
On Huygen‘s Trigonometric Inequality

József Sándor and Mihály Bencze
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1. Introduction

Let x ∈
(
0, π

2

)
. Then it is well known that sinx < x < tgx, used for

the first time by Archimede in the numerical approximation of π. Nicolaus
de Cusa (1401-1464), by using certain geometrical constructions, discovered
the relation:

(1)
3 sinx

2 + cos x
< x

In 1631, Willebrod Snellius (1581-1626), in his book entitled ”Cy-
clometicus” found a proof for (1), and for the following inequality:

(2) 2 sinx + tgx > 3x

The proofs given by Snellius were quite obscure, but fortunately these
formulae are true. The first scientist who found an acceptable (geometri-
cal) proof for (1) and (2), after 33 years from the publication of Snellius‘
book, was Christian Huygens (1629-1695). Huygens, in his book ”De circuli
magnitudine inventa” usend (1) and (2) in the approximation of values of
π. For the history of such themes, connected also to the fabulous history of
the number π, see the References (especially [1-4]).

In what follows, we will call (1) (like e.g. in [1]) as Cusa‘s inequality,
while (2) as the Huygen‘s inequality. In paper [5] the first author proved
the following generalization of Cusa‘s inequality: Let a, b, c > 0 such that
2b ≤ c ≤ a + b. Then, for any x ∈

(
0, π

2

)
one has

(3)
c sinx

a + b cos x
< x

Particularly, for c = 3, a = 2, b = 1 we reobtain (1).
In problem 2585 of Crux Mathematicorum, V.N. Murty proposed the

inequality:

(4) tgx + sinx > 2x

We note that Huygen‘s inequality (2) is stronger that (4) , as

(5)
tgx + sinx

2
>

2 sinx + tgx

3
> x

where the first relation is equivalent to tgx > sinx.
The aim of this note is to offer certain generalizations to Huygens-like

inequalities.
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2. Main Result
First we state the following:

Theorem 1. Let a, b, c > 0. The inequality

(6) a sin x + b tgx ≥ c · tgx

2
, x ∈

(
0,

π

2

)
holds true only in the following cases:

(7)
i). 4 = (b− a)2 − 4k (a + b− k) ≤ 0, where k = c

2 ;
ii). 4 > 0, and a− b ≥ 2k = c;
iii). 4 > 0, and a− b ≤ 0

Proof. Put tg x
2 = t, and remark that for x ∈

(
0, π

2

)
one has t ∈ (0, 1) .

By sinx = 2t/
(
1 + t2

)
, tgx = 2t/

(
1− t2

)
, after elementary transformation,

(6) becomes

(0.1) f (u) = ku2 + u (b− a) + a + b− k ≥ 0 for all u ∈ (0, 1) ,

where k = c
2 and u = t2 ∈ (0, 1) .

The discriminant of f (a) = 0 is 4 = (b− a)2− 4k (a + b− k) . Since
k > 0, if4 ≤ 0, then it is well known that f (a) ≥ 0 for all real u, particularly
for u ∈ (0, 1) . Thus i). follows:

Now, if4 > 0, the roots of f (u) = 0 are u1 = a−b−
√
4

2k , u2 = a−b+
√
4

2k .
For a − b > 0 we have 0 < u1 < u2. Now, f (1) = 2b > 0, and we must
have f (0) = a + b − k ≥ 0. Clearly, we cannot have u1 ≤ 1, since f
being continuous, f would change signs on (0, 1) . The inequalityu u1 > 1 is
equivalent to a− b− 2k >

√
4. This is impossible if a− b− 2k < 0, but for

a−b−2k ≥ 0, it becomes (a− b− 2k)2 ≥ 4, so (a− b)2−4k (a− b)+4k2 ≥
(a− b)2− 4k (a + b− k) , i.e. 8kb > 0, which is true. Therefore, ii). follows.

In case a−b ≤ 0, one has u1 < u2 < 0, so f (u) > 0 for any u ∈ (0, 1) .

Corollary. If one of i)− iii) of (7) is satisfied, then

(9) a sin x + b tgx >
c

2
x, for all x ∈

(
0,

π

2

)
Proof. By tg x

2 > x
2 , (6) implies relation (9).

Examples. 1). Let a = b = 1, c = 4, in (6). Since i). is true, we get:
(10).

(10) sin x + tgx ≥ 4tg
x

2
> 2x

This improves also (4).
2). Let a = 1

4 , b = 3
4 , c = 2. Then iii). applies, and one gets:

(11) sin x + 3tgx ≥ 8tg
x

2
> 4x

Theorem 2. Let a, b > 0, and put A = b+
√

b2+4ab
2a .

If cos x ≤ A, x ∈
[
0, π

2

)
, then

(12) a sinx + b tgx ≥ (a + b) x
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If A ≤ 1 and cos x ≥ A, for x ∈
[
0, π

2

)
, then

(13) a sinx + b tgx ≤ (a + b) x

Proof. Let f (x) = a sinx + b tgx − (a + b) x, x ∈
[
0, π

2

)
. Since the

derivative of f is f ′ (x) = 1
cos2 x

[
a cos3 x− (a + b) cos2 x + b

]
= g (t) /t2,

where t = cos x ∈ (0, 1] and g (t) = at3 − (a + b) t2 + b, we have to study
the signs of f ′ (x) . By g (t) = at3 − at2 − bt2 + b = at2 (t− 1)− b

(
t2 − 1

)
=

(t− 1)
(
at2 − bt− b

)
and remarking that at2 − bt− b = 0 has as roots t1 =

b−
√

b2+4ab
2a < 0 and t2 = A, we can write g (t) = a (t− t1) (t−A) ≤ 0 if

t = cos x ≤ A. By t − 1 ≤ 0, it follows g (t) ≥ 0, so f is an increasing
function on

[
0, π

2

)
. Clearly, if cos x < A and t < 1 (i.e. x ∈

(
0, π

2

)
), then f

is strictly increasing. This implies f (x) ≥ f (0) = 0, so relation (12) follows.
A similar proof applies to (13), and we omit the details.

Examples. 1). Let a = 2, b = 1. Then A = 1, so cos x < A in
(
0, π

2

)
.

Then (12) reduces to Huygen‘s inequality (2).
2). Put a = 6, b = 1. Then a = 1

2 . The inequality cos x > 1
2

is true for x ∈
(
0, π

3

)
. By relation (13) we get

(14) 6 sinx + tgx < 7x for x ∈
(
0,

π

3

)
Thus (2) and (14) can be written in a single line as

(15)
6 sinx + tgx

7
< x <

2 sinx + tgx

3
, x ∈

(
0,

π

3

)
Inequality (14) is reversed for x ∈

(
π
3 , π

2

)
.

Remarks.

(1) More generally, an inequality of type

(16) a sinx + b tgx ≥ cx

can be studied. In this case, by letting f (x) = a sinx + b tgx− cx,
one obtains f ′ (x) = g (t) /t2, where g (t) = at3−ct2+b. Since g′ (t) =
t (3at− 2c) , the study of sign changes of g depens on g

(
2c
3a

)
=(

27a2b− 4c3
)
/27a2. But then there will be more cases, with much

more complicated (and not so nice) results than Theorem 2.
(2) Other geometric inequalities (like Jordan‘s, Redheffer‘s, Kober‘s,

etc.) can be found in [6] and [7]. See also [8] (where there are
not included Cusa or Huygens type inequalities).

(3) For trigonometric inequalities, based on geometrical constructions,
see [6] (one of them included also in [9]), and on convexity methods,
see [7]. For other geometric inequalities see [10].

(4) If a, b > 0 and x ∈
(
0, π

2

)
, then a2tgx + b2 sinx > 2abx.
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Proof. We take f(x) = a2tgx+b2 sinx−2abx, because f ′(x) >
(

a
cos x − b cos x

)2 ≥
0, and f(0) = 0, so f is increasing and because is continuous, therefore
f(x) > f(0) = 0, for all x ∈

(
0, π

2

)
.

(5) Using the method from 4). for all a, b > 0 and x ∈
(
0, π

2

)
, holds

a2tgx + b2

(
x

2
+

sin 2x

4

)
> 2abx.

(6) We propose to study the following inequality

a2tgx +
b2x

2
> 2ab ln

(
1

cos x

)
+

b2 sin 2x

4
,

for all a, b > 0 and x ∈
(
0, π

2

)
.

(7) If x ∈
(
0, π

2

)
, then sin x

x >
√

cos x.

Proof. If f(x) = ln(tgx) + ln(sinx)− 2 ln x, then

f ′(x) =
x(1 + cos2x)− 2 sinx cos x

sinx cos x
>

2x cos x− 2 sinx cos x

sinx cos x

=
2 cos x(x− sin x)

sinx cos x
> 0

etc.
(8) We propose to prove that for all x ∈

(
0, π

2

)
and all α > 0 holds(

sin x
x

)α
> cosα x

1+cosα x .
(9) We propose to study the following inequality a(sinx)α + b(tgx)β >

cxγ , where a, b, c, α, β, γ ∈ R and x ∈
(
0, π

2

)
.
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