A SUBADDITIVE PROPERTY OF THE DIGAMMA FUNCTION

PENG GAO

Abstract. We prove that the function $x \mapsto \psi\left(a+e^{x}\right)(a>0)$ is subadditive on $(-\infty,+\infty)$ if and only if $a \geq c_{0}$, where c_{0} is the only positive zero of $\psi(x)$.

1. Introduction

Euler's gamma function for $x>0$ is defined as

$$
\Gamma(x)=\int_{0}^{\infty} t^{x} e^{-t} \frac{d t}{t}
$$

The digamma (or psi) function $\psi(x)$ is defined as the logarithmic derivative of $\Gamma(x)$. It has the following series representation(see, for example, [7, (1.8)]):

$$
\begin{equation*}
\psi(x)=-\gamma+\sum_{n=0}^{\infty}\left(\frac{1}{n+1}-\frac{1}{x+n}\right) . \tag{1.1}
\end{equation*}
$$

Here $\gamma=0.57721 \ldots$ denotes Euler's constant. We further note the following asymptotic expression(see, for example, 2, (1.4)]:

$$
\begin{equation*}
\psi(x)=\log x+O\left(\frac{1}{x}\right) \tag{1.2}
\end{equation*}
$$

There exist many inequalities for the gamma and digamma functions. For the recent developments in this area, we refer the reader to the articles $[1-3$, 7 , 8 and the references therein.

A function f defined on a set D of real numbers is said to be subadditive on D if $f(x+y) \leq$ $f(x)+f(y)$ for all $x, y \in D$ such that $x+y \in D$. If instead $f(x y) \leq f(x) f(y)$ for all $x, y \in D$ such that $x y \in D$, then $f(x)$ is said to be submultiplicative on D.

Inspired by (1.2) and a result of Gustavsson et al. (6), which asserts that if $a \geq 1$, then the function $f(x)=\log (a+x)$ is submultiplicative on $[0,+\infty)$ if and only if $a \geq e$, Alzer and Ruehr 3 proved the following submultiplicative property of the digamma function:
Theorem 1.1. Let $a>0$ be fixed. Then $\psi(a+x)$ as a function of x is submultiplicative on $[0,+\infty)$ if and only if $a \geq a_{0}=3.203171 \ldots$. (Here, a_{0} denotes the only positive real number which satisfies $\psi\left(a_{0}\right)=1$.)

The above result asserts that for $a \geq a_{0}, x, y \geq 0$,

$$
\begin{equation*}
\psi(a+x y) \leq \psi(a+x) \psi(a+y) . \tag{1.3}
\end{equation*}
$$

We note here 5 that for $a>0, x, y \geq 0$,

$$
\psi(a)+\psi(a+x+y) \leq \psi(a+x)+\psi(a+y) .
$$

As $\psi(x)$ is an increasing function(see [5), we obtain from the above that

$$
\begin{equation*}
\psi(a)+\psi(a+x y) \leq \psi(a+x)+\psi(a+y), \tag{1.4}
\end{equation*}
$$

Date: August 18, 2005.
1991 Mathematics Subject Classification. Primary 33D05.
Key words and phrases. Digamma function, subadditive function.
for $a>0, x, y \geq 0$, provided that $x y \leq x+y$ or $1 \leq 1 / x+1 / y$. In particular, when $x \leq 1$ or $y \leq 1$, inequality (1.4) is valid and this would then give a refinement of (1.3) when $a \geq a_{0}$ since we now have

$$
1+\psi(a+x y) \leq \psi(a)+\psi(a+x y) \leq \psi(a+x)+\psi(a+y),
$$

and that

$$
\psi(a+x)+\psi(a+y)-1 \leq \psi(a+x) \psi(a+y) .
$$

We point out here (1.4) does not hold in general. In fact, it follows from (1.2) and (1.4) that when $x \rightarrow+\infty$,

$$
\psi(a)+\log y \leq \psi(a+y),
$$

and the above inequality does not hold for $y>1$ if we take $a \rightarrow+\infty$, in view of 1.2 again. Similarly, it is not possible to compare $\psi(a) \psi(a+x y)$ and $\psi(a+x) \psi(a+y)$ for $a \geq a_{0}, x, y \geq 0$ in general. Certainly when we fix a and set $x=y \rightarrow+\infty$, we will have by (1.2),

$$
\psi(a) \psi(a+x y)<\psi(a+x) \psi(a+y),
$$

and the above inequality is reversed when we set $x=y=a \rightarrow+\infty$.
It is now interesting to ask whether the following inequality holds for all $x, y \geq 0$:

$$
\begin{equation*}
\psi(a+x y) \leq \psi(a+x)+\psi(a+y) \tag{1.5}
\end{equation*}
$$

for a larger than some constant. In view of (1.2), this can be thought as an analogue of the property $\log (x y)=\log x+\log y, x, y>0$ and the easily checked fact: $\log (a+x y) \leq \log (a+x)+\log (a+y)$, $a \geq 1, x, y \geq 0$. We may also interpret (1.5) as asserting that the function $x \mapsto \psi\left(a+e^{x}\right)$ is subadditive on $(-\infty,+\infty)$ for a larger than some constant.

By taking $x=y=0$ in (1.5), we see that it is necessary to have $a \geq c_{0}$, where c_{0} is the only positive zero of $\psi(x)$ and it is our goal in this paper to prove that this condition is also sufficient for (1.5) to hold.

2. A Lemma

Lemma 2.1. The function $f(x)=x \psi^{\prime}(a+x)$ is strictly increasing on $[0,+\infty)$ for $a \geq 1$.
Proof. We have

$$
f^{\prime}(x)=\psi^{\prime}(a+x)+x \psi^{\prime \prime}(a+x) .
$$

We now use a method in 4 to show that $f^{\prime}(x)>0$ for $x \geq 0$. First note the following two asymptotic expressions(4. p. 2668]):

$$
\psi^{\prime}(x)=\frac{1}{x}+O\left(\frac{1}{x^{2}}\right), \psi^{\prime \prime}(x)=-\frac{1}{x^{2}}+O\left(\frac{1}{x^{3}}\right) .
$$

It follows that

$$
\lim _{x \rightarrow+\infty} f^{\prime}(x)=0 .
$$

Hence it suffices to show that $f(x)-f(x+1)>0$. Using (1.1) we get

$$
\begin{aligned}
f(x)-f(x+1) & =-\frac{1}{(x+a)^{2}}+\frac{2 a}{(x+a)^{3}}+\sum_{n=1}^{\infty} \frac{2}{(n+x+a)^{3}} \\
& \geq-\frac{1}{(x+a)^{2}}+\sum_{n=0}^{\infty} \frac{2}{(n+x+a)^{3}} \\
& >-\frac{1}{(x+a)^{2}}+\sum_{n=0}^{\infty}\left(\frac{1}{(n+x+a)^{2}}-\frac{1}{(n+x+a+1)^{2}}\right)=0,
\end{aligned}
$$

where the last inequality follows from the inequality

$$
\frac{2}{u^{3}}>\frac{1}{u^{2}}-\frac{1}{(1+u)^{2}}, \quad u>0 .
$$

The proof is now complete.

3. Main Result

Theorem 3.1. The function $x \mapsto \psi\left(a+e^{x}\right)(a>0)$ is subadditive on $(-\infty,+\infty)$ if and only if $a \geq c_{0}$, where c_{0} is the only positive zero of $\psi(x)$.
Proof. From our discussions above, it suffices to show (1.5) holds for all $x, y \geq 0$ when $a \geq c_{0}$. If $x \leq 1$ or $y \leq 1$, then (1.5) follows from (1.4). Hence from now on we may assume that $x, y \geq 1$. In this case we define

$$
f(x, y)=\psi(a+x)+\psi(a+y)-\psi(a+x y),
$$

and note that $f(x, 1)=\psi(a+1)>0$. If $y>1$, then as $c_{0}>1$ (since $\psi(1)=-\gamma$ by (1.1)), Lemma 2.1 implies that $\partial f / \partial x<0$ so that by (1.2),

$$
f(x, y)>\lim _{u \rightarrow+\infty} f(u, y)=\psi(a+y)-\log y
$$

Now that we have 1, (2.2)] for $x>0$,

$$
\frac{1}{2 x}<\log x-\psi(x)<\frac{1}{x}
$$

It follows from this and the mean value theorem that

$$
\psi(a+y)-\log y>\log (a+y)-\log y-\frac{1}{a+y}>\frac{a}{a+y}-\frac{1}{a+y} \geq 0 .
$$

From this we conclude that $f(x, y) \geq 0$ for $x, y \geq 0$ and this completes the proof.

References

[1] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp., 66 (1997), 373-389.
[2] H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math., 16 (2004), 181-221.
[3] H. Alzer and O. G. Ruehr, A submultiplicative property of the psi function, J. Comput. Appl. Math., 101 (1999), 53-60.
[4] Á. Elbert and A. Laforgia, On some properties of the gamma function, Proc. Amer. Math. Soc., 128 (2000), 2667-2673.
[5] P. Gao, Some monotonicity properties of the q-gamma Function, RGMIA Research Report Collection 8(3), Article 4, 2005.
[6] J. Gustavsson, L. Maligranda and J. Peetre, A submultiplicative function, Nederl. Akad. Wetensch. Indag. Math., 51 (1989), 435-442.
[7] M.E.H. Ismail and M.E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions. In: Approximation and computation, Internat. Ser. Numer. Math., 119, Birkhäuser, Boston, 1994, 309-323.
[8] S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp., 74 (2005), 723-742.

Department of Mathematics, University of Michigan, Ann Arbor, Mi 48109
E-mail address: penggao@umich.edu

