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Abstract. Supposing f(x, y) is a positive homogeneous function
defined on U(j R+ × R+), denoted the two-parameter homoge-

neous functions by Hf (a, b; p, q) =
[

f(ap,bp)
f(xq,bq)

] 1
p−q

. If f(x, y) is 3rd
differentiablec, then the logarithmically convexity with respect to
paraters p and q ofHf (p, q) depend on the sign of J = (x−y)(xI1)x,
where I1 = (ln f)xy. As applications of this results, a group of in-
equalities chains for homogeneous mean are established to general-
ize, strengthen and unify Ling Tong-po and Stolarsky inequalities;
An conversed inequality chains for exponential (idential) mean is
derived, which contains a reversed Stolarsky inequality; Several
estimates of lower and upper bounds of two-parameter L-mean
(extended mean) are presented.

1. Intruduction

In [14], the conception of two-parameter homogeneous function was
introduced, its monotonicity was studied. For convenience, we quote
it as follows

Definition 1. Assume f : U(j R+ × R+) → R+ is a homogeneous
function for variable x and y, and is continuous and exist 1st partial
derivative, (a, b) ∈ R+ × R+ and a 6= b, (p, q) ∈ R × R. If (1, 1) /∈ U,
then define that

Hf (a, b; p, q) =

[
f(ap, bp)

f(aq, bq)

] 1
p−q

(p 6= q, pq 6= 0),(1.1)

Hf (a, b; p, p) = lim
q→p
Hf (a, b; p, q) = G

1
p

f (ap, bp)(p = q 6= 0),(1.2)
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where

(1.3) Gf (x, y) = exp

[
xfx(x, y) ln x + yfy(x, y) ln y

f(x, y)

]
,

fx(x, y) or fy(x, y) denotes a partial derivative with respect to 1st or
2nd variable of f(x, y) respectively.

If (1, 1) ∈ U, then define further

Hf (a, b; p, 0) =

[
f(ap, bp)

f(1, 1)

] 1
p

(p 6= 0, q = 0),(1.4)

Hf (a, b; 0, q) =

[
f(aq, bq)

f(1, 1)

] 1
q

(p = 0, q 6= 0),(1.5)

Hf (a, b; 0, 0) = lim
p→0
Hf (a, b; p, 0) = Gf,0(a, b)(p = q = 0).(1.6)

In the case of not being confused, we set

Hf = Hf (p, q) = Hf (a, b; p, q),

Gf,p = Gf,p(a, b) = G
1
p

f (ap, bp) = Hf (p, p)

It is no doubt that the conception of two-parameter homogeneous
functions have developed greatly the extension of conception of two-
parameter mean or extended mean and Gini mean.

As special cases of the two-parameter homogeneous function, the ex-
tended mean and Gini mean have been researched by various authors
in [1–12, 15]. It is worth mentioning that Qi Feng studied the loga-
rithmically convexity for the parameters of the extended mean in [5],
and pointed out the two-parameters mean is a logarithmically concave
function for two parameters on interval (0, +∞) and is a logarithmi-
cally convex function on interval (−∞, 0). This is a very interesting
and more useful result.

The aim of this paper is to investgate the logarithmically convex-
ity with respect to the parameters of the two-parameter homogeneous
function, and get the following results:

Theorem 1. Let f(x, y) be a positive n-order homogenous function
defined on U(jR+ × R+), and be 3rd differentiable. If

(1.7) J = (x− y)(xI1)x <
(>)

0, where I1 = (ln f)xy,

then when p, q ∈ (0, +∞),Hf (p, q) is logarithmically convex (concave)
strictly for p or q respectively; while p, q ∈ (−∞, 0),Hf (p, q) is loga-
rithmically concave (convex) strictly for p or q respectively.

Corollary 1. The conditions is the same as Theorem 1.1’s. If (1.7)
holds then Hf (p, 1− p) is strictly monotone decreasing (increasing) in
p ∈ (0, 1

2
); Hf (p, 1− p) is strictly monotone increasing (decreasing) in

p ∈ (1
2
, 1).
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Corollary 2. The conditions is the same as Theorem 1.1’s. If (1.7)
holds, then for p, q ∈ (0, +∞) with p 6= q, there is

(1.8) Gf, p+q
2

<
(>0)

Hf (p, q) <
(>0)

√
Gf,pGf,q.

For p, q ∈ (−∞, 0) with p 6= q, the inequality (1.8) reverses.

2. Proof of Main Results

For proving Theorem 1 and Corollary 1 and 2, we need to the fol-
lowing lemmas, Lemma 1 and 2 of which are from section 3 in [13].

Lemma 1. Let f(x, y), g(x, y) is a n, m-order homogenous function
over Ω respectively, then f · g, f/g(g 6= 0) is a n + m, n − m-order
homogenous function over Ω respectively.

If for a certain p and (xp, yp) ∈ Ω, fp(x, y) exist, then f(xp, yp), fp(x, y)
are both np-order homogeneous functions over Ω.

Lemma 2. Let f(x, y) be a n-order homogeneous function over Ω, and
fx, fy both exist, then fx, fy are both n− 1-order homogeneous function
over Ω, furthermore we have

(2.1) xfx + yfy = nf.

In particular, when n = 1 and f(x, y) is 1st differentiable over Ω, then

xfx + yfy = f,(2.2)

xfxx + yfxy = 0,(2.3)

xfxy + yfyy = 0.(2.4)

Lemma 3. Let f(x, y) be a positive n-order homogenous function de-
fined on U(j R+ × R+), and be 2nd differentiable. Setting T (t) =
ln f(at, bt), x = at, y = bt, a, b > 0, then

T ′(t) = ln G
1
t
f (at, bt),(2.5)

T ′′(t) = −xyI1(ln b− ln a)2, where I1 = (ln f)xy.(2.6)

Proof. First, by (1.3) and direct calculating, we have

T ′(t) =
atfx(a

t, bt) ln a + btfy(a
t, bt) ln b

f(at, bt)

=
1

t

atfx(a
t, bt) ln at + btfy(a

t, bt) ln bt

f(at, bt)
= ln G

1
t
f (at, bt).

Second, since f(x, y) is a positive n-order homogeneous function,
from expression (2.2), we can obtain x(ln f)x + y(ln f)y = n or

x(ln f)x = n− y(ln f)y, y(ln f)y = n− x(ln f)x.



4 ZHEN-HANG YANG

And then

T ′(t) =
atfx(a

t, bt) ln a + btfy(a
t, bt) ln b

f(at, bt)

=
xfx(x, y) ln a + yfy(x, y) ln b

f(x, y)

= x(ln f)x ln a + y(ln f)y ln b.

Hence

T ′′(t) =
∂T ′(t)

∂x

dx

dt
+

∂T ′(t)

∂y

dy

dt

= [y(ln f)y(ln b− ln a) + n ln a]x at ln a +

[x(ln f)x(ln a− ln b) + n ln b]y bt ln b

= y(ln f)yx(ln b− ln a)x ln a + x(ln f)xy(ln a− ln b)y ln b

= −xy(ln f)xy(ln b− ln a)2

= −xyI1(ln b− ln a)2.

Lemma 4. Let f(x, y) be a positive n -order homogenous function
defined on U(jR+ × R+), and be 3rd differentiable, then

T ′′′(t) = −Ct−3J,

where J = (x− y)(xI1)x,C = xy(x− y)−1(ln x− ln y)3 > 0.

Proof. From Lemma 1 and 2, we can understand that I1 = (ln f)xy =

(ffxy − fxfy)/f
2 is a −2-order homogeneous function of x and y, thus

xyI1 is a 0-order homogeneous function. By (2.1), we get

(2.7) x(xyI1)x + y(xyI1)y = 0, or y(xyI1)y = −x(xyI1)x.
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By Lemma 3 and notice x = at, y = bt, and then

T ′′′(t) =
dT ′′(t)

dt
=

d (−xyI1(ln b− ln a)2)

dt

= −(ln b− ln a)2

(
∂(xyI1)

∂x

dx

dt
+

∂(xyI1)

∂y

dy

dt

)
= −(ln b− ln a)2

[
at ln a · (xyI1)x + bt ln b · (xyI1)y

]
= −(ln b− ln a)2 [(x(xyI1)x ln a + y ln b(xyI1)y ln b)]

= −(ln b− ln a)2 (x(xyI1)x) (ln a− ln b)

= (ln b− ln a)3xy(xI1)x

= xy
(ln b− ln a)3

x− y
[(x− y)(xI1)x]

= xy
(ln x− ln y)3

t3(x− y)
[(x− y)(xI1)x]

= −Ct−3J.

Next then we will follow on proving Theorem 1 and Corollary 1-2.

Proof. It needs only to prove the convexity for p of lnHf .

1) when p 6= q, lnHf =
T (p)− T (q)

p− q
,

∂ lnHf

∂p
=

(p− q)T ′(p)− T (p) + T (q)

(p− q)2
=

g(p)

(p− q)2
,(2.8)

∂2 lnHf

∂p2
=

(p− q)g′(p)− 2g(p)

(p− q)3
=

k(p)

(p− q)3
,(2.9)

where g(p) = (p− q)T ′(p)− T (p) + T (q), k(p) = (p− q)g′(p)− 2g(p).
Since g′(p) = (p− q)T”(p) and g(q) = 0, so k(p) = (p − q)2T ′′(p) −

2g(p) and k(q) = 0, and then

(2.10) k′(p) = 2(p−q)T ′′(p)+(p−q)2T ′′′(p)−2g′(p) = (p−q)2T ′′′(p).

By Mean-value Theorem, exist ξ = q + θ(p− q) with θ ∈ (0, 1), such
that

∂2 lnHf

∂p2
=

k(p)− k(q)

(p− q)3
=

k′(ξ)

(p− q)2
(2.11)

=
(ξ − q)2T ′′′(ξ)

(p− q)2
= (1− θ)2T ′′′(ξ).

It is obvious that the logarithmically convexity of lnHf depends on the
sigh of T ′′′(ξ). From Lemma 4, T ′′′(ξ) = −Cξ−3J, C > 0.
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So if J = (x−y)(xI1)x < 0, when p, q ∈ (0, +∞), ξ = q+θ(p−q) > 0
with θ ∈ (0, 1), we have T ′′′(ξ) > 0; while p, q ∈ (−∞, 0), that T ′′′(ξ) <
0. It is reversed when J = (x− y)(xI1)x > 0.

2) when p = q, by (2.5)

(2.12) lnHf = ln G
1
p

f (ap, bp) =
xfx(x, y) ln x + yfy(x, y) ln y

f(x, y)
= T ′(p),

where x = ap, y = bp. So

∂2 lnHf

∂p2
= T ′′′(p) = −Cp−3J.

where J = (x− y)(xI1)x, C > 0.
Hence if J = (x − y)(xI1)x < 0, then when p ∈ (0, +∞), that

T ′′′(ξ) > 0; while p ∈ (−∞, 0), T ′′′(ξ) < 0. It is converse when J =
(x− y)(xI1)x > 0.

Combining 1) with and 2), we complete the proof of this Theorem
immediately.

proof of Corollary 1.1. It prove only the case when J = (x−y)(xI1)x <
0.

1) When p ∈ (1
2
, 1).Assume p, q ∈ (1

2
, 1) and q < p, by Theorem 1,

Hf (p, q) is logarithmically convex for p, q ∈ (0, +∞), so exist α , β > 0
with α + β = 1, such that

Hα
f (1− q, 1− p)Hβ

f (p, 1− p) > Hf (α(1− q) + βp, 1− p).

Taking α=
p− q

p + q − 1
, β =

2q − 1

p + q − 1
, then α(1 − q) + βp= q, and

then from the above expression, we obtain

Hβ
f (p, 1− p) > Hf (q, 1− p)H−α

f (1− q, 1− p)

=

[
f(aq, bq)

f(a1−p, b1−p)

] 1
p+q−1

[
f(a1−q, b1−q)

f(a1−p, b1−p)

] 1
p−q

·−(p−q)
p+q−1

=

[
f(aq, bq)

f(a1−p, b1−p)

] 1
p+q−1

[
f(a1−q, b1−q)

f(a1−p, b1−p)

] −1
p+q−1

=

[
f(aq, bq)

f(a1−p, b1−p)

f(a1−p, b1−p)

f(a1−q, b1−q)

] 1
p+q−1

=

[
f(aq, bq)

f(a1−q, b1−q)

] 1
p+q−1

= H
2q−1

p+q−1

f (q, 1− q)

= Hβ
f (q, 1− q).

Extract the β power root of two sides, then Hf (p, 1−p) > Hf (q, 1−
q), namely when p ∈ (1

2
, 1), Hf (p, 1−p) is strictly monotone increasing

for p.
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When p ∈ (0, 1
2
). Assume p, q ∈ (0, 1

2
) and q < p, notice 1−p, 1−q ∈

(1
2
, 1) and 1 − p < 1 − q, so there is Hf (1 − p, p) < Hf (1 − q, q), i.e.

Hf (p, 1 − p) < Hf (q, 1 − q). It shows that Hf (p, 1 − p) is strictly
monotone decreasing for p.

proof of Corollary 1.2. From Definition 1.1 and (2.12), we understand
that

lnHf (p, q) =
1

p− q
ln

f(ap, bp)

f(aq, bq)
=

T (p)− T (q)

p− q
=

1

p− q

∫ p

q

T ′(t)dt

=
1

p− q

∫ p

q

ln G
1
t
f (at, bt)dt =

1

p− q

∫ p

q

ln Gf,tdt.(2.13)

From Theorem 1, if J = (x−y)(xI1)x < 0, then ln Gf,t is strictly con-
vex for t ∈ (0, +∞), and is concave strictly for t ∈ (−∞, 0). So when
p, q ∈ (0, +∞), by using well-known Hermite-Hadamard inequality, we
have

(2.14) ln Gf, p+q
2

<
1

p− q

∫ p

q

ln Gf,tdt <
ln Gf,p + ln Gf,q

2
,

i.e. inequality (1.8) holds. When p, q ∈ (−∞, 0), (2.14) is reverse, and
inequality (1.8) is also reverse with it. Obviously, if J = (x−y)(xI1)x >
0, then the conclusions are reversed.

3. Some Conclusions and Applications

By Theorem 1, the logarithmically convexity of Hf depends on the
sign of J = (x − y)(xI1)x. Combining Theorem 1 with Corollary 1
and 2, we can get some conclusions about logarithmically convexity
of Hf , where f(x, y) = L(x, y),A(x, y),E(x, y),D(x, y). From it we
will present a series of new inequalities concerning logarithm mean,
exponential mean, power-exponential mean and exponential-geometry
mean, meanwhile propose estimations of upper and lower bounds of
two-parameter L-mean.

Case 1. f(x, y) = L(x, y) =
x− y

ln x− ln y
(x, y > 0, x 6= y),

(3.1) HL(a, b; p, q) =



(
q(ap − bp)

p(aq − bq)

) 1
p−q

p 6= q, pq 6= 0

L
1
p (ap, bp) p 6= 0, q = 0

L
1
q (aq, bq) p = 0, q 6= 0

GL,p(a, b) p = q 6= 0
G(a, b) p = q = 0

,
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where GL,p(a, b) = Ep(a, b) = E
1
p (ap, bp) = Ep, E(a, b) = e−1

(
aa

bb

) 1
a−b

,

G(a, b) =
√

ab.

I1 = (ln f)xy =
1

(x− y)2
− 1

xy(ln x− ln y)2
,

J = (x− y)(xI1)x = (x− y)

[
− x + y

(x− y)3
+

2

xy(ln x− ln y)3

]
=

2

xy(x− y)2

[
L3(x, y)− x + y

2
(
√

xy)2

]
.

It follows that well-known inequality L(x, y) >

(
x + y

2

) 1
3 (√

xy
) 2

3 , J >

0.

Case 2. f(x, y) = A(x, y) =
x + y

2
(x, y > 0),

(3.2) HA(a, b; p, q) =


(

ap + bp

aq + bq

) 1
p−q

p 6= q

GA,p(a, b) p = q 6= 0
G(a, b) p = q = 0

,

where GA,p(a, b) = Zp(a, b) = Z
1
p (ap, bp) = Zp.Z(a, b) = a

a
a+b b

b
a+b .

I1 = (ln f)xy = − 1

(x + y)2
,

J = (x− y)(xI1)x =
(x− y)2

(x + y)3
> 0.

Case 3. f(x, y) = E(x, y)= e−1

(
xx

yy

) 1
x−y

(x, y > 0, x 6= y),

(3.3) HE(a, b; p, q) =


(

E(ap, bp)

E(aq, bq)

) 1
p−q

p 6= q

GE,p(a, b) p = q 6= 0
G(a, b) p = q = 0

,

where GE,p(a, b) = Yp(a, b) = Y
1
p (ap, bp) = Yp. Y (a, b) = Ee1−G2

L2 .

I1 = (ln f)xy =
1

(x− y)3
[2(x− y)− (x + y)(ln x− ln y)] ,

J = (x− y)(xI1)x =
1

(x− y)2

[
−3(x2 − y2) + (x2 + 4xy + y2)(ln x− ln y)

]

= −6(ln x− ln y)

(x− y)3

 x2 − y2

ln x2 − ln y2
−

x2 + y2

2
+ 2xy

3

 .
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It follows that well-known inequality L(x, y) <

x + y

2
+ 2

√
xy

3
, J > 0.

Case 4. f(x, y) = D(x, y)= |x− y|(x, y > 0, x 6= y),

(3.4) HD(a, b; p, q) =

 |a
p − bp

aq − bq
|

1
p−q

p 6= q, pq 6= 0

GD,p(a, b) p = q 6= 0
,

where GD,p(a, b) = GD,p = e
1
p E

1
p (ap, bp) = e

1
p Ep.

I1 = (ln f)xy =
1

(x− y)2
,

J = (x− y)(xI1)x = − x + y

(x− y)2
< 0.

Applying mechanically Theorem 1, Corollary 1 and 2, we immedi-
ately obtain the following

Conclusion 1. For f(x, y) = L(x, y), A(x, y), E(x, y),
1) when p, q ∈ (0, +∞),Hf (p, q) is logarithmically concave strictly

for p or q respectively; while p, q ∈ (−∞, 0),Hf (p, q) is logarithmically
convex strictly for p or q respectively.

2)Hf (p, 1−p) is strictly monotone increasing for p ∈ (0, 1
2
); Hf (p, 1−

p) is strictly monotone decreasing for p ∈ (1
2
, 1).

3) If p, q ∈ (0, +∞), there is

(3.5) Gf, p+q
2

> Hf (p, q) >
√

Gf,pGf,q.

Inequality (3.5) is reverse if p, q ∈ (−∞, 0).

Conclusion 2. 1) when p, q ∈ (0, +∞),HD(p, q) is logarithmically
convex strictly for p or q respectively; while p, q ∈ (−∞, 0),HD(p, q)
is logarithmically concave strictly for p or q respectively.

2)HD(p, 1−p) is strictly monotone decreasing for p ∈ (0, 1
2
); HD(p, 1−

p) is strictly monotone increasing for p ∈ (1
2
, 1).

3) If p, q ∈ (0, +∞), there is

(3.6) GD, p+q
2

< HD(p, q) <
√

GD,pGD,q.

Inequality (3.6) reverses if p, q ∈ (−∞, 0).

By applying above conclusions, we will get some new inequalities.

Example 1. A group of inequality chains for homogeneous
mean. By 2) of Conclusion 1, Hf (p, 1 − p) is strictly monotone de-
creasing for p ∈ (1

2
, 1). So there is

Hf (1, 0) < Hf (
4

5
,
1

5
) < Hf (

3

4
,
1

4
) < Hf (

2

3
,
1

3
) < Hf (

3

5
,
2

5
) < Hf (

1

2
,
1

2
),
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i.e.

f(a, b)

f(1, 1)
<

[
f(a

4
5 , b

4
5 )

f(a
1
5 , b

1
5 )

]5
3

<

[
f(a

3
4 , b

3
4 )

f(a
1
4 , b

1
4 )

]2

<

[
f(a

2
3 , b

2
3 )

f(a
1
3 , b

1
3 )

]3

<

[
f(a

3
5 , b

3
5 )

f(a
2
5 , b

2
5 )

]5

< a

√
afx(

√
a,
√

b)

f(
√

a,
√

b) b

√
bfy(

√
a,
√

b)

f(
√

a,
√

b) .(3.7)

1) For f(x, y) = L(x, y), notice f(1, 1) = 1, we get

L(a, b) <

(
1
5
(b

4
5 − a

4
5 )

4
5
(b

1
5 − a

1
5 )

)5
3

<

(
1
4
(b

3
4 − a

3
4 )

3
4
(b

1
4 − a

1
4 )

)2

<

(
1
3
(b

2
3 − a

2
3 )

2
3
(b

1
3 − a

1
3 )

)3

<

(
2
5
(b

3
5 − a

3
5 )

3
5
(b

2
5 − a

2
5 )

)5

< E2(
√

a,
√

b),

i.e

L(a, b) <

(
(b

1
5 + a

1
5 )(b

2
5 + a

2
5 )

4

) 5
3

<

(
b

1
2 + a

1
4 b

1
4 + a

1
2 )

3

)2

<

(
b

1
3 + a

1
3

2

)3

<

(
2(b

2
5 + b

1
5 a

1
5 + a

2
5 )

3(b
1
5 + a

1
5 )

)5

< E2(
√

a,
√

b).

The above inequalities chain may be simply denoted by

(3.8) L < M
1
3
1
5

M
2
3
2
5

< h 1
2

< M 1
3

< h2
2
5
M−1

1
5

< E 1
2
,

where Mp = (
ap + bp

2
)

1
p , Ep = E

1
p (ap, bp), hp =

[
ap + (

√
ab)

p
+ bp

3

] 1
p

.

That L < M 1
3

is well-known Ling Tong-Po inequality. The above

inequalities chain shows that can be inserted M
1
3
1
5

M
2
3
2
5

and h 1
2

between L

and M 1
3
, so (3.8) strengthens Ling Tong-Po inequality.

2) For f(x, y) = A(x, y), notice f(1, 1) = 1, then

(3.9) A < M
4
3
4
5

M
− 1

3
1
5

< M
3
2
3
4

M
− 1

2
1
4

< M2
2
3
M−1

1
3

< M3
3
5
M−2

2
5

< Z 1
2
,

where Mp = (
ap + bp

2
)

1
p , Zp = Z

1
p (ap, bp).

3) For f(x, y) = E(x, y), notice f(1, 1) = 1,
E(a2, b2)

E(a, b)
= Z(a, b),

then

(3.10) E < Z
1
3
1
5

Z
2
3
2
5

< E
3
2
3
4

E
− 1

2
1
4

< Z 1
3

< E3
3
5
E−2

2
5

< Y 1
2
,

where Zp = Z
1
p (ap, bp), Ep = E

1
p (ap, bp), Yp = Y

1
p (ap, bp).
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Remark 1. If replace a, b with a2, b2 in (3.8)-(3.10), then them may
be rewritten into

E > h2
4
5
M−1

2
5

> M 2
3

> h > M
1
3
2
5

M
2
3
4
5

> L2 =
√

LA,(3.11)

Z > M3
6
5
M−2

4
5

> M2
4
3
M−1

2
3

> M
3
2
3
2

M
− 1

2
1
2

> M
4
3
8
5

M
− 1

3
2
5

> M2,(3.12)

Y > E3
6
5
E−2

4
5

> Z 2
3

> E
3
2
3
2

E
− 1

2
1
2

> Z
1
3
2
5

Z
2
3
4
5

> E2 =
√

EZ.(3.13)

That E > M 2
3

is well-known Stolarsky inequality. (3.11) indicates

that can be inserted h2
4
5

M−1
2
5

between E and M 2
3
, so (3.11) strengthens

Stolarsky inequality. It follows that Lin Tong-Po and Stolarsky in-
equality are unified into a the same inequality’s chain and refined by
(3.8) or (3.11). Meanwhile they are generalized the case of arithmetic
mean and exponential mean by (3.9) or (3.12) and (3.10) or (3.13) in
parallel. So we call (3.7) the homogeneous mean’s L-S inequality chain.

Remark 2. There include some simple and brand-new inequalities in
(3.8)-(3.13), such as Z > M2 from (3.12), i.e.

(3.14) Z >

√
a2 + b2

2
.

While Z > M
3
2
3
2

M
− 1

2
1
2

may be transformed into Z >
a

3
2 + b

3
2

a
1
2 + b

1
2

= a +

b−
√

ab, i.e. Z+G
2

> A.
By (3.10) we can get

(3.15) E< Z 1
3

< Y 1
2
,

or

(3.16) Y > Z 2
3

>E2 =
√

EZ.

Example 2. An conversed inequality for exponential mean.
By 2) of Conclusion 2, noticed D(1, 1) does’nt exist, we have

HD(
1

2
,
1

2
) < HD(

3

5
,
2

5
) < HD(

2

3
,
1

3
) < HD(

3

4
,
1

4
) < HD(

4

5
,
1

5
),

i.e.

e2E2(
√

a,
√

b) <

(
b

3
5 − a

3
5

b
2
5 − a

2
5

)5

<

(
b

2
3 − a

2
3

b
1
3 − a

1
3

)3

<

(
b

3
4 − a

3
4

b
1
4 − a

1
4

)2

<

(
b

4
5 − a

4
5

b
1
5 − a

1
5

) 5
3

,
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i.e.

e2E2(
√

a,
√

b) <

(
b

2
5 + b

1
5 a

1
5 + a

2
5

b
1
5 + a

1
5

)5

< (b
1
3 + a

1
3 )3

<
(
b

1
2 + a

1
4 b

1
4 + a

1
2 )
)2

<
(
(b

1
5 + a

1
5 )(b

2
5 + a

2
5 )
) 5

3
.(3.17)

If replace a, b with a2, b2 in (3.17), then which may be denoted simply
by

(3.18) E <

√
486

8e
h2

4
5
M−1

2
5

<

√
8

e
M 2

3
<

3

e
h <

3
√

32

e
M

1
3
2
5

M
2
3
4
5

(3.18) is a reversed inequality chain of five items in left side of (3.11).

Remark 3. By (3.11) and (3.18), we get

M
1
3
2
5

M
2
3
4
5

< h < M 2
3

< h2
4
5
M−1

2
5

< E(3.19)

<

√
486

8e
h2

4
5
M−1

2
5

<

√
8

e
M 2

3
<

3

e
h <

3
√

32

e
M

1
3
2
5

M
2
3
4
5

.

From it, we have further

1 < E/M
1
3
2
5

M
2
3
4
5

<
3
√

32/e ≈ 1.16794,(3.20)

1 < E/h < 3/e ≈ 1.10364,(3.21)

1 < E/M 2
3

<
√

8/e ≈ 1.04052,(3.22)

1 < E/h2
4
5
M−1

2
5

<
√

486/8e ≈ 1.01376.(3.23)

Inequalities (3.20)-(3.23) indicate that regardless the size of positive
numbers a and b, the relative error estimating exponential mean E by

M
1
3
2
5

M
2
3
4
5

, h, M 2
3

and h2
4
5

M−1
2
5

are approximate to 17%, 10%, 4%, and

1% respectively.

Example 3. Estimations of lower and upper bounds of two-
parameter L-mean (or extended mean).From 3) of Conclusion
2, and notice

GD,p = e
1
p E

1
p (xp, yp) =e

1
p Ep.

So we have

(3.24) e
2

p+q E p+q
2

< HD(p, q) <

√
e

1
p Epe

1
q Eq, if p, q > 0 and p 6= q.

If notice further
(3.25)

HD(p, q) = |b
p − ap

bq − aq
|

1
p−q

=

(
p

q

) 1
p−q
(

q(bp − ap)

p(bq − aq)

) 1
p−q

= e
1

L(p,q)HL(p, q),
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then (3.24) can be rewritten into

(3.26) e
1

A(p,q)
− 1

L(p,q) E p+q
2

< HL(p, q) < e
1

H(p,q)
− 1

L(p,q)
√

EpEq,

where A(p, q) =
p + q

2
, H(p, q) =

2pq

p + q
, L(p, q) =

p− q

ln(p/q)
,p, q > 0 and

p 6= q.
Combining (3.5) with (3.26), we can get other two expressions of

estimations of the two-parameter L-mean HL(p, q).

e
1

A(p,q)
− 1

L(p,q) E p+q
2

< HL(p, q) < E p+q
2

(3.27) √
EpEq < HL(p, q) < e

1
H(p,q)

− 1
L(p,q)

√
EpEq(3.28)

where p, q > 0 and p 6= q. the inequalities 3.8, 3.9 reverse if p, q < 0
and p 6= q.

Lastly, we can find out some new inequalities by using the theorem
and corollaries in this paper. Discuss no longer here.
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