorem 3.3 Let n be squarefull. Then inequality (8) is true.

Proof. Let n = pα1
1 · · · pαr

r with αi ≥ 2 for all i = 1, r. Then ϕ(ψ(n)) =
ϕ(pα1−1

1 · · · pαr−1
r · (p1 +1) · · · (pr+1)) ≤ (p1 +1) · · · (pr+1) ·ϕ(pα1−1

1 · · · pαr−1
r ),

by Lemma 1. But ϕ(pα1−1
1 · · · pαr−1

r ) = pα1−2
1 · · · pαr−2

r · (p1 − 1) · · · (pr − 1),
since α ≥ 2. Then ϕ(ψ(n)) ≤ (p2

1− 1) · · · (p2
r − 1) · pα1−2

1 · · · pαr−2
r = pα1

1 · · · pαr
r ·

(1− 1
p21

) · · · (1− 1
p2r

), so

ϕ(ψ(n)) ≤ n · (1− 1
p2
1

) · · · (1− 1
p2
r

) (24)

There is equality in (24) if pr{(p1 + 1) · · · (pr + 1)} ⊂ {p1, · · · , pr}.
Clearly, inequality (24) is best possible, and by (1 − 1

p21
) · · · (1 − 1

p2r
) < 1, it

implies inequality (8).

Theorem 3.4 For any n ≥ 2 one has

ϕ(n
[
ψ(n)
n

]
) < n, (25)

where [x] denotes the integer part of x.

Proof. It is immediate thet ϕ(n)ψ(n)
n2 =

∏
p|n (1− 1

p2 ) < 1, so ϕ(n)ψ(n) < n2

for any n ≥ 2. Now, by (9) one can write ϕ(n
[
ψ(n)
n

]
) ≤

[
ψ(n)
n

]
ϕ(n) ≤ ψ(n)

n ·
ϕ(n) < n, by the above proved relation.

Remark 3. If n|ψ(n), i.e., when
[
ψ(n)
n

]
= ψ(n)

n , relation (25) gives inequal-
ity (8), i.e. ϕ(ψ(n)) < n. For the study of an equation

ψ(n) = k · n (26)

we shall use a notion and a method of Ch. Wall [25]. We say that n is
ω-multiple of m if m|n and pr{m} = pr{n}. We need a simple result, stated as:

Lemma 3.1 If m and n are squarefree, and ψ(n)
n = ψ(m)

m , then n = m.

Proof. Without loss of generality we may suppose (m,n) = 1; m,n >
1, m = q1 · · · qj (q1 < · · · < qj) and n = p1 · · · pk (p1 < · · · < pk). Then the
assumed equality has the form n(1 + q1) · · · (1 + qj) = m(1 + p1) · · · (1 + pk).
Since pk|n, the relation pk|(1 + p1) · · · (1 + pk−1)(1 + pk) implies pk|(1 + pk) for
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some i ∈ {1, 2, · · · , k}. Here 1 + p1 < · · · < 1 + pk−1 < 1 + pk, so we must have
pk|(1 + pk−1). This may happen only when k = 2, p1 = 2, p2 = 3; j = 2, q1 =
2, q3 = 3 (since for k ≥ 3, pk − pk−1 ≥ 2, so pk - (1 + pk−1)). In this case
(n,m) = 6 > 1, a contradiction. Thus k = j and pk = qj .

Theorem 3.5 Assume that the least solution nk of (26) is a squarefree number.
Then all solutions of (26) are given by the ω-multiples of nk.

Proof. If n is ω-multiple of nk, then clearly ψ(n)
n = ψ(nk)

nk
= k, by (1).Con-

versely, if n is a solution, set m = greatest squarefree divisor of n. Then
ψ(n)
n = ψ(m)

m = k = ψ(nk)
nk

. By Lemma 3.1, m = nk, i.e. n is an ω-multiple
of nk.

Theorem 3.6 Let n ≥ 3, and suppose that n is ψ-deficient, i.e. ψ(n) < 2n.
Then inequality (8) is true.

Proof. First remark that for any n ≥ 3, ψ(n) is an even number. Indeed,
if n = 2a, then ψ(n) = 2a−1 · 3, which is odd only for a = 1, i.e. n = 2. If n has
at least an odd prime factor p, then by (1), ψ(n) will be even.

Now, applying Lemma 2.1 for b = 2, one obtains ϕ(2a) ≤ a, i.e. ϕ(u) ≤ u
2 for

u = 2a (even). Here equality occurs only when u = 2k(k ≥ 1). Now, ϕ(ψ(n)) ≤
ψ(n)

2 , ψ(n) being even, and since n is ψ-deficient, the Theorem follows.
Remark 4. The inequality

ϕ(ψ(n) ≤ ψ(n)
2

) (27)

is best possible, since we have equality for ψ(n) = 2k. Let n = pα1
1 · · · pαr

r ;
then pα1−1

1 · · · pαr−1
r · (p1 +1) · · · (pr+1) = 2k is possible only if α1 = · · ·αr = 1,

and p1 + 1 = 2a1 , · · · , pr + 1 = 2ar ; i.e. when p1 = 2a1 − 1, · · · , pr = 2ar − 1 are
distinct Mersenne primes, and n = p1 · · · pr. So, there is equality in (27) iff n is
a product of distinct Mersenne primes. Since by Theorem 3.5 one has ψ(n) = 2n
iff n = 2a · 3b (a, b ≥ 1), if one assumes ψ(n) ≤ 2n, then by (27), inequality (8)
follows again. Therefore, in Theorem 3.6 one may assume ψ(n) ≤ 2n.

Let ω(n) denote the number of distinct prime factors of n. Theorem 3.6
and the above remark implies that when n is even, and ω(n) ≤ 2, (8) is true.
Indeed, 1 + 1

2 = 3
2 < 2, and (1 + 1

2 )(1 + 1
3 ) = 2. So e.g. when n = pα1

1 · pα2
2 ,

then ψ(n)
n = (1 + 1

p1
) · (1 + 1

p2
) ≤ 1 + 1

2 )(1 + 1
3 ) = 2. On the other hand, if n is

odd, and ω(n) ≤ 4, then (8) is valid. Indeed, (1 + 1
3 )(1 + 1

5 )(1 + 1
7 )(1 + 1

11 ) =
4
3 ·

6
5 ·

8
7 ·

12
11 = 2304

1155 < 2.
Another remark is the following:
If 2 and 3 do not divide n, and n has at most six prime factors, then

ϕ(ψ(n)) < n. If 2, 3 and 5 do not divide n, and n has at most 12 prime
factors, then the same result holds true. If 2, 3, 5 and 7 do not divide n, and n
has at most 21 prime factors, then the inequality is true.

If 2 and 3 do not divide n, we prove that ψ(n) < 2n, and by the presented
method the results will follow. E.g., when n is not divisible by 2 and 3, then the
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least prime factor of n could be 5, so ψ(n)
n < 6

5 ·
8
7 ·

12
11 ·

14
13 ·

18
17 ·

20
19 ·

24
23 ·

30
29 ·

32
31 < 2,

and the first result follows. The other affirmations can be proved in a similar
way.

In [16] it is proved that

ψ(n) ≤
{ 3ω(n) · ϕ(n), if n is even

2ω(n) · ϕ(n), if n is odd
(28)

Thus, as a corollary of (27) and (28) one can state that if 3ω(n)·ϕ(n)
2 < n (or

≤ n), for n even; and 2ω(n)−1 ·ϕ(n) (or ≤ n) for n odd, then relation (8) is valid.
By (27), if n is a product of distinct Mersenne primes, then ϕ(ψ(n)) = ψ(n)

2 .
We will prove that ψ(n) < 2n for such n, thus obtaining:

Theorem 3.7 If n is a product of distinct Mersenne primes, then inequality
(8) is valid.

Proof. Let n = M1 · · ·Ms, where Mi = 2pi − 1 (pi primes, i = 1, 2, · · · , s)
are distinct Mersenne primes. We have to prove that (2p1 − 1) · · · (2ps − 1) >
2p1+···+ps−1, or equivalenty, (1 − 1

2p1 ) · · · (1 − 1
2ps ) > 1

2 . Clearly p1 ≥ 2, p2 ≥
3 · · · , ps ≥ s+ 1, so it is sufficient to prove that

(1− 1
22

) · · · (1− 1
2s+1

) >
1
2

(29)

In the proof of (29) we will use the classical Weierstrass inequality

s∏
k=1

(1− ak) > 1−
s∑

k=1

ak, (30)

where ak ∈ (0, 1). (see e.g. D.S. Mitrinović: Analytic inequalities, Springer-
Verlag, 1970).

Put ak = 1
2k+1 in (30). Since

∑s
k=1

1
2k+1 = 1

4 · (1 + 1
2 + · · · + 1

2k−1 ) =
1
4 · (

1− 1
2k

1− 1
2

) = 2k−1
2k+1

, (29) becomes equivalent to 1 − 2k−1
2k+1

> 1
2 , or 1

2 >
2k−1
2k+1

, i.e.

2k > 2k − 1, which is true. Therefore, (29) follows, and the theorem is proved.
Remark 5. By Theorem 3.12 (se relation (43)), if n = Ma1

1 · · ·Mss
s (with

arbitrary ai ≥ 1), the inequality (8) holds true.

Related to the above theorems is the following result:

Theorem 3.8 Let n be even, and suppose that the greatest odd part m of n is
ψ-deficient, and that 3 - ψ(m). Then (8) is true.

Proof. Let n = 2k ·m, when ϕ(ψ(n)) = ϕ(2k−1 ·3ψ(m)) = 2 ·ϕ(2k−1 ·ψ(m))
since (3, 2k−1 · ψ(m)) = 1. But ϕ(2k−1 · ψ(m)) ≤ 2k−2 · ψ(m) < 2k−1 ·m, so
ϕ(ψ(n)) < 2k ·m = n
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Remark 6. In [18] it is proved that for all n ≥ 2 even one has

ϕ(σ(n)) ≥ 2n, (31)

with equality only if n = 2k, where 2k+1− 1 = prime. The proof is based on
Lemma 2.3. Since σ(m) ≥ ψ(m), cleary this implies

σ(σ(n)) ≥ 2n, (32)

with the above equalities. So, the Surayanarayana-Kanved theorem is reob-
tained, in an improved form.

In [18] it is proved also that for all n ≥ 2 even one has

σ(ψ(n)) ≥ 2n, (33)

with equality only for n = 2. What are the odd solutions of σ(ψ(n)) = 2n?
We now prove:

Theorem 3.9 Let n = 2k ·m be even (k ≥ 1,m > 1 odd), and suppose that m
is not a product of distinct Fermat primes, and that m satisfies (6). Then

σ(ϕ(n)) ≥ n−m ≥ n

2
(34)

Proof. First remark that if m is not a product of distinct Fermat primes,
then ϕ(m) is not a power of 2. Indeed, if m = pa1

1 · · · par
r , then ϕ(m) =

pa1−1
1 · · · par−1

r (p1−1) · · · (pr−1) = 2s iff (since pi ≥ 3), a1−1 = · · · = ar−1 = 0
and p1 − 1 = 2s1 , · · · , pr − 1 = 2sr , i.e. p1 = 2s1 + 1, · · · , pr = 2sr + 1 are dis-
tinct Fermat primes. Thus there exists at least an odd prime divisor of ϕ(m).
Now, by Lemma 2.4, σ(ϕ(2k · m)) = σ(2k−1 · ϕ(m)) ≥ ψ(ϕ(m)) · σ(2k−1) ≥
m · (2k − 1) = n−m, by relation (6). The last inequality of (34) is trivial, since
m ≤ n

2 = 2k−1 ·m, where k − 1 ≥ 0.
Remark 7. Relation (31) gives an improvement of (3) for certain values of

n.

Theorem 3.10 Let p be an odd prime. Then

ϕ(ψ(p)) ≤ p+ 1
2

, (35)

with equality only if p is a Mersenne prime, and ψ(ϕ(p)) ≥ 3
2 · (p − 1), with

equality only if p is a Fermat prime.

Proof. ψ(p) = p + 1 and p + 1 being even, ϕ(p + 1) ≤ p+1
2 , with equality

only if p+1 = 2k, i.e. when p = 2k− 1 = Mersenne prime. Since 3
2 · (p− 1) ≥ p,

this inequality is better than (6) for n = p. Similarly, ϕ(p) = p − 1 = even, so
ψ(p− 1) ≥ 3

2 · (p− 1), on base of the following:

9



Lemma 3.2 If n ≥ 2 is even, then

ψ(n) ≥ 3
2
· n, (36)

whith equality only if n = 2a (power of 2).

Proof. If n = 2a ·N , with N odd, ψ(n) = ψ(2a) · ψ(N) = 2a−1 · 3 · ψ(N) ≥
2a−1 · 3 ·N = 3

2 · n. Equality occurs only, when N = 1, i.e. when n = 2a.
Since p − 1 = 2a implies p = 2a + 1 = Fermat prime, (35) is completely

proved. Since 3
2 · (p− 1) ≥ p, this inequality is better than (6) for n = p.

Remark 8. For p ≥ 5 one has p+1
2 < p < 3

2 · (p − 1), so (35) implies, as a
corrolary that

ϕ(ψ(p)) < p < ψ(ϕ(p)), (37)

for p ≥ 5, prime.
This is related to relation (18). If n is even, and n 6= 2a (power of 2), then

since ψ(N) ≥ N+1, with equality only when N is a prime, (36) can be improved
to

ψ(n) ≥ 3
2
· (n+

n

N
), (38)

with equality only for n = 2a ·N , where N = prime.

Theorem 3.11 Let a, b ≥ 1 and suppose that a|b. Then ϕ(ψ(a))|ϕ(ψ(b)) and
ψ(ϕ(a))|ψ(ϕ(b)). Particulary, if a|b, then

ϕ(ψ(a)) ≤ ϕ(ψ(b)); ψ(ϕ(a)) ≤ ψ(ϕ(b)) (39)

Proof. The proof follows at once from the following:

Lemma 3.3 If a|b, then
ϕ(a)|ϕ(b), (40)

and
ψ(a)|ψ(b), (41)

Proof. This follows on base of (1), see e.g. [16], [18].

Now, if a|b, then ψ(a)|ψ(b) by (41), so by (40), ϕ(ψ(a))|ϕ(ψ(b)). Similarly,
a|b implies ϕ(a)|ϕ(b) by (40), so by (41), ψ(ϕ(a))|ψ(ϕ(b)). The inequalities in
(36) are trivial consequences.

Remark 9. Let a = p be a prime such that p - k, and put b = kp−1 − 1.
By Fermat’s little theorem one has a|b, so all results of (39) are correct in

this case. For example, ψ(ϕ(a)) ≤ ψ(ϕ(b)) gives, in base of (39), and Theorem
3.9:

ψ(ϕ(kp−1 − 1)) ≥ ψ(ϕ(p)) ≥ 3
2
· (p− 1), (42)
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for any prime p - k, and any positive integer k > 1.
Let (n, k) = 1. Then by Euler’s divisibility theorem, one has similarly:

ψ(ϕ(kϕ(n) − 1)) ≥ ψ(ϕ(n)), (43)

for any positive integers n, k > 1 such that (n, k) = 1.
Let n > 1 be a positive integer, having as distinct prime factors p1, · · · , pr.

Then, using (1) it is immediate that

ϕ(n)|ψ(n) (44)

iff (p1 − 1) · · · (pr − 1)|(p1 + 1) · · · (pr + 1). For example, (44) is true for
n = 2m, n = 2m · 5s(m, s ≥ 1), etc. Now assuming (44), by (40) one can write
the following inequalities:

ϕ(ψ(ϕ(n))) ≤ ϕ(ψ(ψ(n))) and ψ(ϕ(ϕ(n))) ≤ ψ(ϕ(ψ(n))) (45)

By studying the first 100 values of n with property (44), the following in-
teresting example may be remarked: ϕ(15) = ϕ(16) = 8, ψ(15) = ψ(16) = 24
and ϕ(15)|ψ(15). Similarly ϕ(70) = ϕ(72) = 24, ψ(70) = ψ(72) = 144, with
ϕ(70)|ψ(70).

Are there infinitely many such examples? Are there infinitely many n such
that ϕ(n) = ϕ(n + 1) and ψ(n) = ψ(n + 1)? Or ϕ(n) = ϕ(n + 2) and ψ(n) =
ψ(n+ 2)?

Let a = 8, b = σ(8k − 1). Then a|b (see e.g. [18] for such relations), and
since ψ(ϕ(8)) = 6, ϕ(ψ(8)) = 12, by (39) we obtain the divisibility relations

6|ψ(ϕ(σ(8k − 1))) and 12|ϕ(ψ(σ(8k − 1))) (46)

for k ≥ 1.
The second relation implies e.g. that if ϕ(ψ(σ(n))) = 2n, then n 6≡

−1 (mod 8) and if ϕ(ψ(σ(n))) = 4n, then n 6≡ −1 (mod 24).

Theorem 3.12 Inequality (8) is true for an n ≥ 2 if it is true for the squarefree
part of n ≥ 2. Inequality (6) is true for an odd m ≥ 3 if it is true for the
squarfree part of m ≥ 3.

Proof. As we have stated in the Introduction, such results were first proved
by the author. We give here the proof for the sake of completeness.

Let n′ be the squarefree part of n, i.e. if n = pa1
1 · · · par

r , then n′ = p1 · · · pr.
Then ϕ(ψ(n)) = ϕ(pa1−1

1 · · · par−1
r ·(p1+1) · · · (pr+1)) ≤ pa1−1

1 · · · par−1
r ·ϕ((p1+

1) · · · (pr + 1)) = n
n′ · ϕ(ψ(n′))) by inequality (9).

Thus

ϕ(ψ(n))
n

≤ ϕ(ψ(n′))
n′

(47)

Therefore, if ϕ(ψ(n′))
n′ < 1, then ϕ(ψ(n))

n < 1. Similarly one can prove that
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ψ(ϕ(m))
m

≥ ψ(ϕ(m′))
m′ , (48)

so if (6) is true for the squarefree part m′ of m, then (6) is true also for m.
As a consequence, (8) is true for all n if and only if it is true for all squarfree

n.
As we have stated in the introduction, (6) is not generally true for all m. Let

e.g. m = 3 · F , where F > 3 is a Fermat prime. Indeed, put F = 2k + 1. Then
ϕ(m) = 2k+1, so ψ(ϕ(m)) = 2k · 3 < 3 · (2k + 1) = 3 · F = m, contradicting (6).
However, if m has the form m = 5 · F , where F > 5 is again a Fermat prime,
then (6) is valid, since in this case ψ(ϕ(m)) = 6 · 2k > 5 · (2k + 1) = m.

More generally, we will prove now:

Theorem 3.13 Let 5 ≤ F1 < · · · < Fs be Fermat primes. Then inequality (6)
is valid (with strict inequality) for m = F a1

1 · · ·F as
s , with arbitrary ai ≥ 1 (i =

1, s).

Proof. Let Fi = 1 + 22bi (i ≥ 1) be Fermat primes, where b1 ≥ 1. Since
b1 < b2 < · · · < bs, clearly bi ≥ i for any i = 1, 2, · · · , s. By (48) it is sufficient
to prove the result for m′ = F1 · · ·Fs, when (6) becomes, after some elementary
computations:

(1 +
1

22b1
) · · · (1 +

1
22bs

) ≤ 3
2

(49)

We will prove thar (49) holds with strict inequality. By the classical Weier-
strass inequalities one has

∏s
k=1(1 + ak) < 1

1−
∑s

k=1 ak
, where ak ∈ (0, 1).

Since bi ≥ 1, it is sufficient to prove that

(1 +
1
22

) · · · (1 +
1

22s ) ≤ 3
2

(50)

Put ak = 22k

(k ≥ 1), so by the above inequality, it is sufficient to prove
that ∑

=
1

221 +
1

222 + · · ·+ 1
22s <

1
3

(51)

Clearly (51) is true for s = 1, 2, since 1
4 <

1
3 , 1

4 + 1
16 = 5

16 <
1
3 . Let s ≥ 3.

Then, since 2s ≥ s+5 for s ≥ 3, we can write
∑
≤ 1

4+ 1
16+ 1

28 ·(1+ 1
2+· · ·+ 1

2s−3 ) =
5
16 + 1

128 · (1−
1

2s−2 ) < 5
16 + 1

128 = 41
128 <

1
3 , and the assertion is proved.

Remark 11. By Lermma 2.2, relation (10) one can write successively
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ϕ((p1 + 1)(p2 + 1)) ≤ p2ϕ(p1 + 1) < p1p2, if pr{p2 + 1} 6⊂ pr{p1 + 1}
ϕ((p1 + 1)(p2 + 1)(p3 + 1)) ≤ p3ϕ(p1 + 1)(p2 + 1) < p1p2p3,

if in addition pr{p3 + 1} 6⊂ pr{(p1 + 1)(p2 + 1)}
· · ·

ϕ((p1 + 1) · · · (pr−1 + 1)(pr + 1)) ≤ prϕ((p1 + 1) · · · (pr−1 + 1)) < p1 · · · pr,
if pr{pr + 1} 6⊂ pr{(p1 + 1) · · · (pr−1 + 1)}

(52)
is satisfied, then by Theorem 3.12, inequality (8) is valid.
Similarly, by using Lemma 2, (11), and Theorem 3.12, we can state that if

pr{p2 − 1} 6⊂ pr{q1 − 1},
pr{q3 − 1} 6⊂ pr{(p1 − 1)(p2 − 1)},

· · · ,
pr{qr − 1} 6⊂ pr{(p1 − 1) · · · (qr−1 − 1)},

(53)

then inequality (6) is valid. (Here q1, q2, · · · , qr are the prime divisors of
the odd number m ≥ 3.)

Now by using a method of L. Alaoglu and P. Erdős [1], we will prove that:

Theorem 3.14 For any δ > 0, the inequality

ϕ(ψ(n)) < δ · n (54)

is valid, excepting perhaps n ∈ S, where S has asymptotic density zero.

Proof. We prove first that for any given prime p, the set of n such that
p|ψ(n), has density 1. This is similar to the proof given in [1].

On the other hand, since
∑
n≤x ψ(n) ≈ 15

2π2 · x2 as x → ∞ (see e.g. [16]),
we can say that excepting at most a number of ε · x integers n < x, one has
ψ(n) < c(ε) · n, where c(ε) > 0.

Let now p be a prime such that
∏
q≤p(1 −

1
q ) <

δ
c(ε) (this is possible, since∏

q≤p(1−
1
q ) → 0 as p→∞).

Then, if x is large, then for all n < x, excepting perhaps a number of η·x+ε·x
integers one has ψ(n) < c(ε). n and ψ(n) ≡ 0(mod q) for any q ≤ p, (η > 0).

But for these exceptions one hase ϕ(ψ(n)) < δ ·n, and this finishes the proof;
η, ε > 0 being arbitrary.

Remark 12. It can be proved similary that

ψ(ϕ(n)) > δ · n, (55)

excepting perhaps a set of density zero.
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Theorem 3.14 implies that lim infn→∞
ϕ(ψ(n))

n = 0, and so, one has
lim supn→∞

ψ(ϕ(n))
n = +∞. For other proof of these results, see [16]. We cannot

determine the following values: lim infn→∞
ψ(ϕ(n))

n =?, lim supn→∞
ϕ(ψ(n))

n =?
However, we can prove that:

Theorem 3.15

lim infn→∞
ψ(ϕ(n))

n
≤ inf{ψ(ϕ(k))

k
: k is a multiple of 4} < 1

2
(56)

Proof. Let k be a multiple of 4, and p > k
2 . Then ϕ( 1

2kp) = ϕ(k2 )ϕ(p) =
2ϕ(k2 ) · p−1

2 = ϕ(k) · p−1
2 , since 2|k2 . Now by ψ(ab) ≤ ψ(a)ψ(b) one can write

ψ(ϕ( 1
2kp)) ≤ ψ(ϕ(k))ψ(p−1

2 ).
Since ψ(p−1

2 ) ≤ σ(p−1
2 ), and by the known result of Makowski and Schinzel:

lim inf
σ( p−1

2 )
p−1
2

= 1, from the above one can write:

lim infp→∞
ψ(ϕ( 1

2kp))
1
2kp

≤ ψ(ϕ(k))
k · lim infp→∞

ψ( p−1
2 )

p−1
2

≤ ψ(ϕ(k))
k ,

and now relation (56) follows, by taking inf after k.
Since 232−1 = F0 ·F1 ·F2 ·F3 ·F4, where Fk = 22k

+1, and all Fi (0 ≤ i ≤ 4)
are primes, it follows, that ϕ(232 − 1) = 21 · 22 · 24 · 28 · 216 = 231. Thus
ϕ(4(232 − 1)) = 232, by ϕ(4) = 2. Since ψ(232) = 231 · 3, by letting in (56)
k = 4 · (232 − 1), we get the inf ≤ 231·3

4·(232−1) <
1

2·( 4
3−θ)

, where θ > 1
3·230 . In

any case we get in (56) that lim inf < 1
2 , and fact a value slightly greater than

1
2· 43

= 3
8 .

In [16] it is asked the value of lim inf ψ(σ(n))
n ≤ 1. We now prove that this

value is 1:

Theorem 3.16

lim inf
ψ(σ(n))

n
= 1 (57)

Proof. Since ψ(σ(n))
n ≥ σ(n)

n ≥ 1, clearly this lim is ≥ 1. By the
above inequality, follows the result. However, we give here a new proof of
this fact. Remark that, since ϕ(N) ≤ ψ(N) ≤ σ(N), and by the known re-
sult limp→∞

ϕ(N(a,p))
N(a,p) = limp→∞

σ(N(a,p))
N(a,p) = 1, where N(a, p) = ap−1

p−1 , (a >

1, p prime) we get easily

limp→∞
ϕ(N(a, p))
N(a, p)

= 1 (58)

Let now a = q an arbitray prime in (58). Remark that N(q, p) = qp−1
q−1 =

σ(qp−1). Now, by σ(qp−1)
qp−1 = qp−1

(q−1)·qp−1 → q
q−1 , as p → ∞, from (58) we can

write:

limp→∞
ψ(σ(qp−1))

qp−1
=

q

q − 1
< 1 + ε, (59)
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for q ≥ q(ε), ε > 0. Now by (59), (57) follows.
Remark 13. In [16] it is proved, by assuming the infinitude of Mersenne

primes, that

lim infn→∞
ψ(ψ(n))

n
=

3
2

(60)

Could we prove (60) without any assumption?

We have conjectured in [16] that the following limit is true, but in the proof
we have used the fact that there are infinitely many Mersenne primes. Now we
prove this result without any assumptions:

Theorem 3.17 We have

lim inf
ψ(ψ(n))

n
=

3
2

(61)

Proof. Since ψ(n) ≥ 3
2n for all even n, and ψ(n) ≥ n for all n, clearly

ψ(ψ(n)) ≥ 3
2 · n for all n, therefore it will be sufficient to find a sequence with

limit 3
2 . By using deep theorems on primes in arithmetical progressions,it can

be proved, as in Makowski-Schinzel [13] that lim supϕ(a)
a = lim inf σ(a)

a = 1 as
p tends to infinity, where a = (p+1)

2 , and p ≡ 1 (mod 4).
Since (p+1)

2 is odd, we get σ(p+1) = σ(2 · (p+1)
2 ) = 3 ·σ( (p+1)

2 ), implying that
lim inf (σ(p+1))

p = 3
2 . Since ψ(n) ≤ σ(n), we can write that lim inf (ψ(p+1))

p ≤ 3
2 .

By (ψ(p+1))
p > 3

2 , this yields lim inf (ψ(p+1))
p = 3

2 , finishing the proof of the
theorem.
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Vitek, for helpful conversations. He is indebted also to Professors A. Makowski,
H.-J. Kanold, K. Ford, G.L. Cohen, Ch. Wall, for providing interesting reprints
of their works. Finally, the author thanks his collegue Lehel István Kovács for
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FINAL NOTES. After this paper was written, Professor L. Tóth (Univ. of
Pecs, Hungary) has communicated to us, that inequality (8) is not true for
n = 39270, n = 82110, or n = 2 · 3 · 5 · 7 · 17 · 23 ·M, where M is a Mersenne
prime greater or equal than 31. However, since this inequality holds true for
many values of n, it remains open the question of the determination of most
general classes of numbers with this property. For example, is it true for odd
numbers? (or for numbers not divisible by 10?)
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