ON THE MONOTONICITY AND LOG-CONVEXITY FOR ONE-PARAMETER HOMOGENEOUS FUNCTIONS

ZHEN-HANG YANG

Abstract

That $\mathcal{H}_{1 f}(p):=\mathcal{H}_{f}(p, 1+p)$ is called one-parameter homogeneous functions. The monotonicity of $\mathcal{H}_{1 f}(p)$ depends on the sign of $I_{1}=(\ln f)_{x y}$; While the log-convexity of $\mathcal{H}_{1 f}(p)$, the monotonicity of $\mathcal{H}_{f}(p, 1-p)$ and $\overline{\mathcal{H}}_{1 f}(p)=\mathcal{H}_{1 f}(p) \mathcal{H}_{1 f}(-p)$ depend on the sign of $J=(x-y)\left(x I_{1}\right)_{x}$. By straightforward computations, some conclusions on the monotonicity of $\mathcal{H}_{1 f}(p), \mathcal{H}_{f}(p, 1-p), \overline{\mathcal{H}}_{1 f}(p)$ and log-convexity of $\mathcal{H}_{1 f}(p)$ are presented, where $f(x, y)=L(x, y), A(x, y)$, $E(x, y)$ and $D(x, y)$. As one of the special cases, Wing-Sum Cheung and Feng Qi's results are derived.

1. Introduction

The one-parameter mean values $J(p ; a, b)$ (for avoiding confussion in notations, we replace $J(p ; a, b)$ with $\mathcal{S}(p ; a, b)$ in what follows) for $a \neq b$ are defined in $[2,13]$ and introduced in [7] by

$$
\mathcal{S}(p ; a, b)=\left\{\begin{array}{cc}
\frac{p\left(a^{p+1}-b^{p+1}\right)}{(p+1)\left(a b-b^{p}\right)}, & p \neq 0,-1 ; \tag{1.1}\\
\frac{a-b}{\operatorname{lo-ln} b}, & p=0 ; \\
\frac{a b(\ln a-\ln b)}{a-b}, & p=-1 .
\end{array}\right.
$$

and $\mathcal{S}(p ; a, b)$ is strictly increasing in $p \in \mathbb{R}$.
In [6], the following results in $[2,3]$ by Alzer are mentioned:

1) When $p \neq 0$, we have
$G(a, b)<\sqrt{\mathcal{S}(p ; a, b) \mathcal{S}(-p ; a, b)}<L(a, b)<\frac{\mathcal{S}(p ; a, b)+\mathcal{S}(-p ; a, b)}{2}<A(a, b) ;$
2) For $a_{1}, a_{2}>$ and $b_{1}, b_{2}>0$, if $p>1$, then

$$
\begin{equation*}
\mathcal{S}\left(p ; a_{1}+a_{2}, b_{1}+b_{2}\right) \leq \mathcal{S}\left(p ; a_{1}, b_{1}\right)+\mathcal{S}\left(p ; a_{2}, b_{2}\right) ; \tag{1.3}
\end{equation*}
$$

if $p \leq 1$, inequality (1.3) is reversed.
3) If (a_{1}, b_{1}) and (a_{2}, b_{2}) are similarly or oppositely ordered, then, if $p<$ $-\frac{1}{2}$, we have

Date: March 26, 2005.
2000 Mathematics Subject Classification. Primary 26A48, 26A51, Secondary 26D07,26E60.

Key words and phrases. one-parameter homogeneous functions, monotonicity, logconvexity, reversed inequality, mean.

This paper is in final form and no version of it will be submitted for publication elsewhere.

$$
\begin{equation*}
\mathcal{S}\left(r ; a_{1} a_{2}, b_{1} b_{2}\right) \geq(\leq) \mathcal{S}\left(p ; a_{1}, b_{1}\right) \mathcal{S}\left(p ; a_{2}, b_{2}\right) ; \tag{1.4}
\end{equation*}
$$

if $p \geq-\frac{1}{2}$, then inequality (1.4) is reversed
4) For $a, b>0$, if $p<q<r \leq-\frac{1}{2}$, then

$$
\begin{equation*}
[\mathcal{S}(q ; a, b)]^{r-p}[\mathcal{S}(p ; a, b)]^{r-q}[\mathcal{S}(r ; a, b)]^{q-p} ; \tag{1.5}
\end{equation*}
$$

if $-\frac{1}{2} \leq p<q<r$, inequality (1.5) is reversed.
Moreover, H. Alzer in [3] raised a question about the convexity of $p \ln \mathcal{S}(p ; a, b)$ and proved that $(p+1) \mathcal{S}(p ; a, b)$ is convex.

Wing-Sum Cheung and Feng Qi researched the log-convexity of the oneparameter mean values $\mathcal{S}(p ; a, b)$ and the monotonicity of $\mathcal{S}(p) \mathcal{S}(-p)$ for $p \in \mathbb{R}$, and presented the following results (see [4]):

Theorem 1. For fixed positive numbers a and b with $a \neq b$, then the one-parameter mean values $\mathcal{S}(p)$ defined by (1.1) are strictly log-convex in $\left(-\infty,-\frac{1}{2}\right)$ and strictly log-concave in $\left(-\frac{1}{2},+\infty\right)$.

Theorem 2. Let $\overline{\mathcal{S}}(p)=\mathcal{S}(p) \mathcal{S}(-p)$ with $p \in \mathbb{R}$ for fixed positive numbers a and b with $a \neq b$. Then the function $\overline{\mathcal{S}}(p)$ is strictly increasing in $(-\infty, 0)$ and strictly decreasing in $(0,+\infty)$.

On the other hand, Zhen-Hang Yang also derived Minkowski, Hölder and Tchebchef type inequalities of $\mathcal{S}(p ; a, b)$, by using simplified discriminance involving convexity of homogeneous functions in two variables deduced from the properties of homogeneous functions (see [14]).

Meanwhile the two-parameter homogeneous functions were introduced in [15]. That is:

Definition 1. Assume $f: \mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right) \rightarrow \mathbb{R}_{+}$is a homogeneous function for variable x and y, and is continuous and 1-time partial derivative exist, $(a, b) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$with $a \neq b,(p, q) \in \mathbb{R} \times \mathbb{R}$. If $(1,1) \notin U$, then define that

$$
\begin{align*}
\mathcal{H}_{f}(a, b ; p, q) & =\left[\frac{f\left(a^{p}, b^{p}\right)}{f\left(a^{q}, b^{q}\right)}\right]^{\frac{1}{p-q}}(p \neq q, p q \neq 0) \tag{1.6}\\
\mathcal{H}_{f}(a, b ; p, p) & =\lim _{q \rightarrow p} \mathcal{H}_{f}(a, b ; p, q)=G_{f, p}(a, b)(p=q \neq 0) \tag{1.7}
\end{align*}
$$

where $G_{f, p}(a, b)=G_{f}^{\frac{1}{p}}\left(a^{p}, b^{p}\right)$,

$$
\begin{equation*}
G_{f}(x, y)=\exp \left[\frac{x f_{x}(x, y) \ln x+y f_{y}(x, y) \ln y}{f(x, y)}\right] \tag{1.8}
\end{equation*}
$$

in which $f_{x}(x, y)$ and $f_{y}(x, y)$ denote 1 st order partial derivative to 1 st and 2nd variable of $f(x, y)$, respectively.

If $(1,1) \in U$, then define further
(1.9) $\mathcal{H}_{f}(a, b ; p, 0)=\left[\frac{f\left(a^{p}, b^{p}\right)}{f(1,1)}\right]^{\frac{1}{p}}(p \neq 0, q=0)$,
(1.10) $\mathcal{H}_{f}(a, b ; 0, q)=\left[\frac{f\left(a^{q}, b^{q}\right)}{f(1,1)}\right]^{\frac{1}{q}}(p=0, q \neq 0)$,
(1.11) $\mathcal{H}_{f}(a, b ; 0,0)=\lim _{p \rightarrow 0} \mathcal{H}_{f}(a, b ; p, 0)=a^{\frac{f_{x}(1,1)}{f(1,1)}} b^{\frac{f_{y}(1,1)}{f(1,1)}}(p=q=0)$.

In the case of not being confused, we set

$$
\begin{aligned}
\mathcal{H}_{f} & =\mathcal{H}_{f}(p, q)=\mathcal{H}_{f}(a, b ; p, q)=\left[\frac{f(p)}{f(q)}\right]^{\frac{1}{p-q}}, \\
G_{f, p} & =G_{f, p}(a, b)=G_{f}^{\frac{1}{p}}\left(a^{p}, b^{p}\right)=\mathcal{H}_{f}(p, p)
\end{aligned}
$$

The following properties of $\mathcal{H}_{f}(p, q)$ are obvious by some easy calculations: Property $1 \mathcal{H}_{f}(a, b ; p, q)$ are symmetric with respect to a, b and p, q, i.e.

$$
\begin{align*}
\mathcal{H}_{f}(a, b ; p, q) & =\mathcal{H}_{f}(a, b ; q, p) \tag{1.12}\\
\mathcal{H}_{f}(a, b ; p, q) & =\mathcal{H}_{f}(b, a ; p, q) \tag{1.13}
\end{align*}
$$

Property 2 Let

$$
\begin{equation*}
T(t)=\ln f\left(a^{t}, b^{t}\right) \tag{1.14}
\end{equation*}
$$

then

$$
\begin{equation*}
T^{\prime}(t)=\frac{a^{t} f_{x}\left(a^{t}, b^{t}\right) \ln a+b^{t} f_{y}\left(a^{t}, b^{t}\right) \ln b}{f\left(a^{t}, b^{t}\right)}=\ln G_{f}^{\frac{1}{t}}\left(a^{t}, b^{t}\right), \tag{1.15}
\end{equation*}
$$

where $t \neq 0$ if $(1,1) \notin \mathbb{U}$.
Property 3 If $f(x, y)=f(y, x)$ for all $(x, y) \in \mathbb{U}$, then

$$
\begin{align*}
\mathcal{H}_{f}(t,-t) & =G^{n} \tag{1.16}\\
T(t)-T(-t) & =2 n t \ln G \tag{1.17}
\end{align*}
$$

where $G=\sqrt{a b}$.
There are the following two results concerning the two-parameter homogeneous functions.

Theorem 3. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be 2-time differentiable. If $I_{1}=(\ln f)_{x y}<(>) 0$, then $\mathcal{H}_{f}(p, q)$ is strictly increasing (decreasing) in p or q.

Theorem 4. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be 3-time differentiable. If

$$
\begin{equation*}
J=(x-y)\left(x I_{1}\right)_{x}<(>) 0, \text { where } I_{1}=(\ln f)_{x y}, \tag{1.18}
\end{equation*}
$$

then $\mathcal{H}_{f}(p, q)$ is strictly log-convex (log-concave) in $p \in(0,+\infty)$, while logconcave (log-convex) in $p \in(-\infty, 0)$.

For another parameter q, the above conclusion is also true.

Obviously, the one-parameter mean is only a special case of two-parameter mean. In the same way, let $q=1+p$ in Definition 1, then the two-parameter homogeneous functions become the so-called one-parameter homogeneous functions.

The aim of this paper is to extend the one-parameter mean into the oneparameter homogeneous functions based on [15], and investigate its monotonicity and log-convexity in parameters further. As a special case, Theorem 1 and 2 will be deduced.

2. Basic Conception and Main Results

First we present the definition of the one-parameter homogeneous functions now.

Definition 2. Let $q=1+p$ in the two-parameter homogeneous functions $\mathcal{H}_{f}(p, q)$, then call it one-parameter homogeneous functions, and denote by $\mathcal{H}_{1 f}(p)=\mathcal{H}_{f}(p, 1+p)$.

From Definition 2, for $f(x, y)=L(x, y), A(x, y), E(x, y)$, and $D(x, y)=$ $|x-y|$, we have

$$
\begin{align*}
& \mathcal{H}_{1 L}(a, b ; p)=\left\{\begin{array}{cl}
\frac{p\left(a^{p+1}-b^{p+1}\right)}{(p+1)\left(a^{p}-b^{p}\right)}, & p \neq 0,-1 ; \\
L(a, b), & p=0 ; \\
\frac{G^{2}(a, b)}{L(a, b)}, & p=-1 .
\end{array}\right. \tag{2.1}\\
& \mathcal{H}_{1 A}(a, b ; p)=\frac{a^{p+1}+b^{p+1}}{a^{p}+b^{p}} . \tag{2.2}\\
& \mathcal{H}_{1 E}(a, b ; p)=\frac{E\left(a^{p+1}, b^{p+1}\right)}{E\left(a^{p}, b^{p}\right)} . \tag{2.3}\\
& \mathcal{H}_{1 D}(a, b ; p)=\left|\frac{x^{p+1}-y^{p+1}}{x^{p}-y^{p}}\right|, p \neq 0 . \tag{2.4}
\end{align*}
$$

That $\mathcal{H}_{1 L}(a, b ; p)$ is just the one-parameter mean of positive numbers a and b. To avoid to be confused, it is called one-parameter logarithmic mean; In the same way, we call $\mathcal{H}_{1 A}(a, b ; p)$ and $\mathcal{H}_{1 E}(a, b ; p)$ one-parameter arithmetic mean (also call Lehmer mean) and one-parameter exponential mean, respectively.

Since $D(x, y)$ is no a certain mean of positive numbers x and y, but a absolute value of difference function, so we call one-parameter homogeneous differnce function temporarily.

Concerning the monotonicity and log-convexity of the one-parameter homogeneous functions, there are the following main results.

Theorem 5. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be 2-time differentiable. If $I_{1}=(\ln f)_{x y}<(>) 0$, then $\mathcal{H}_{1 f}(p)$ is strictly increasing (decreasing) in $p \in(-\infty, 0) \cup(0,+\infty)$.

Theorem 6. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be 3-time differentiable. If $J=(x-y)\left(x I_{1}\right)_{x}<(>) 0$, then

1) $\mathcal{H}_{1 f}(p)$ is strictly log-concave (log-convex) in $p \in(-\infty,-1)$, strictly log-convex (log-concave) in $p \in(0,+\infty)$.
2) If $f(x, y)$ satisfies $f(x, y)=f(y, x)$ further, then $\mathcal{H}_{1 f}(p)$ is strictly log-concave (log-convex) in $p \in\left(-\infty,-\frac{1}{2}\right)$, log-convex (log-concave) in $p \in$ $\left(-\frac{1}{2}, 0\right) \cup(0,+\infty)$.

According to 2) of the Theorem 6, and the properties of convex functions, the functions $\frac{\ln \mathcal{H}_{1 f}(p-1)-\ln \mathcal{H}_{1 f}\left(-\frac{1}{2}\right)}{p-1-\left(-\frac{1}{2}\right)}$ is strictly decreasing (increasing) for $p-$ $1 \in\left(-\infty,-\frac{1}{2}\right)$ and increasing (decreasing) for $p-1 \in\left(-\frac{1}{2}, 0\right) \cup(0,+\infty)$ if $J=(x-y)\left(x I_{1}\right)_{x}<(>) 0$.

Notice

$$
\begin{aligned}
\frac{\ln \mathcal{H}_{1 f}(p-1)-\ln \mathcal{H}_{1 f}\left(-\frac{1}{2}\right)}{p-1-\left(-\frac{1}{2}\right)} & =\frac{\ln f(p)-\ln f(p-1)-\ln \mathcal{H}_{1 f}\left(-\frac{1}{2}\right)}{p-1-\left(-\frac{1}{2}\right)} \\
& =\frac{\ln f(p)-\ln f(1-p)}{p-\frac{1}{2}}=2 \ln \mathcal{H}_{f}(p, 1-p),
\end{aligned}
$$

so we have the following:
Corollary 1. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be 3-time differentiable, and satisfies $f(x, y)=$ $f(y, x)$, further. If $J=(x-y)\left(x I_{1}\right)_{x}<(>) 0$, then the function $\mathcal{H}_{f}(p, 1-$ $p)$ is strictly decreasing (increasing) in $(-\infty, 0) \cup\left(0, \frac{1}{2}\right)$, strictly increasing (decreasing) in $\left(\frac{1}{2},+\infty\right)$, where

$$
\mathcal{H}_{f}(p, 1-p)= \begin{cases}\left(\frac{f(p)}{f(1-p)}\right)^{\frac{1}{2 p-1}}, & p \neq \frac{1}{2} \tag{2.5}\\ G_{f, \frac{1}{2}}, & p=\frac{1}{2} .\end{cases}
$$

Theorem 7. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be 3-time differentiable, and satisfies $f(x, y)=$ $f(y, x)$ further. Let $\overline{\mathcal{H}}_{1 f}(p)=\mathcal{H}_{1 f}(p) \mathcal{H}_{1 f}(-p)$, then the function is strictly increasing (decreasing) in $p \in(0,+\infty)$ and strictly decreasing (increasing) in $p \in(-\infty, 0)$ if $J=(x-y)\left(x I_{1}\right)_{x}<(>) 0$.

3. Lemmas

For proving Theorem 5-7 and Corollary 1, we need to the following lemmas, in which Lemma 1 and 2 are from section 3 in [14].

Lemma 1. Let $f(x, y), g(x, y)$ be a n, m-order homogenous functions over Ω respectively, then $f \cdot g, f / g(g \neq 0)$ are $n+m, n-m$-order homogenous functions over Ω, respectively.

If for a certain p and $\left(x^{p}, y^{p}\right) \in \Omega, f^{p}(x, y)$ exist, then $f\left(x^{p}, y^{p}\right), f^{p}(x, y)$ are both np-order homogeneous functions over Ω.

Lemma 2. Let $f(x, y)$ be a n-order homogeneous function over Ω, and f_{x}, f_{y} both exist, then f_{x}, f_{y} are both n-1-order homogeneous function over Ω, furthermore we have

$$
\begin{equation*}
x f_{x}+y f_{y}=n f . \tag{3.1}
\end{equation*}
$$

In particular, when $n=1$ and $f(x, y)$ is 1 st differentiable over Ω, then

$$
\begin{align*}
x f_{x}+y f_{y} & =f \tag{3.2}\\
x f_{x x}+y f_{x y} & =0 \tag{3.3}\\
x f_{x y}+y f_{y y} & =0 \tag{3.4}
\end{align*}
$$

Lemma 3. Let $f(x, y)$ be a positive n-order homogenous function defined on $U\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be 3-time differentiable. Let $T(t)=\ln f\left(a^{t}, b^{t}\right)$, with $t \neq 0$, and set $a^{t}=x, b^{t}=y$, then

$$
\begin{align*}
& T^{\prime}(t)=\frac{a^{t} f_{x}\left(a^{t}, b^{t}\right) \ln a+b^{t} f_{y}\left(a^{t}, b^{t}\right) \ln b}{f\left(a^{t}, b^{t}\right)}=\ln G_{f}^{\frac{1}{t}}\left(a^{t}, b^{t}\right) \tag{3.5}\\
& T^{\prime \prime}(t)=-x y I_{1} \ln ^{2}(b / a), \quad I_{1}=(\ln f)_{x y} ; \tag{3.6}\\
& T^{\prime \prime \prime}(t)=-C t^{-3} J, \quad J=(x-y)\left(x I_{1}\right)_{x}, \quad C=\frac{x y \ln ^{3}(x / y)}{x-y}>0 \tag{3.7}
\end{align*}
$$

Proof. 1) By a direct calculation, we obtain this result at once.
2) Since $f(x, y)$ is a positive n-order homogeneous function, from equation (3.1), we can obtain

$$
\begin{equation*}
x(\ln f)_{x}+y(\ln f)_{y}=n \quad \text { or } \quad x(\ln f)_{x}=n-y(\ln f)_{y} \tag{3.8}
\end{equation*}
$$

By (1.15), there is

$$
\begin{align*}
T^{\prime}(t) & =\frac{a^{t} f_{x}\left(a^{t}, b^{t}\right) \ln a+b^{t} f_{y}\left(a^{t}, b^{t}\right) \ln b}{f\left(a^{t}, b^{t}\right)} \\
& =\frac{x f_{x}(x, y) \ln a+y f_{y}(x, y) \ln b}{f(x, y)} \\
& =x(\ln f)_{x} \ln a+y(\ln f)_{y} \ln b \\
& =n \ln a+y(\ln f)_{y}(\ln b-\ln a) \tag{3.9}
\end{align*}
$$

Notice that $y(\ln f)_{y}$ is a 0 -order homogeneous function, so
(3.10) $x\left[y(\ln f)_{y}\right]_{x}+y\left[y(\ln f)_{y}\right]_{y}=0, \quad$ or $\quad y\left[y(\ln f)_{y}\right]_{y}=-x\left[y(\ln f)_{y}\right]_{x}$.

Hence

$$
\begin{aligned}
T^{\prime \prime}(t) & =0+(\ln b-\ln a)\left[\frac{\partial y(\ln f)_{y}}{\partial x} \frac{d x}{d t}+\frac{\partial y(\ln f)_{y}}{\partial y} \frac{d y}{d t}\right] \\
& =(\ln b-\ln a)\left\{\left[y(\ln f)_{y}\right]_{x} a^{t} \ln a+y\left[y(\ln f)_{y}\right]_{y} b^{t} \ln b\right\} \\
& =\left\{(\ln b-\ln a) x\left[y(\ln f)_{y}\right]_{x} \ln a-x\left[y(\ln f)_{y}\right]_{x} \ln b\right\} \\
& =-(\ln b-\ln a)^{2} x\left[y(\ln f)_{y}\right]_{x} \\
& =-x y(\ln f)_{x y}(\ln b-\ln a)^{2} \\
& =-x y I_{1}(\ln b-\ln a)^{2} .
\end{aligned}
$$

3) From Lemma 1 and 2, we can understand that $I_{1}=(\ln f)_{x y}=\left(f f_{x y}-\right.$ $\left.f_{x} f_{y}\right) / f^{2}$ is a -2 -order homogeneous function of x and y, thus $x y I_{1}$ is a 0 -order homogeneous function. By (3.1), we get

$$
\begin{equation*}
x\left(x y I_{1}\right)_{x}+y\left(x y I_{1}\right)_{y}=0, \text { or } \quad y\left(x y I_{1}\right)_{y}=-x\left(x y I_{1}\right)_{x} \tag{3.11}
\end{equation*}
$$

By (3.6) and notice $x=a^{t}, y=b^{t}$, and then

$$
\begin{aligned}
T^{\prime \prime \prime}(t) & =\frac{d T^{\prime \prime}(t)}{d t}=\frac{d\left(-x y I_{1}(\ln b-\ln a)^{2}\right)}{d t} \\
& =-(\ln b-\ln a)^{2}\left[\frac{\partial\left(x y I_{1}\right)}{\partial x} \frac{d x}{d t}+\frac{\partial\left(x y I_{1}\right)}{\partial y} \frac{d y}{d t}\right] \\
& =-(\ln b-\ln a)^{2}\left[a^{t} \ln a \cdot\left(x y I_{1}\right)_{x}+b^{t} \ln b \cdot\left(x y I_{1}\right)_{y}\right] \\
& =-(\ln b-\ln a)^{2}\left[\left(x\left(x y I_{1}\right)_{x} \ln a+y \ln b\left(x y I_{1}\right)_{y} \ln b\right)\right] \\
& =-(\ln b-\ln a)^{2}\left(x\left(x y I_{1}\right)_{x}\right)(\ln a-\ln b) \\
& =(\ln b-\ln a)^{3} x y\left(x I_{1}\right)_{x} \\
& =x y \frac{(\ln b-\ln a)^{3}}{x-y}\left[(x-y)\left(x I_{1}\right)_{x}\right] \\
& =-x y \frac{(\ln x-\ln y)^{3}}{t^{3}(x-y)}\left[(x-y)\left(x I_{1}\right)_{x}\right] \\
& =-C t^{-3} J .
\end{aligned}
$$

Remark 1. By Lemma 3, it is not difficult to get the following conclusions:

1) $T(t)$ is strictly convex (concave) in $t \in(-\infty, 0) \cup(0,+\infty)$ if $I_{1}<(>) 0$;
2) $T^{\prime}(t)$ is strictly increasing (decreasing) in $t \in(-\infty, 0) \cup(0,+\infty)$ if $I_{1}<(>) 0 ;$
3) If $J<(>) 0$, then $T^{\prime}(t)$ is strictly convex (concave) in $t \in(0,+\infty)$, and strictly concave (convex) in $t \in(-\infty, 0)$.
4) If $J<(>) 0$, then $T^{\prime \prime}(t)$ is strictly increasing (decreasing) in $t \in$ $(0,+\infty)$, and strictly decreasing (increasing) in $t \in(-\infty, 0)$.

Lemma 4. The conditions of this Lemma are the same as Lemma 3, and $f(x, y)$ is symmetric with respect to x and y, then the following equations hold:

$$
\begin{align*}
T^{\prime}(t)+T^{\prime}(-t) & =2 n \ln G \tag{3.12}\\
T^{\prime \prime}(-t) & =T^{\prime \prime}(t) \tag{3.13}\\
T^{\prime \prime \prime}(-t) & =-T^{\prime \prime \prime}(t) \tag{3.14}
\end{align*}
$$

Proof. By direct calculations of the first, second and third derivative to variable t in two sides of equation (1.17) respectively, the equations (3.12)(3.14) are derived immediately. The proof is completed.

Remark 2. If $(1,1) \in U$, i.e. $T^{\prime}(0)$ exists, then $T^{\prime}(0)=n \ln G ; \operatorname{If}(1,1) \notin U$, we define $T^{\prime}(0)=\lim _{t \rightarrow 0} T^{\prime}(t)=n \ln G$. Thus the (3.12) can be written as

$$
\begin{equation*}
T^{\prime}(t)+T^{\prime}(-t)=2 T^{\prime}(0) \tag{3.15}
\end{equation*}
$$

4. Proofs of the main results

Applying the Lemmas $1-4$, we can prove the theorems and corollary in section 2.
proof of Theorem 5.

$$
\begin{align*}
\ln \mathcal{H}_{1 f}(p) & =\ln \frac{f\left(a^{p+1}, b^{p+1}\right)}{f\left(a^{p}, b^{p}\right)}=T(p+1)-T(p) \tag{4.1}\\
\frac{\mathrm{d} \ln \mathcal{H}_{1 f}(p)}{\mathrm{d} p} & =T^{\prime}(p+1)-T^{\prime}(p) \tag{4.2}
\end{align*}
$$

From Lemma 3, we see that $T^{\prime}(t)$ is strictly increasing (decreasing) in $t \in$ $(-\infty, 0) \cup(0,+\infty)$ if $I_{1}<(>) 0$, so $T^{\prime}(p+1)-T^{\prime}(p)>(<) 0$ for $p>0$ or $p<-1$; For $-1<p<0$, we have

$$
T^{\prime}(p+1)>(<) T^{\prime}(0)>(<) T^{\prime}(p), \text { i.e. } \quad T^{\prime}(p+1)-T^{\prime}(p)>(<) 0
$$

It shows that $\mathcal{H}_{1 f}(p)$ is strictly increasing (decreasing) in $p \in(-\infty, 0) \cup(0 .+$ $\infty)$ if $I<(>) 0$. it follows this theorem.
proof of Theorem 6. 1)By the process of proof of Theorem 5, we see that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \ln \mathcal{H}_{1 f}(p)}{\mathrm{d} p^{2}}=T^{\prime \prime}(p+1)-T^{\prime \prime}(p) \tag{4.3}
\end{equation*}
$$

Since $T^{\prime \prime \prime}(t)=-C J / t^{3}$, so $T^{\prime \prime}(t)$ is strictly increasing in $t \in(0,+\infty)$ if $J<0$, strictly decreasing in $t \in(-\infty, 0)$. And then $T^{\prime \prime}(p+1)-T^{\prime \prime}(p)>0$ if $p>0$, and $T^{\prime \prime}(p+1)-T^{\prime \prime}(p)<0$ if $p<-1$. In other words, $\ln \mathcal{H}_{1 f}(p)$ is convex on $(0,+\infty)$, concave on $(-\infty,-1)$.

For $J=(x-y)(x I)_{x}>0$, clearly, the above conclusion is reversed.
2) From part 1), the convexity of $\ln \mathcal{H}_{1 f}(p)$ on $(-\infty,-1)$ or $(0,+\infty)$ has been confirmed, and needs to verify on $p \in(-1,0)$ further.

By Lemma 4, there is $T^{\prime \prime}(-p)=T^{\prime \prime}(p)$ if $f(x, y)=f(y, x)$, so

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \ln \mathcal{H}_{1 f}(p)}{\mathrm{d} p^{2}}=T^{\prime \prime}(p+1)-T^{\prime \prime}(p)=T^{\prime \prime}(p+1)-T^{\prime \prime}(-p) \tag{4.4}
\end{equation*}
$$

If $J=(x-y)(x I)_{x}<0$, then $T^{\prime \prime}(p+1)-T^{\prime \prime}(-p)>0$ in $p \in\left(-\frac{1}{2}, 0\right)$, and $T^{\prime \prime}(p+1)-T^{\prime \prime}(-p)<0$ in $p \in\left(-1,-\frac{1}{2}\right)$. Namely, $\ln \mathcal{H}_{1 f}(p)$ is convex on $\left(-\frac{1}{2}, 0\right)$, concave on $\left(-1,-\frac{1}{2}\right)$.

Combining 1) with 2), the proof is completed.
Proof of Theorem 7. Since $\overline{\mathcal{H}}_{1 f}(p)=\mathcal{H}_{1 f}(p) \mathcal{H}_{1 f}(-p)$, so we have

$$
\begin{align*}
\ln \overline{\mathcal{H}}_{1 f}(p) & =T(p+1)-T(p)+T(-p+1)-T(-p) \tag{4.5}\\
\frac{\mathrm{d} \ln \overline{\mathcal{H}}_{1 f}(p)}{\mathrm{d} p} & =T^{\prime}(p+1)-T^{\prime}(p)-T^{\prime}(-p+1)+T^{\prime}(-p) \tag{4.6}
\end{align*}
$$

By Lemma 4, (4.6) can be written as

$$
\frac{\mathrm{d} \ln \overline{\mathcal{H}}_{1 f}(p)}{\mathrm{d} p}= \begin{cases}T^{\prime}(p+1)+T^{\prime}(p-1)-2 T^{\prime}(p), & p \in[1,+\infty) \tag{4.7}\\ T^{\prime}(p+1)-T^{\prime}(1-p)-2\left[T^{\prime}(p)-T^{\prime}(0)\right], & p \in(0,1)\end{cases}
$$

if $J=(x-y)(x I)_{x}<0$, then $T^{\prime \prime \prime}(t)>(<) 0$ when $t>(<) 0$, i.e. that $T^{\prime}(t)$ is strictly convex (concave) in $t>(<) 0$. By the properties of convex (concave), we easily get

$$
\begin{equation*}
\frac{T^{\prime}(p+1)+T^{\prime}(p-1)}{2}>T^{\prime}(p) \text { if } p \in(1,+\infty) ; \tag{4.8}
\end{equation*}
$$

While for $p \in(0,1)$, because

$$
\begin{equation*}
\frac{T^{\prime}(p+1)-T^{\prime}(1-p)}{(p+1)-(1-p)}>\frac{T^{\prime}(p)-T^{\prime}(1-p)}{p-(1-p)}>\frac{T^{\prime}(p)-T^{\prime}(0)}{p-0} \tag{4.9}
\end{equation*}
$$

so there is

$$
\begin{equation*}
T^{\prime}(p+1)-T^{\prime}(1-p)>2\left[T^{\prime}(p)-T^{\prime}(0)\right] \tag{4.10}
\end{equation*}
$$

It follows that whether $p \in[1,+\infty)$ or $p \in(0,1)$ there are always $\frac{\mathrm{d} \ln \overline{\mathcal{H}}_{1 f}(p)}{\mathrm{d} p}>$ 0 , i.e. $\overline{\mathcal{H}}_{1 f}(p)$ is strictly increasing in $p \in(0,+\infty)$ if $J<0$.

As $\overline{\mathcal{H}}_{1 f}(-p)=\mathcal{H}_{1 f}(-p) \mathcal{H}_{1 f}(p)=\overline{\mathcal{H}}_{1 f}(p)$, so $\overline{\mathcal{H}}_{1 f}(p)$ is strictly decreasing in $p \in(-\infty, 0)$ at the same time.

For $J=(x-y)(x I)_{x}>0$, we can prove the conclusion in the same way.

5. Some conclusions involving L, A and E

By Theorem 5-7, the monotonicity of $\mathcal{H}_{1 f}(p)$ depends on the sign of $I_{1}=$ $(\ln f)_{\underline{x} y}$; While the log-convexity of $\mathcal{H}_{1 f}(p)$, the monotonicity of $\mathcal{H}_{f}(p, 1-p)$ and $\overline{\mathcal{H}}_{1 f}(p)$ depend on the sign of $J=(x-y)\left(x I_{1}\right)_{x}$. In this section, by some straightforward computations, we will present some conclusions about $\mathcal{H}_{1 f}(p), \mathcal{H}_{f}(p, 1-p)$ and $\overline{\mathcal{H}}_{1 f}(p)$, where $f(x, y)=L(x, y), A(x, y), E(x, y)$.

Case 1. For $f(x, y)=L(x, y)=\frac{x-y}{\ln x-\ln y}$, where $x, y>0$ with $x \neq y$, there are

$$
\begin{aligned}
I_{1} & =(\ln f)_{x y}=\frac{1}{(x-y)^{2}}-\frac{1}{x y(\ln x-\ln y)^{2}} \\
& =\frac{1}{x y(x-y)^{2}}\left[G^{2}(x, y)-L^{2}(x, y)\right. \\
J & =(x-y)\left(x I_{1}\right)_{x}=(x-y)\left[-\frac{x+y}{(x-y)^{3}}+\frac{2}{x y(\ln x-\ln y)^{3}}\right] \\
& =\frac{2}{x y(x-y)^{2}}\left[L^{3}(x, y)-\frac{x+y}{2}(\sqrt{x y})^{2}\right] .
\end{aligned}
$$

By the well-known inequalities $L(x, y)>G(x, y)$ and $L(x, y)>\left(\frac{x+y}{2}\right)^{\frac{1}{3}}(\sqrt{x y})^{\frac{2}{3}}$, we have $I_{1}<0, J>0$.

Case 2. For $f(x, y)=A(x, y)=\frac{x+y}{2}$, where $x, y>0$ with $x \neq y$, there are

$$
\begin{aligned}
I_{1} & =(\ln f)_{x y}=-\frac{1}{(x+y)^{2}}<0 \\
J & =(x-y)\left(x I_{1}\right)_{x}=\frac{(x-y)^{2}}{(x+y)^{3}}>0
\end{aligned}
$$

Case 3. For $f(x, y)=E(x, y)=e^{-1}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}}$, where $x, y>0$ with $x \neq y$, there are

$$
\begin{aligned}
I_{1} & =(\ln f)_{x y}=\frac{1}{(x-y)^{3}}[2(x-y)-(x+y)(\ln x-\ln y)] \\
& =\frac{2(\ln x-\ln y)}{(x-y)^{3}}\left[L(x, y)-\frac{x+y}{2}\right] \\
J & =(x-y)\left(x I_{1}\right)_{x}=\frac{-3\left(x^{2}-y^{2}\right)+\left(x^{2}+4 x y+y^{2}\right)(\ln x-\ln y)}{(x-y)^{2}} \\
& =-\frac{6(\ln x-\ln y)}{(x-y)^{3}}\left[\frac{x^{2}-y^{2}}{\ln x^{2}-\ln y^{2}}-\frac{\frac{x^{2}+y^{2}}{2}+2 x y}{3}\right]
\end{aligned}
$$

By the well-known inequalities $L(x, y)<\frac{x+y}{2}$ and $L(x, y)<\frac{\frac{x+y}{2}+2 \sqrt{x y}}{3}$, we have $I_{1}<0, J>0$.

Case 4. For $f(x, y)=D(x, y)=|x-y|$, where $x, y>0$ with $x \neq y$, there are

$$
\begin{aligned}
I_{1} & =(\ln f)_{x y}=\frac{1}{(x-y)^{2}}>0 \\
J & =(x-y)\left(x I_{1}\right)_{x}=-\frac{x+y}{(x-y)^{2}}<0
\end{aligned}
$$

Notice that $L(x, y), A(x, y), E(x, y)$ and $D(x, y)$ are all symmetric with respect to x and y, using Theorems 5-7 and Corollary 1, we get immediately the following conclusions:

Conclusion 1. That $\mathcal{H}_{1 L}(a, b ; p), \mathcal{H}_{1 A}(a, b ; p)$ and $\mathcal{H}_{1 E}(a, b ; p)$ are strictly increasing in $p \in(-\infty,+\infty)$, respectively.

That $\mathcal{H}_{1 D}(a, b ; p)$ is strictly decreasing in $p \in(-\infty, 0) \cup(0,+\infty)$.
Conclusion 2. That $\mathcal{H}_{1 L}(a, b ; p), \mathcal{H}_{1 A}(a, b ; p)$ and $\mathcal{H}_{1 E}(a, b ; p)$ are strictly log-convex in $p \in\left(-\infty,-\frac{1}{2}\right)$, and strictly log-concave in $p \in\left(-\frac{1}{2},+\infty\right)$, respectively.

That $\mathcal{H}_{1 D}(a, b ; p)$ is strictly log-concave in $p \in\left(-\infty,-\frac{1}{2}\right)$, and strictly log-convex in $p \in\left(-\frac{1}{2}, 0\right) \cup(0,+\infty)$.

Conclusion 3. That $\mathcal{H}_{1 L}(p, 1-p), \mathcal{H}_{1 A}(p, 1-p)$ and $\mathcal{H}_{1 E}(p, 1-p)$ are strictly increasing in $p \in\left(-\infty, \frac{1}{2}\right)$, and strictly decreasing in $p \in\left(\frac{1}{2},+\infty\right)$, respectively.

That $\mathcal{H}_{1 D}(p, 1-p)$ is strictly decreasing in $p \in(-\infty, 0) \cup\left(0, \frac{1}{2}\right)$, and strictly increasing in $p \in\left(\frac{1}{2},+\infty\right)$.

Conclusion 4. That $\overline{\mathcal{H}}_{1 L}(a, b ; p), \overline{\mathcal{H}}_{1 A}(a, b ; p)$ and
$\overline{\mathcal{H}}_{1 E}(a, b ; p)$ are strictly increasing in $p \in(-\infty, 0)$, and strictly decreasing in $p \in(0,+\infty)$, respectively.

That $\overline{\mathcal{H}}_{1 D}(a, b ; p)$ is strictly decreasing in $p \in(-\infty, 0)$, and strictly increasing in $p \in(0,+\infty)$,

Remark 3. The Conclusion 2 and 4 include Wing-Sum Cheung and Feng Qi's results.

References

[1] H. Alzer, On Stolarsky's mean value family, Internat. J. Math. Ed. Sci. Tech. 20(1)(1987), 186-189.
[2] H. Alzer, Üer eine einparametrige familie von Mitlewerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1987(1988), 23-29. (German)
[3] H. Alzer, Üer eine einparametrige familie von Mitlewerten, II, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1988(1989), 23-29. (German)
[4] Wing-Sum Cheung and Feng Qi, Logarithmic convexity of the one-parameter mean values, RGMIA Research Report Collection, 7(2), Article 15, 2004.
[5] C. GINI, Diuna formula comprensiva delle media, Metron, 13(1938), 3-22.
[6] J.-Ch. Kuang, Applied Inequalities, 2nd ed., Hunan Education Press, Changsha City, Hunan Province, China, 1993. (Chinese)
[7] J.-Ch. Kuang, Applied Inequalities, 3rd ed., Shangdong Science and Technology Press, Jinan City, Shangdong Province, China, 2004. (Chinese)
[8] E. B. leach and M. C. Sholander, Extended mean values, Amer. Math. Monthly, 85(1978), 84-90.
[9] E. B. leach and M. C. Sholander . Extended mean values, J. Math. Anal. Appl. 92(1983), 207-223.
[10] Qi Feng, Logarithmic convexities of the Extended Mean values, J. London Math. Soc. , to appear.
[11] F Qi, On a two-parameter family of nonhomogeneous mean values, Tamkang Journal of Mathematics, 29(2)(1998), 155-163.
[12] K. B. Stolarsky, Generalizations of the Logarithmic Mean, Math. Mag. 48(1975), 87-92.
[13] R. Yang and D. Cao, Generalizations of the logarithmic mean, J. Ningbo Univ. 2(1)(1989), 105-108.
[14] Zhen-Hang Yang, Simple Discriminance for Convexity of Homogeneous Functions and Applications, Study in College Mathematics, 4(7)(2004), 14-19.
[15] Zhen-Hang Yang, On the Monotinity and Log-convexity for Two-parameter Homogeneous Hunctions, Inequalities Research Bulletin, 11(2)(2004), 302-324.
[16] Pales Z. Inequalities for differences of powers, J. Math. Anal. Appl. 131(1988), 271281.

