A SUBADDITIVE PROPERTY OF THE DIGAMMA FUNCTION

PENG GAO

ABSTRACT. We prove that the function $x \mapsto \psi(a + e^x)(a > 0)$ is subadditive on $(-\infty, +\infty)$ if and only if $a \ge c_0$, where c_0 is the only positive zero of $\psi(x)$.

1. INTRODUCTION

Euler's gamma function for x > 0 is defined as

$$\Gamma(x) = \int_0^\infty t^x e^{-t} \frac{dt}{t}.$$

The digamma (or psi) function $\psi(x)$ is defined as the logarithmic derivative of $\Gamma(x)$. It has the following series representation(see, for example, [7, (1.8)]):

(1.1)
$$\psi(x) = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{x+n}\right).$$

Here $\gamma = 0.57721...$ denotes Euler's constant. We further note the following asymptotic expression(see, for example, [2, (1.4)]:

(1.2)
$$\psi(x) = \log x + O(\frac{1}{x}).$$

There exist many inequalities for the gamma and digamma functions. For the recent developments in this area, we refer the reader to the articles [1]-[3], [7], [8] and the references therein.

A function f defined on a set D of real numbers is said to be subadditive on D if $f(x + y) \le f(x) + f(y)$ for all $x, y \in D$ such that $x + y \in D$. If instead $f(xy) \le f(x)f(y)$ for all $x, y \in D$ such that $xy \in D$, then f(x) is said to be submultiplicative on D.

Inspired by (1.2) and a result of Gustavsson et al. [6], which asserts that if $a \ge 1$, then the function $f(x) = \log(a + x)$ is submultiplicative on $[0, +\infty)$ if and only if $a \ge e$, Alzer and Ruehr[3] proved the following submultiplicative property of the digamma function:

Theorem 1.1. Let a > 0 be fixed. Then $\psi(a+x)$ as a function of x is submultiplicative on $[0, +\infty)$ if and only if $a \ge a_0 = 3.203171...$ (Here, a_0 denotes the only positive real number which satisfies $\psi(a_0) = 1.$)

The above result asserts that for $a \ge a_0, x, y \ge 0$,

(1.3)
$$\psi(a+xy) \le \psi(a+x)\psi(a+y).$$

We note here [5] that for $a > 0, x, y \ge 0$,

$$\psi(a) + \psi(a + x + y) \le \psi(a + x) + \psi(a + y)$$

As $\psi(x)$ is an increasing function (see [5]), we obtain from the above that

(1.4)
$$\psi(a) + \psi(a + xy) \le \psi(a + x) + \psi(a + y),$$

Date: August 18, 2005.

¹⁹⁹¹ Mathematics Subject Classification. Primary 33D05.

Key words and phrases. Digamma function, subadditive function.

for $a > 0, x, y \ge 0$, provided that $xy \le x + y$ or $1 \le 1/x + 1/y$. In particular, when $x \le 1$ or $y \le 1$, inequality (1.4) is valid and this would then give a refinement of (1.3) when $a \ge a_0$ since we now have

$$1 + \psi(a + xy) \le \psi(a) + \psi(a + xy) \le \psi(a + x) + \psi(a + y),$$

and that

$$\psi(a+x) + \psi(a+y) - 1 \le \psi(a+x)\psi(a+y)$$

We point out here (1.4) does not hold in general. In fact, it follows from (1.2) and (1.4) that when $x \to +\infty$,

$$\psi(a) + \log y \le \psi(a+y),$$

and the above inequality does not hold for y > 1 if we take $a \to +\infty$, in view of (1.2) again. Similarly, it is not possible to compare $\psi(a)\psi(a + xy)$ and $\psi(a + x)\psi(a + y)$ for $a \ge a_0, x, y \ge 0$ in general. Certainly when we fix a and set $x = y \to +\infty$, we will have by (1.2),

$$\psi(a)\psi(a+xy) < \psi(a+x)\psi(a+y)$$

and the above inequality is reversed when we set $x = y = a \rightarrow +\infty$.

It is now interesting to ask whether the following inequality holds for all $x, y \ge 0$:

(1.5)
$$\psi(a+xy) \le \psi(a+x) + \psi(a+y),$$

for a larger than some constant. In view of (1.2), this can be thought as an analogue of the property $\log(xy) = \log x + \log y, x, y > 0$ and the easily checked fact: $\log(a + xy) \le \log(a + x) + \log(a + y), a \ge 1, x, y \ge 0$. We may also interpret (1.5) as asserting that the function $x \mapsto \psi(a + e^x)$ is subadditive on $(-\infty, +\infty)$ for a larger than some constant.

By taking x = y = 0 in (1.5), we see that it is necessary to have $a \ge c_0$, where c_0 is the only positive zero of $\psi(x)$ and it is our goal in this paper to prove that this condition is also sufficient for (1.5) to hold.

2. A Lemma

Lemma 2.1. The function $f(x) = x\psi'(a+x)$ is strictly increasing on $[0, +\infty)$ for $a \ge 1$.

Proof. We have

$$f'(x) = \psi'(a+x) + x\psi''(a+x)$$

We now use a method in [4] to show that f'(x) > 0 for $x \ge 0$. First note the following two asymptotic expressions([4, p. 2668]):

$$\psi'(x) = \frac{1}{x} + O(\frac{1}{x^2}), \psi''(x) = -\frac{1}{x^2} + O(\frac{1}{x^3}).$$

It follows that

$$\lim_{x \to +\infty} f'(x) = 0.$$

Hence it suffices to show that f(x) - f(x+1) > 0. Using (1.1) we get

$$\begin{split} f(x) - f(x+1) &= -\frac{1}{(x+a)^2} + \frac{2a}{(x+a)^3} + \sum_{n=1}^{\infty} \frac{2}{(n+x+a)^3} \\ &\geq -\frac{1}{(x+a)^2} + \sum_{n=0}^{\infty} \frac{2}{(n+x+a)^3} \\ &> -\frac{1}{(x+a)^2} + \sum_{n=0}^{\infty} (\frac{1}{(n+x+a)^2} - \frac{1}{(n+x+a+1)^2}) = 0, \end{split}$$

where the last inequality follows from the inequality

$$\frac{2}{u^3} > \frac{1}{u^2} - \frac{1}{(1+u)^2}, \quad u > 0.$$

The proof is now complete.

3. Main Result

Theorem 3.1. The function $x \mapsto \psi(a + e^x)(a > 0)$ is subadditive on $(-\infty, +\infty)$ if and only if $a \ge c_0$, where c_0 is the only positive zero of $\psi(x)$.

Proof. From our discussions above, it suffices to show (1.5) holds for all $x, y \ge 0$ when $a \ge c_0$. If $x \le 1$ or $y \le 1$, then (1.5) follows from (1.4). Hence from now on we may assume that $x, y \ge 1$. In this case we define

$$f(x,y) = \psi(a+x) + \psi(a+y) - \psi(a+xy),$$

and note that $f(x,1) = \psi(a+1) > 0$. If y > 1, then as $c_0 > 1$ (since $\psi(1) = -\gamma$ by (1.1)), Lemma 2.1 implies that $\partial f/\partial x < 0$ so that by (1.2),

$$f(x,y) > \lim_{u \to +\infty} f(u,y) = \psi(a+y) - \log y.$$

Now that we have [1, (2.2)] for x > 0,

$$\frac{1}{2x} < \log x - \psi(x) < \frac{1}{x}$$

It follows from this and the mean value theorem that

$$\psi(a+y) - \log y > \log(a+y) - \log y - \frac{1}{a+y} > \frac{a}{a+y} - \frac{1}{a+y} \ge 0.$$

From this we conclude that $f(x, y) \ge 0$ for $x, y \ge 0$ and this completes the proof.

References

- [1] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp., 66 (1997), 373-389.
- [2] H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math., 16 (2004), 181–221.
- [3] H. Alzer and O. G. Ruehr, A submultiplicative property of the psi function, J. Comput. Appl. Math., 101 (1999), 53–60.
- [4] Á. Elbert and A. Laforgia, On some properties of the gamma function, Proc. Amer. Math. Soc., 128 (2000), 2667–2673.
- [5] P. Gao, Some monotonicity properties of the q-gamma Function, RGMIA Research Report Collection 8(3), Article 4, 2005.
- [6] J. Gustavsson, L. Maligranda and J. Peetre, A submultiplicative function, Nederl. Akad. Wetensch. Indag. Math., 51 (1989), 435–442.
- M.E.H. Ismail and M.E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions. In: Approximation and computation, Internat. Ser. Numer. Math., 119, Birkhäuser, Boston, 1994, 309-323.
- [8] S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp., 74 (2005), 723-742.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109 *E-mail address*: penggao@umich.edu

3