ON THE MONOTONICITY AND LOG-CONVEXITY FOR
ONE-PARAMETER HOMOGENEOUS FUNCTIONS

ZHEN-HANG YANG

ABSTRACT. That Hi¢(p) := Hs(p,1+ p) is called one-parameter ho-
mogeneous functions. The monotonicity of His(p) depends on the
sign of I1 = (In f)ay; While the log-convexity of His(p), the mono-
tonicity of Hs(p,1 — p) and His(p) = His(p)His(—p) depend on the
sign of J = (z — y)(zI1),. By straightforward computations, some
conclusions on the monotonicity of His(p), Hy(p, 1 — p), His(p) and
log-convexity of His(p) are presented, where f(z,y) = L(z,y), A(x,y),
E(z,y) and D(z,y). As one of the special cases, Wing-Sum Cheung
and Feng Qi’s results are derived.

1. INTRODUCTION

The one-parameter mean values J(p;a,b) (for avoiding confussion in no-
tations, we replace J(p;a,b) with S(p;a,b) in what follows) for a # b are
defined in [2,13] and introduced in [7] by

p(aPt1—ppt1)

@) P7F 0,1

(1.1) S(p;a,b) = ﬁ7 p=0;
ab(Ina—In b) _
= DP=-L

and S(p; a,b) is strictly increasing in p € R.
In [6], the following results in [2,3] by Alzer are mentioned:
1) When p # 0, we have

(1.2)

Gla.b) < /S@raBS(prab) < Lia,b) <« SEONTSCHOI i, ),
2) For ay,a2 > and by, by > 0, if p > 1, then

(1.3) S(p; a1 + az, by + b2) < S(p;ar,br) + S(p; az, b2);

if p <1, inequality (1.3) is reversed.
3) If (a1,b1) and (ag,be) are similarly or oppositely ordered, then, if p <
—%, we have
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(1.4) S(r;arag,biby) > (L)S(p; ar, b1)S(p; az, ba);

ifp> —%, then inequality (1.4) is reversed.
4) For a,b > 0, ifp<q<r§—%,then

(1.5) [S(q;a,0)]""P[S(p; a, 0)]" S (r; a, b)]F;

if —% < p < q < r, inequality (1.5) is reversed.

Moreover, H. Alzer in [3] raised a question about the convexity of pIn S(p; a, b)
and proved that (p+ 1)S(p;a,b) is convex.

Wing-Sum Cheung and Feng Qi researched the log-convexity of the one-
parameter mean values S(p;a,b) and the monotonicity of S(p)S(—p) for
p € R,and presented the following results (see [4]):

Theorem 1. For fized positive numbers a and b with a # b, then the
one-parameter mean values S(p) defined by (1.1) are strictly log-convex in
(—00,—3) and strictly log-concave in (—%,+00).

Theorem 2. Let S(p) = S(p)S(—p) with p € R for fived positive numbers
a and b with a #b. Then the function S(p) is strictly increasing in (—oo,0)
and strictly decreasing in (0, 400).

On the other hand, Zhen-Hang Yang also derived Minkowski, Holder and
Tchebchef type inequalities of S(p;a,b), by using simplified discriminance
involving convexity of homogeneous functions in two variables deduced from
the properties of homogeneous functions (see [14]).

Meanwhile the two-parameter homogeneous functions were introduced
in [15]. That is:

Definition 1. Assume f: U(S Ry x Ry) — Ry is a homogeneous function
for variable x and y, and is continuous and 1-time partial derivative exist,
(a,b) € Ry x Ry with a #b, (p,q) € RxR. If (1,1) ¢ U, then define that

aP, bP ﬁ
(1.6)  Hyla,bip,q) = [W] (p # q,pq #0),
(L.7)  Hs(a,b;p,p) = ;%Hf(a, bip,q) = Gspla,b)(p=q#0).

(a?,0"),

-

where Gfp(a,b) =G

rfe(z,y)Inz +yfy(z,y)Iny
f(z,y) ’

(1.8) Gy(x,y) = exp [

in which fy(x,y) and fy(x,y) denote 1st order partial derivative to 1st and
2nd variable of f(x,vy), respectively.
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If (1,1) € U, then define further

(1.9) Hy(a,b:p.0) [W]pwo,q:ox
(1.10) H¢(a,b;0,q) = [‘mr(p:(),Q#o)y

. f2 (L) fy(LD)
(1.11) Hy(a, b;0,0) = ;%Hf(a, b;p,0) = a 7ED b IED (p =g =0).

In the case of not being confused, we set

H = )=t~ [22]

1
Grp = Gypla,b) = Gi(a”,b) = Hs(p,p).

)

The following properties of H¢(p, ¢) are obvious by some easy calculations:
Property 1 Hy(a,b;p,q) are symmetric with respect to a,b and p,q, i.e.

(1.12) Hs(a,b;p,q) = Hy(a,b;q,p).
(1.13) Hypla,bip,q) = Hy(ba;p,q)
Property 2 Let

(1.14) T(t) = In f(a’, b")

then

te (ot pt te ot pt
/ a'fe(a*,b")Ina + b fy(a’,b") Inb 1o,
(1.15) T(t) = (a0 =InGj(a’,b"),

where t # 0 if (1,1) ¢ U.
Property 3 If f(z,y) = f(y,z) for all (z,y) € U, then

(1.16) He(t,—t) = G,
(1.17) T(t)—T(-t) = 2ntlnG,
where G = Vab.

There are the following two results concerning the two-parameter homo-
geneous functions.

Theorem 3. Let f(xz,y) be a positive n-order homogenous function defined
on U(E Ry x Ry), and be 2-time differentiable. If Iy = (In f)gy < (>)0,
then Hz(p, q) is strictly increasing (decreasing) in p or q.

Theorem 4. Let f(x,y) be a positive n-order homogenous function defined
on U(S Ry x Ry), and be 3-time differentiable. If

(1.18) J = (x—y)(xl)y < (>)0, where Iy = (In f)4y,

then Hy(p, q) is strictly log-convex (log-concave) in p € (0,+00), while log-
concave (log-convez) in p € (—o0,0).
For another parameter q, the above conclusion is also true.



4 ZHEN-HANG YANG

Obviously, the one-parameter mean is only a special case of two-parameter
mean. In the same way, let ¢ = 14 p in Definition 1, then the two-parameter
homogeneous functions become the so-called one-parameter homogeneous
functions.

The aim of this paper is to extend the one-parameter mean into the one-
parameter homogeneous functions based on [15], and investigate its mono-
tonicity and log-convexity in parameters further. As a special case, Theorem
1 and 2 will be deduced.

2. Basic CONCEPTION AND MAIN RESULTS

First we present the definition of the one-parameter homogeneous func-
tions now.

Definition 2. Let ¢ = 1 4 p in the two-parameter homogeneous functions
Hy(p,q), then call it one-parameter homogeneous functions, and denote by

Hip(p) = Hy(p, 1+ p).

From Definition 2, for f(z,y) = L(x,y), A(z,y), E(x,y), and D(z,y) =
| — y|, we have
plaPtt—prtt) )
wi@ o P70l
(2.1) Hip(a,b;p) = L(a,b), p=0;
GZ((l,b) — 1
Z(ab) ’ p=-L
ap+1 + bp+1

aP + bp
E(ap+17 bp-l—l)

E(aP,br)

p+1__,p+1
(2.4) Hip(a,bip) = |“5=G—|, p#0.

That Hiz(a,b;p) is just the one-parameter mean of positive numbers
a and b. To avoid to be confused, it is called one-parameter logarithmic
mean; In the same way, we call Hi4(a,b;p) and Hig(a, b;p) one-parameter
arithmetic mean (also call Lehmer mean) and one-parameter exponential
mean, respectively.

Since D(z,y) is no a certain mean of positive numbers x and y, but a
absolute value of difference function, so we call one-parameter homogeneous
differnce function temporarily.

Concerning the monotonicity and log-convexity of the one-parameter ho-
mogeneous functions, there are the following main results.

(2.2) Hia(a,bip) =

(2.3) Hip(a,b;p) =

Theorem 5. Let f(z,y) be a positive n-order homogenous function defined
on U(E Ry x Ry), and be 2-time differentiable. If Iy = (In f)gy < (>)0,
then Hy¢(p) is strictly increasing (decreasing) in p € (—o0,0) U (0, +00).

Theorem 6. Let f(x,y) be a positive n-order homogenous function defined
on U(€ Ry xRy), and be 3-time differentiable. If J = (z—y)(z11)z < (>)0,
then

1) Hi¢(p) is strictly log-concave (log-convex) in p € (—oo,—1), strictly
log-convezx (log-concave) in p € (0, +00).
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2) If f(x,y) satisfies f(x,y) = f(y,x) further, then His(p) is strictly
log-concave (log-convez) in p € (—o0,—3), log-convex (log-concave) in p €

(—3,0) U (0, +00).

According to 2) of the Theorem 6, and the properties of convex functions,
_1)— _1
the functions 7y (p=1) lnzilf( 2)
p—1-(—-3)
1 € (—o0,—3) and increasing (decreasing) for p — 1 € (—3,0) U (0, 4o0) if
J=(x—y)(xl), < (>)0.

is strictly decreasing (increasing) for p —

Notice
nHiy(p—1) —ImHiy(—3) _ Inf(p)—Inf(p—1)—InHip(—3)
p—1-(-1) p—1- (-}
_ h’lf(p) _lnif(l _p) =2lan(p,1—p),
p—3

so we have the following:

Corollary 1. Let f(x,y) be a positive n-order homogenous function defined
on UE Ry x Ry), and be 3-time differentiable, and satisfies f(x,y) =
f(y,x), further. If J = (z —y)(xl1)s < (>)0, then the function Hs(p,1 —
p) is strictly decreasing (increasing) in (—oo0,0) U (0, %), strictly increasing
(decreasing) in (3,+00), where

_1

f(p) 21
(2.5) Hs(p,1—p) = (f(kp)) o P
G P

T

N[ o=

Theorem 7. Let f(x,y) be a positive n-order homogenous function defined
on U(C Ry x Ry), and be 3-time differentiable, and satisfies f(x,y) =
f(y,x) further. Let His(p) =His(p)His(—p), then the function is strictly
increasing (decreasing) in p € (0,+00) and strictly decreasing (increasing)
inp€ (—00,0) if J = (x —y)(x1). < (>)0.

3. LEMMAS

For proving Theorem 5-7 and Corollary 1, we need to the following lem-
mas, in which Lemma 1 and 2 are from section 3 in [14].

Lemma 1. Let f(z,y),9(z,y) be a n, m-order homogenous functions over
Q respectively, then f - g, f/g(g # 0) are n + m,n — m-order homogenous
functions over ), respectively.

If for a certain p and (2P, yP) € Q, fP(x,y) exist, then f(xP,yP), fP(x,y)
are both np-order homogeneous functions over €.

Lemma 2. Let f(x,y) be a n-order homogeneous function over Q, and fy, f,
both exist, then f., f, are both n — 1-order homogeneous function over {1,
furthermore we have

(3.1) rfr +yfy =nf.
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In particular, when n =1 and f(x,y) is 1st differentiable over ), then

(3.2) rfe+yfy = [
(3'3) xfxac + yfacy = 0;
(3.4) Tfey +yfyy = 0.

Lemma 3. Let f(z,y) be a positive n-order homogenous function defined
on U(S Ry xRy), and be 3-time differentiable. Let T(t) = In f(a',b"), with
t #0, and set a® = x,b' =y, then

at fz(at,b?t) In a+b?t fy, (at,bt) In 1
(35)  T(p) = TGRSR ~ Gy (e b);
(3.6) T"(t) = —ayl 1112(b/a)7 I = (In f)ay;
(B7)  TM(1)=—Ct ), J=(zx—y)(ah),, C="22CM5

Proof. 1) By a direct calculation, we obtain this result at once.
2) Since f(z,y) is a positive n-order homogeneous function, from equation
3.1), we can obtain

)
3.8) z(Inf)y+y(lnf)y=n or z(nf)y=n—y(nf),.
By (1.15), there is

(
(

a' fu(at, b)) Ina + bt fy(a,b") Inb
Tt b
zfz(x,y)Ina+yfy(z,y)Ind
f(,y)
= z(Inf)ylna+y(n f),Inbd
(3.9) = nlna+y(lnf),(Indb —1Ina).

T(t) =

Notice that y(In f), is a 0-order homogeneous function, so

(3.10)  =[y(In f),le +yly(In f)yly =0, or yly(lnf)yly, = —z[y(In f),]. .
Hence
Oy(in f)y dx__ dy(in f), dy
oxr dt oy  dt
= (nb—Ina){[y(In f)ylea’ na+yly(n f),],0' nb}
= {(Inb—Ina)z[y(In f)yls Ina — z[y(In f),], In b}
= —(Inb-— lna)Qx[y(ln Fylz
= —ay(In f)zy(Inb —Ina)?
= —zyl(Inb—Ina)’.

T"(t) = 0+ (Inb—1Ina)

3) From Lemma 1 and 2, we can understand that Iy = (In f)zy = (f foy —
fofy)/f? is a —2-order homogeneous function of x and y, thus zyl; is a
0-order homogeneous function. By (3.1), we get

(3.11) r(zyh)e +y(zyl)y =0, or  y(ayl), = —v(zyl)..
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By (3.6) and notice z = a’,y = b, and then

" _dT(t) d (—zyi(Inb —Ina)?)
o = =5 = dt

O(zyl)dx  O(xyly) dy
- _ _ 2 i il
= —(nb-Ina) Or dt Jy dt

= —(Inb—Ina)’[a'Ina- (zyh), + b Inb- (zyl),)
= —(Inb—Ina)*[(z(xyh): Ina+ynb(zyl;), Inb)|
= —(Inb—1na)?(z(zyl1),) (Ina — Inb)

= (Inb—Ina)dzy(zl),

no—ina 3
= oy o))
B (Inz — Iny)3
= —xyw [(z — y)(x1)a]
= —Ct .

Remark 1. By Lemma 3, it is not difficult to get the following conclusions:
1) T'(t) is strictly convex (concave) int € (—oo,0)U (0, +00) if 1 < (>)0;
2) T'(t) is strictly increasing (decreasing) in t € (—o00,0) U (0,+00) if

I < (>)0;

3) If J < (>)0, then T'(t) is strictly convezr (concave) in t € (0,+00),
and strictly concave (convez) in t € (—o0,0).
4) If J < (>)0, then T"(t) is strictly increasing (decreasing) in t €

(0,+00), and strictly decreasing (increasing) in t € (—00,0).

Lemma 4. The conditions of this Lemma are the same as Lemma 3, and
f(z,y) is symmetric with respect to x and y, then the following equations
hold:

(3.12) T'(t)+T'(-t) = 2nhG,
(3.13) T'(—t) = T"(1).
(3.14) T"(~t) = ~T (1)

Proof. By direct calculations of the first, second and third derivative to
variable ¢ in two sides of equation (1.17) respectively, the equations (3.12)-
(3.14) are derived immediately. The proof is completed. &

Remark 2. If(1,1) € U, i.e. T'(0) ewists, thenT'(0) = nlnG; If (1,1) ¢ U,
we define T'(0) = }ir%T/(t) =nlnG. Thus the (3.12) can be written as

(3.15) T'(t) + T'(—t) = 277(0).

4. PROOFS OF THE MAIN RESULTS

Applying the Lemmas 1-4, we can prove the theorems and corollary in
section 2.
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proof of Theorem 5.
fla?th o)

(4.1) InHis(p) = In Flar b7) =T(p+1)-T(p)
az T o1

From Lemma 3, we see that T"(t) is strictly increasing (decreasing) in t €
(—00,0) U (0,+00) if I < (>)0,s0 T"(p+1) — T"(p) > (<)0 for p > 0 or
p < —1; For —1 < p < 0, we have

T'(p+1) > ()T0) > ()T (p), ie. T(p+1)—T(p)> (<)0.

It shows that Hi(p) is strictly increasing (decreasing) in p € (—o0,0)U(0.+
o0) if I < (>)0. it follows this theorem. I

proof of Theorem 6. 1)By the process of proof of Theorem 5, we see that

d*In Hlf(p) 1 11
4. ——= =T 1)-T .
(4.3) 0 (p+1) (p)
Since T"'(t) = —C.J/t3, so T"(t) is strictly increasing in ¢ € (0, +o00) if

J < 0, strictly decreasing in ¢ € (—00,0). And then T"(p+ 1) — T"(p) > 0
if p>0,and T"(p+1) —T"(p) < 0 if p < —1. In other words, InH;¢(p) is
convex on (0, +00), concave on (—oo, —1).

For J = (x — y)(zI); > 0, clearly, the above conclusion is reversed.

2) From part 1), the convexity of InH;¢(p) on (—oo, —1) or (0, +00) has
been confirmed, and needs to verify on p € (—1,0) further.

By Lemma 4, there is 7" (—p) = T"(p) if f(z,y) = f(y,z), so

d?InHq(p)
dp?

If J = (z—y)(z]), <0, then T"(p+1) = T"(—p) > 0 in p € (—3,0), and

T"(p+1)—T"(—p) < 0in p € (—1,—3%). Namely, InH;(p) is convex on
(—3.0), concave on (—1,—3).

Combining 1) with 2), the proof is completed. &

(4.4) =T"p+1)-T"(p) =T"(p+1) = T"(—p).

Proof of Theorem 7. Since Hy¢(p) =H1s(p)H1s(—p), so we have
(45)  WHip(p) = Tp+1)-Tp) +T(-p+1)-T(-p),

ao TE ) - T - T p ) + T )
By Lemma 4, (4.6) can be written as
(4.7)
dInH:z(p) _{ T'(p+1)+T(p—1)—2T"(p), p € [1,+00);
dp L T'p+1)-T'0—p)=2[T"(p) = T'(0)], pe(0,1).

if J = (x—y)(xl)y <0, then T"(t) > (<)0 when ¢t > (<)0, i.e. that T"(¢) is
strictly convex (concave) in t > (<)0. By the properties of convex (concave),
we easily get

T'p+1)+T'(p-1)

(4.8) .

>T'(p) if p € (1, +00);
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While for p € (0, 1), because

T'(p+1)-T'1-p) _T(p)—T'(1-p) - T'(p) — T'(0)

(4.9) (p+1)—(1-p) p—(1-p) p—0

so there is
(4.10) T'(p+1) =T —p)>2[T'(p) — T'(0)].

It follows that whether p € [1,+00) or p € (0, 1) there are always %;f@ >

0, i.e. Hyf(p) is strictly increasing in p € (0, +oc) if J < 0.

As Hif(—p) =Hap(—p)H1s(p) = Hif(p), so Hif(p) is strictly decreasing
in p € (—00,0) at the same time.

For J = (z —y)(«I), > 0, we can prove the conclusion in the same way. I

5. SOME CONCLUSIONS INVOLVING L, A AND E

By Theorem 5-7, the monotonicity of H;¢(p) depends on the sign of I} =
(In f)azy; While the log-convexity of Hi¢(p), the monotonicity of H¢(p,1—p)
and Hi(p) depend on the sign of J = (z — y)(z1),. In this section, by
some straightforward computations, we will present some conclusions about

Hlf(p)aHf(pa 1 _p) and 7:(1]”(17)7 where f($7y) = L(l’,y),A(l’,y),E(.’E,y).

Case 1. For f(z,y) = L(z,y) = ﬁ, where x,y > 0 with © # vy,
there are
L= (0 fey = (x —ly)2 B :L"y(ln:rl— Iny)?
N a:y(xl—y)Q[Gz(x,y)—LQ(way%
J = (z—y)(xh). = (v —y) [_ (;j—;)?’ Tt xy(lna;Q— lny)?’]
- s [P - T e

wN

1
By the well-known inequalities L(x,y) > G(x,y) and L(x,y) > (%) 3 (\/my) ,
we have I < 0,J > 0.

T+
2

Case 2. For f(z,y) = A(z,y) = y’ where x,y > 0 with © # y, there

are

L = (lnf)xy = —m <
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Case 3. For f(z,y) = E(x,y) = e~ ! <Zy> xiy, where x,y > 0 with © # vy,
there are
1
L = (Inf)eyy=+——2@~-y)—(z+y)(lnzr—-Iny
( ) Y (1’ _ y)g [ ( ) ( )( )]
2(Inx —Iny T+y
TRV
(z —y) 2
=3(z% — 9?) + (2% + 42y + y?)(Inz — Iny)
J = - L), =
(¢ - y)(ah) L
22 + o2
_ _6(lnz —Iny) 2 — 92 T + 2zy
(x —y)3 Inz? — Iny? 3
Y 1o /7T
By the well-known inequalities L(x,y) < ij and L(z,y) < %7 we

have I < 0,J > 0.

Case 4. For f(z,y) = D(x,y) = |z — y|, where x,y > 0 with © # y, there
are

1
Il = (ln f)xy = m >0
J = (@—y)eh)s = —(;”’_23/)2 <0

Notice that L(z,y), A(z,y), E(z,y) and D(z,y) are all symmetric with
respect to x and y, using Theorems 5-7 and Corollary 1, we get immediately
the following conclusions:

Conclusion 1. That Hip(a,b;p),H14(a,b;p) and Hig(a,b;p) are strictly
increasing in p € (—o0, +00), respectively.
That Hip(a,b;p) is strictly decreasing in p € (—o0,0) U (0, +00).

Conclusion 2. That Hir(a,b;p),H14a(a,b;p) and Hig(a,b;p) are strictly
log-convex in p € (—oo,—%), and strictly log-concave in p € (—%,—I—oo),
respectively.

That Hip(a,b;p) is strictly log-concave in p € (—oo, —%), and strictly
log-convez in p € (—%,0) U (0, +00).

Conclusion 3. That Hir(p,1 — p),Hia(p,1 — p) and Hig(p,1 — p) are
strictly increasing in p € (—00,3), and strictly decreasing in p € (1,400),
respectively.

That Hip(p,1 — p) is strictly decreasing in p € (—o0,0) U (O,%), and
strictly increasing in p € (%, +00).
Conclusion 4. That Hir(a,b;p), Hia(a,b;p) and

Hig(a,b;p) are strictly increasing in p € (—00,0), and strictly decreasing
in p € (0,+00), respectively.

That Hip(a,b;p) is strictly decreasing in p € (—00,0), and strictly in-
creasing in p € (0, +00),
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Remark 3. The Conclusion 2 and 4 include Wing-Sum Cheung and Feng
Qi’s results.

1]
2]

(10]
(11]
(12]
(13]
(14]
(15]
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