REFINEMENT OF INEQUALITIES AMONG MEANS
INDER JEET TANEJA

ABSTRACT. In this paper we shall consider some famous means such as arithmetic,
harmonic, geometric, root-square means, etc. Some new means recently studied are also
presented. Different kinds of refinement of inequalities among these means are given.

1. MEAN OF ORDER ¢

Let us consider the following well known mean of order t:

e e\ 1/t
(£4£)", t#0
(1.1) Bi(a,b) = { Vab. t=0
max{a,b}, t=o00
min{a,b}, t=—o0

for all a,b,t € R, a,b > 0.
In particular, we have

2ab
a+b’
Bo(a,b) = G(a,b) = Vab,

\/E+\/5>2

B_4(a,b) = H(a,b) =

Bijs(a,b) = Ni(a,b) = <

2
&m@:A@w:a;ﬂ
and
Ba(a,b) = S(a,b) — ﬁ;w.

The means, H(a,b), G(a,b), A(a,b) and S(a,b) are known in the literature as harmonic,
geometric, arithmetic and root-square means respectively. For simplicity we can call the
measure, Ni(a,b) as square-root mean. It is well know that [I] the mean of order s given
in is monotonically increasing in s, then we can write

(1.2) H(a,b) < G(a,b) < Nyi(a,b) < A(a,b) < S(a,b).
Dragomir and Pearce [3] (page 242) proved the following inequality:
r T r+1 _ r+1 T
a”+b < b a < a+b |
2 (r+1)(b—a) 2

(1.3)
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for all a,b > 0, a # b, r € (0,1). In particular take r = % in 1' we get

Jatvh 2 —a¥?)  [atb
1.4 < <\ b.
(14) 2 3(b—a) aha
After necessary Calculations in (1.5), we get
(15) Va+ b\ a+\/_+b Va+ Vo) [ Ja+b
' 2 S 3 2 2 )
On the other side we can easily check that
L6) (v@;v@>< m;b><a;b'

Finally, the expressions (|1.2), (1.5 and (1.6)) lead us to the following inequality:
(1.7) H(a,b) < G(a,b) < Nyi(a,b) < N3(a,b) < No(a,b) < A(a,b) < S(a,b),

where
Na(a.b) = (—“E‘; ﬁ) (@) ,
and
Ny(a,b) = “T Y HD
Moreover, we can write ’
Ny (a,b) = A(a,b) + G(a,b)

2 )
Ny(a,b) = \/Ni(a,b)A(a,b),

and
2A(a,b) + G(a,b)
3 :
Thus we have three new means, where N;(a,b) appears as a natural way. The Ny(a,b)
can be seen in Taneja [4, 5] and the mean Nj(a,b) is known as Heron’s mean [2]. Some
studies on it can be seen in Zhang and Wu [6].

Ng(a, b) =

2. DIFFERENCE OF MEANS AND THEIR CONVEXITY

Let us consider the following difference of means:

(2.1) Mga(a,b) = S(a,b) — Aa,b),
(2.2) My, (a,b) = S(a,b) — Ny(a, b),
(2.3) My, (a,b) = S(a,b) — Ny(a, b),
(2.4) Mgy, (a,b) = S(a,b) — Ny(a, b)

(2.5) Mse(a,b) = S(a,b) — G(a, b),
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(2.6) Msp(a,b) = S(a,b) — H(a,b),

(2.7) M an,(a,b) = A(a,b) — Na(a,b),

(2.8) Mac(a,b) = A(a,b) — G(a,b),

(2.9) Mag(a,b) = A(a,b) — H(a,b),

(2.10) Mn,n, (a,b) = No(a,b) — Ny(a,b),

and

(2.11) Mpy,c(a,b) = Ny(a,b) — G(a,b).

We easily check that

(2.12) Mac(a,b) = 2[Ny(a,b) — G(a,b)] :==2Mp,c(a,b)
= 2[A(a,b) — Ni(a,b)] := 2Myn, (a,b)
= 3[A(a,b) — N3(a,b)] := 3Man,(a,b)
= 2 [Ny(a,) ~ G(a, ] = > Mx,a(a, b)

=06 [Ng(@, b) - Nl(a, b)] = 6MN3N1 (CL, b)
Now, we shall prove the convexity of the means (2.1)-(2.11]). It is based on the following

lemma.

Lemma 2.1. Let f : I C Ry — R be a convex and differentiable function satisfying
f(1) = f'(1) =0. Consider a function

b

(2.13) dr(a,b) =af <5> , a,b>0,

then the function ¢¢(a,b) is convex in R2, and satisfies the following inequality:
b—a

(2.14) 0 < ¢s(a,b) < ( - ) ¢’ (a,b).

Proof. Tt is well known that for the convex and differentiable function f, we have the
inequality

(2.15) @)y —2) < fly) = fl@) < )y — =),
for all z;y € R,.
Take y = g and z =1 in 1} one gets

ro(2-1)<s(2)-rw<r () (G-1)
or equivalently,

(216) 6= <af (2) -asm <ar (1) (252

a a
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Since f(1) = f'(1) =0, then from (2.16]) we get (2.14)).

Now we shall show that the function ¢¢(a,b) is jointly convex in a and b. Since the
function f is convex, then for any (z1,41), (z2,92) €RZ, 0 <A, A <1, A+ A =1 we

can write
ATy + Aawa A1Y171 A2Yo o
N~ )=/ + .
Ay1 + A2yo Y1 (Myn + Xayz) vz (Ayn + Aog)

A1 (%) A2Yo (@)
2.17 < —5 fl= )4+ —2=  f2=).
( ) Ay + )\2y2f Y1 Ay + >\23/2f Y2

Multiply (2.17) by A1y + A2y2 one gets

)\1]}1 + /\2132 )\1%1 /\21]2
Atyn + A AT A2 <A A ,
g+ Aot f <)\1y1 + >\2y2> walf ()\1?/1) 2wl (>\2y2)

ie.,
(2.18) G5 (A1w1 + Aoz, Ay + Aaya) < My (21, 91) + Aoy (22, 92),
for any (z1,91), (22,v2) € RY. The expression (2.18) completes the required proof. O

Now we shall show that the difference of means given by (2.1)-(2.11]) are conver in R%

Later in Section 3 we shall apply the convexity of these functions to establish improvement

over the inequality (|1.7)).

Theorem 2.1. The difference of means given by — are nonnegative and convexr
in R%.
+

Proof. We shall write each measure in the form of generating function according to the
measure ([2.13]), and then give their first and second order derivatives. It is understood
that € (0, 00).

e For Mg(a,b):

lz24+1 x+1
fSA(x)_ 9 - 9 )

fo(r)= — 2 1
54 _\/5\/352—1—1 2’
and

2
" o
salz) = (222 + 2)3/2 =

2?2+1 z4+yr+1
o) =\ T - TRV

@) = o @VE D) V2R )
SNg i) 64/ 2x(22 + 1) 7

0.

e For Mgy, (a,b):
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and

24032 4 (227 4 2)

i
53 (7) = o nie + 2

e For Mgy, (a,b):
Va1 (Vr+ 1) Vo +1

fsny () = 22 ,
Fo@) = 42°°2x +1 - e+ Vo + 1) Va2 + 1
52 4/ 2x(x + 1)(22 + 1) ’
and
232 4 1) (22 + 1)* 4+ 823/2(z 4 1)3/2

8v2 [x(x + 1)(22 + 1)]*/?
e For Mgy, (a,b):

fow, () = YA HD = (Vr b1

4
fogy = VA VR )
S 44/2x(2? + 1) 7
and
162°/2 + x(222 + 2)%/?
2
Joml®) = —gmer o 7"
e For Mgs(a,b):
2?2 +1
fsa(z) = 5 Vi,
2 3/2 _ 2 1
ot = V2L
2y/z(2? 4+ 1)
and
1 1

g = > 0.
sc (@) \/5@2 +1)3/2 + 42:3/2

2+ 1 2x
fsu(@) =\—— -3

, Cx(r+ 1) —2y/2(2? 4 1)
fsul) = AT

e For Mgy(a,b):

and

y oy 2@ 1)’ 42222 4 2)%7]
su(T) = (z + 1)3(222 + 2)3/2 > 0.
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e For Myn,(a,b):

2@ +1)— (Vr+1)/2(x+1)

fan, (z) = 1 :
@) = 2\ 2x(x + 1) — 2z + 7 + 1)
ANz 4./2(z + 1) ’
and
’ 241
v, () = 41'3/;6(21; + 2)3/2 -0
e For MAg(a,b):
facle) = 5 (/a — 17
—1
faolo) = L=
and
1

e For M,y(a,b):

(v —1)°
fan(w) = 2z + 1)
L) (x —1)(z +3)
AH 2(z +1)2
and
1! 4

e For MN2N1 (a, b)
(VE+1) 2@ +1) - (Va+1)°

fN2N1<5L') = 4
P (x)_2:c+\/§+1—(\/5+1) 2(x+1)
NN 4/ 2x(x + 1) ’

and

" (Qx + 2)3/2 — 2(I3/2 + 1)
N2N1(x> - 3/2 3/2
8x3/2(2x + 2)

Since (z +1)%/? > 232 + 1, Vo € (0,00) and 2%? > 2, then obviously, fx,y, (%) > 0,
Va € (0,00).
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e For My,q(a,b):

(W 1) 2@+1) -4
fN2G<5U> -

4 )
20 + 1+ /x — 2+/2(x + 1
f]/VG<x> — \/_ ( ),
2 44/2z(x + 1)
and
(22 +2)3/2 — (2372 + 1)
fl/\//2G<I> =

423221 + 2)3/2

Since (z + 1)*? > %2 + 1, Va € (0,00) and 2%/% > 1, then obviously, f§,.(z) = 0,
Vz € (0,00).
We see that in all the cases the generating function f(,(1) = f{,(1) = 0 and the second

derivative is positive for all z € (0, 00). This proves the nonegativity and convezity of the
means (2.1)-(2.16) in R2. This completes the proof of the theorem. O

Remark 2.1. The inequality also present more nonnegative differences but we have
considered only the convexr ones.

3. INEQUALITY AMONG DIFFERENCE OF MEANS

In view of (|1.7)), the following inequalities are obviously true:

(3.1)  Mga(a,b) < Mgn,(a,b) < Mgn,(a,b) < Mgy, (a,b) < Msa(a,b) < Mgy(a,b),
(3.2)  Man,(a,b) < Myn,(a,b) < Man,(a,b) < Mag(a,b) < Mag(a,b),

(3.3)  Mn,n,(a,b) < My,n, (a,b) < My,c(a,b) < My,u(a,b),

(3.4)  Mpy,n,(a,b) < Mpy,g(a,b) < My,u(a,b),

(35) MNIG(a,b) < MNlH(a, b),

In view of (1.7), (2.12)) and (3.5), we can easily check that
(3.6) A(a,b) + H(a,b) < Nyi(a,b) + N3(a,b) < Ni(a,b) + No(a,b).

In this section we shall improve the inequalities ([1.7)) and then compare with the in-
equalities (3.1])-(3.5). This refinement is based on the following lemma.

Lemma 3.1. Let fi, fo : [ C Ry — R be two convex functions satisfying the assumptions:
(1) f1(1) = fi(1) =0, fo(1) = f3(1) = 0;
(i) f1 and fy are twice differentiable in R, ;
(7i) there exists the real constants o, 3 such that 0 < o < § and

1 (x) "
(3.7) a< Lo < B, fy(x) >0,
5 ()
for all x > 0 then we have the inequalities:
(38) «Q ¢f2 (a7 b) < ¢f1 (CL, b) <P ¢f2(a7 b)7

for all a,b € (0, 00).
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Proof. Let us consider the functions

k(r) = fi(r) — a fa(z)
and
h(z) =6 folz) = fi(z),

where o and fare as given by (13.7)).
In view of item (i), we have k(1) = h(1) = 0 and £'(1) = /(1) = 0. Since the functions
fi(z) and fy(x) are twice differentiable, then in view of (3.7)), we have

(39 o) = ()~ a fa) = 7G0) (1553 ~a) >0,
and
(3.10) ) =9 7(a) = £1a) = #a) (31 = 50} >0

for all z € (0, 00).

In view of and (3.10), we can say that the functions k(-) and h(-), are convex on
I C R;.

According to (2.14]), we have

1 R R O R O

and
b b b b b
312 an(2)=alon(2) -5 (2)] =men(2)-n (L) =0
a a a a a
Combining (3.11]) and (3.12]) we have the proof of (3.8)). O

Theorem 3.1. The following inequalities among the mean differences hold:
1 1 1
(313) MSA(CL, b) < gMSH(CL, b) < §MAH((I, b) < §Msg(a, b) < MAg(a,b).

Proof. In order to prove the above theorem, we shall prove each part separately.
Let us consider

54(7) (x+1)°

xT) = - , L S 07 ),
gs4.52(%) s(T) (24 1) +4v2(22 4 1)3/2 (0. 20)
This gives
24(x — 1)(2%2 +1)(x +1)2 >0, <1
(B14)  goron() = - oD+ e+l -
222 + 1) [(z + 1)3 +4v/2(x2 + 1)3/2]" (S0, = =>1

In view of (3.14]) we conclude that the function gga sm(z) increasing in x € (0,1) and
decreasing in x € (1, 00), and hence

1
(3.15) B= sup gsasu(x)=gsasu(l)= .
x€(0,00) 3
Applying (3.8) for the difference of means Mga(a,b) and Mgy (a,b), and using (3.15),
we get

1
(3.16) MSA((Z, b) g gMSH(a, b)
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Let us consider

_ fég(x)  (x+1)°+ A2(z% + 1)3/2
gsu A (T) = () - 4\/§<x2+ 1)3/2 , = € (0,00),

This gives

<1
>1

(3.17) o () = =D+ 1 {2 0,

x
a 4\/§(x2 +1)5/2 | <0, =
)

In view of (3.17)), we conclude that the function gsy_ap(z) is increasing in x € (0,1)
and decreasing in x € (1, 00), and hence

3
(3.18) B= sup gswan(r)=gscan(l)= B%
2€(0,00)

Applying (3.8]) for the difference of means Mgy(a,b) and Mag(a,b), and using (3.18)),
we get

3
(3.19) Msn(a,b) < 5 Man(a,b).

Let us consider
gG(:L,) (I + 1)3 [41‘3/2 + \/§ ({L‘2 + 1)3/2}

gsc.am(z) = ") 16v2 (22 + 1)3/223/2 , € (0,00),
This gives
/ 3(z + 1)z — 1) [\/5(352—#1)5/2—81:5/2} S0, 231,
(3.20) Gsgapy(T) = 32v2 [e(z + 1) {g 0, =<1,

where we have used the fact that 22 +1 > 2z, Vz € (0, 00).
In view of (3.20)), we conclude that the function gsg_ag () is decreasing in x € (0, 1)
and increasing in = € (1, 00), and hence

(3.21) = ei(%f )gSG,AH(x) = gsg.an(l) = 1.

Applying (3.8)) for the difference of means May(a,b) and Mgg(a,b), and using (3.21)),
we get

(322) MAH(a,b) < Msg(a, b)

Let us consider
Go(r) 422+ V2 (2 + 1)

gSG,AG(x) ZG('T) \/5 (I‘Q + 1)3/2 » T ( 700),
This gives
6(x —1)(x+1)y/x | >0, =<1
' _ bl
(3.23) Jscac(T) = \/5(:62 4 1)5/2 <0, z>1

In view of (3.23)), we conclude that the function gsg_ag(x) is increasing in z € (0, 1)
and decreasing in x € (1,00), and hence

(3.24) M = sup gscac(r) = gscac(l) =2.
z€(0,00)
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Applying (3.8) for the difference of means Mgsg(a,b) and Mag(a,b), and using (3.21),
we get

1
(325) §M5(;(CL, b) < MAg(CL, b)
Combining the results (3.16)), (3.19)), (3.22) and (3.25)) we get the proof of the inequality
B.13). 0

Corollary 3.1. The following inequalities hold:
2H(a,b) + S(a,b) _ A(a,b)+ H(a,b)

(3.26) H(a,b) < G(a,b) < . < .
o S(a,b) + G(a,b) o H(a,b) + 25(a,b)
h 2 h 3

< A(a,b) < S(a,b) + H(a,b) — G(a,b)
< S(a,b) < 3[A(a,b) — G(a,b)] + H(a,b).

Proof. Simplifying the results given in (3.16)), (3.19)), (3.22)) and (3.25]) we get the required

result. U
Remark 3.1. The inequalities are the improvement over the following well known
result

(3.27) min {a, b} < H(a,b) < G(a,b) < A(a,b) < S(a,b) < max{a,b}.

In the following corollary, we shall give a further improvement over the inequalities
(13.26)).
Corollary 3.2. The following inequalities hold:

2A(a, b)H (a,b) 2H (a,b) + S(a, b)

. < < <
(3.28) H(o.b) < G < Glob) .
_ Aab) +H (a,b) \/ H(a,b))? _ S(a,b) + G(a,b)
~X ~X 2
gH(ab 225 < A(a,b) < S(a,b) + H(a, b) — Gla, b)

< S(a,b) < 3[A(a,b) — (a )]+H(a b).
Proof. Replace a by A(a,b) and b by H(a,b) in we get
min {A(a,b), H(a,b)} < H (A(a,b), H(a, )) < G (A(a,b), H(a,b))
< A(A(a,b), H(a, b)) < S (A(a,b), H(a, b)) < max{A(a,b), H(a,b)}.
This gives
2A(a, b)H (a, b)
A(a,b) + H(a,b)

. ¢ (A(a, 1))’ : H@D® _ 4 < st

The inequality (3.29) gives a different kind of improvement over the inequality ((3.27)).

A(a,b) + H(a,b)

(3.29) H(a,b) < < Gla,b) <
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Let us consider

(3.30) K(a,b) =

S(a,b) + G(a,b) \/A(a, b)2 + H(a,b)?
2 a 2

<S(a,b)+G(a,b) ) 2 A(ab)®+H(ab)?
2 2

S(a,b)+G(a,b) A(ap)2+H(ap)?
2 + 2

Now we shall show that
S(a,b) + G(a,b)\*  A(a,b)* + H(a,b)
2 2
5 _ -

r+1 2+ 22 \?
2 [\ 2 41
822 1)2,/20(z% + 1
_Sr@r V@D vz € (0, 00).

4(z+1)2

Now the expression (3.32)) together with (2.13) give us (3.31)), or equivalently, we can
say that

(3.31) > 0.

For it, let us consider

(3.32) k(z) = [—VQ(ZM 4 \/—E] !

2 2
(3:33) \/A(a,b) —;H(a, b) - S(a, b);rG(a,b).
Finally, the inequalities (3.26]), (3.29) and (3.33) give us the proof of the inequalities
(3.29). This completes the proof of the corollary. O

Theorem 3.2. The following inequalities hold:
1 1 1
(3.34) gMAH(CL, b) < MN2N1 (a, b) g gMNzg(a, b) g ZLMAG(G’ b) g MAN2 (CL, b)

Proof. In order to prove the above theorem, we shall prove each part separately.
Let us consider

" 5/2 3/2
an (%) 322772z + 2) o0
gar_ NN (T) Non, (@) (x4 1)3 [=22 — 2252 + x(2x + 2)3/?] wel )

This gives

48+/22(z + 1) .
(z + 1) [—22 — 225/2 + 2(2x + 2)3/2)°
x [42*(1 — 22 + 2 (x — 1)(2z + 2)5/2}
487%(x + 1) (1 — /z) \/2z(x + 1)

(z + 1)* [—22 — 2252 + (22 + 2)3/2)
X [\/5(\/5+1) (z+1)%% = (x2+x3/2+x+\/5+1)} .
Since \/2(z + 1) = x + 1, Vo € (0,00), then this implies that
V2(r+ 12 (Ve +1) = (Vo + 1) (z + 1)
P

P+t Vr+ 1

g;lH,NQ N (z) =
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Thus we conclude that

<0, z>1
(3'35) Q/AH,NQM (x) {

>0, z<1

In view of (3.35)), we conclude that the function gag_n,n, () is increasing in z € (0, 1)
and decreasing in x € (1,00), and hence

(3.36) B= sup gamnn (T) = gamn,n (1) =8.
x€(0,00)

Applying (3.8) for the difference of means May(a,b) and My, N, (a,b) along with (3.36]),
we get

1
(3.37) 3 Man(a,b) < My (a,b)
Let us consider
() flon (@) =2z —22%% + x(2x + 2)3/2 € (0, 00)
xT) = = xXr 0.
INa2lN1 N fra@) — 2zl +a32— 2z +2)%¥2] ’

This gives
, 3222z +2 (1 — \/7) <0, z>1,
(338) gNgNl,NQGl (:L‘) = 2
202 [—1 — 232 + (20 +2)3/2]" | >0, =<1

In view of (3.38]), we conclude that the function gn,n, n,¢(2) is increasing in « € (0, 1)
and decreasing in x € (1,00), and hence

1
(3.39) B= swp gnunine6 () = gromma(l) = 3.
z€(0,00)

Applying (3.8]) for the difference of means My, n, (a,b) and My,c(a, b) along with (3.39)),
we get

1
(340) ]\4]\72]\/1 (a, b) < §MN2g(a, b)

Let us consider
fhoa(®) 1+ 232 — (2z + 2)%2

p— h— O ’
gNQG,AG<:U> ZG(I) (2$ + 2)3/2 , T € ( 7OO>
This gives
3(1—+x) | <0, z>1
A1 / RN '
(3.41) InxGac(T) (22 + 2)5/2 {2 0, z<1

In view of (3.41]), we conclude that the function gay_n,n, () is increasing in z € (0,1)
and decreasing in = € (1, 00), and hence

3
(3.42) B= sup gncac(®) = gncac(l) = .
x€(0,00) 4

Applying (3.8]) for the difference of means My, (a,b) and Mag(a,b) along with (3.42))
we get

3
(3.43) MN2G((Z, b) g ZMAg(a, b)
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Let us consider
(@) (22 +2)%7
Gacan, (z) = 22C = , © € (0,00).
(@) (Vr+1)(z—Vr+1)

This gives

1
(3.44) g;xG,ANQ (z) = 1

3(1—yvo)V2r+2  [<0, 2>
(Vr+1)*(z—yz+1)" |20, =<

In view of (3.44)), we conclude that the function gag_an,(x) is increasing in = € (0, 1)
and decreasing in = € (1, 00), and hence

(3.45) B= sup gac.an,(v) = gacan,(1) = 4.
z€(0,00)

Applying (3.8)) for the difference of means Mag(a,b) and May,(a,b) along with ((3.45])
we get the required result.

1
(346) ZMAg(a, b) < MANQ(CL7 b)
Combining the results (3.37), (3.40), (3.43) and (3.46|) we get the proof of the inequal-
ities ([3.34). O

Corollary 3.3. The inequalities hold:

(3.47) H(a,b) < Gla,b) < G(a,b) + H(a,b) + 3Ny(a,b)

5
< G(a,b) —|—32N2(a, b) < Ny(a.b) < 2A(a,b) + 7Ny (a,b)

9
. A(a, b) z Ni(a,b) . 7A(a, b);H(a,b) < Ala,b).

< NQ(avb)

Proof. Follows in view of (3.32), (3.35]), (3.38)), (3.41]) and (3.6)). O

Remark 3.2. The inequalities can be considered as an improvement over the fol-
lowing inequalities:

(3.48) H(a,b) < G(a,b) < Nyi(a,b) < Ny(a,b) < A(a,b).
Theorem 3.3. The following inequalities hold:

4
(3.49) MSA<CL, b) < EMSNQ (a, b) < 4MAN2 (a, b),
(3.50) Mg (a,b) < 2Mgn, (a,b) < ;Msg(a, b),
and

3 2
(3.51) MSA(a,b) < ZMSNS(&’ b) S §MSN1 (a,b).

Proof. In order to prove the above theorem, we shall prove each part separately.
Let us consider
2a(z) 82%/2(2z + 2)3/2

xTr) = = ?
9sA_SN, (T) gN2<x) 8x3/2(2x+2)3/2—|—(1+:E3/2)(2:L'3/2+2)3/2

x € (0,00).
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This gives

96+/x(22 + 1)(z + 1) y
[82%/2(21 + 2)3/2 + (1 + 23/2)(223/2 + 2)3/2)?
x [(a® = 1)(2? + 1) + 22(2°* — 1)]
96 (v& — 1) Va(z2 + 1)(z + 1)
[82%/2(21 + 2)3/2 + (1 + 23/2)(223/2 + 2)3/2)?
x [(Ve+1) (x+ 1)@ +1) + 2z (2 +2** + 2+ Vo +1)] .

g:S'A,SN2 ($ )= —

Thus, we have

>0, z>1

3.52 / w0 T

( ) 9sa.sn, () {< 0, z<1.

In view of (3.52)), we conclude that the function gsa sn,(x) is increasing in = € (0,1)
and decreasing in x € (1,00), and hence

4
(3.53) B= sup gsasn () =gsasn,(l)= <.
z€(0,00) 5
Applying (3.8)) for the difference of means Mga(a,b) and Mgy, (a,b) along with (3.53))
we get

4
(3.54) MSA(CL,b) < gMSNQ(a, b)

Let us consider
 fen,(2)  8x%2(2m 4 2)%% + (1 + 2%2) (22 + 2)3/2

9SNy AN, (l’) - ,/L{Nz (I’) <2ZE2 + 2)(1‘3/2 + 1)

, = € (0,00),

This gives
, 12 [z(z + 1)) [(2% — 1)(1 + 25/2) + 22(2%2 — 1)]
JsNyan, (T) = — (22 + 1)522%(z + 1)4(23/2 + 1)?2
12 (2(z + 1))** (V& — 1)
(22 + 1)52z%(x + 1)4(«3/2 + 1)?
x [(Vz+1) (x+1)(z*?+1) + 2z (x2+x3/2+x+\/5+ 1)].

Thus we have
>0, z<1,
z>1

/
(355) gSNQ,ANQ (‘T) {< 07 .

In view of (3.55]), we conclude that the function gsn, an,(x) is increasing in x € (0,1)
and decreasing in = € (1, 00), and hence
4
(3.56) B= sup gsn, an, () = gsnyany(1) = £
z€(0,00) 5
Applying (3.8) for the difference of means Mgy, (a,b) and My, (a,b) along with ([3.56])
we get
1

(3.57) = Mo, (a,5) < M, (a,b).
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Combining the results (3.54)) and (3.57) we get the proof of the inequalities (3.49). Now
we shall give the proof of (3.50))
Let us consider

Gn(z) 16232 [(z + 1) + 2(227 + 2)%/?]

_ — 3 G 07 Y
This gives
/ 48+/2x2 + 2
Ism sn, (¥) = =

22(x 4 1)* [1623/2 + (222 + 2)3/2)° .

X [64959/2(1 —2) + 5% (2 — 1) + 42 (2* — 1)
Ha?(2? — 1) + 2 (x — 1)(22% + 2)5/2}
15362%(x — 1)v/222 + 2

22(x + 1)*[1623/2 4+ (222 + 2)3/2]2 8

(x;1)5_(\/§)5 . ( m2;—1)5_(\/5)5

Since S(a,b) > A(a,b) > G(a,b), one gets

, >0, <1
(3'58) 9sH_ SN, (x) {< 0, z>1

?

In view of (3.58) we conclude that the function gsg_sn, () increasing in x € (0,1) and
decreasing in = € (1,00), and hence

(3.59) B = s(up )QSH,SNl(x) = gsu.sn (1) = 2.
z€(0,00
Applying (3.8)) for the difference of means Mgg(a,b) and Mgy, (a,b) along with (3.59))
we get

(360) MSH(G, b) < 2M5N1 (CL, b)
Let us consider
fén, () 8232 + (22 +1)v/222 + 2

1- €Tr) = - ’ T e O,OO ’
gsnN SG( ) :,S{G(x) 9 [4%3/2 + (1»2 + 1) 2x2 + 2] ( )

This gives

(3.61) , () 3(x* — 1)v/2x3 + 2x >0, <
- 9sni_sg\t) = —
' [4232 + (22 +1)V222 + 2" | S0, =2
In view of (3.61)), we conclude that the function gsy, sa(z) is increasing in = € (0, 1)
and decreasing in = € (1, 00), and hence

L,
1

3
1

Applying (3.8)) for the difference of means Mgy, (a,b) and Mgg(a,b) along with ([3.62))
we get

(3.62) B = S(UP )QSNl,SG(!B) = gsn, sc(l) =
z€(0,00

3
(363) MSNl(@> b) < ZLMSG(G’ b)
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Combining the results given in (3.60) and (3.63)) we get the proof of the inequalities

(3.50)). Let us prove now the inequalities ([3.51).
Let us consider

" 3/2
Galx) 24x
= = c (0
gsa.sma(2) ro(@) 24P ¢ (22 4 2 " (0,00),
This gives
, 2@ -1)(z+1)y/20(2+1) | >0, =<1,
(3.64) Jsasn,(T) = —
o [2423/2 4 (222 + 2)3/2] <0, z>1

In view of (3.64)), we conclude that the function gsa_sn,(z) is increasing in x € (0, 1)
and decreasing in x € (1,00), and hence

3
(3.65) B= sup gsasn(T)=gsasns(l)= .
x€(0,00) 4

Applying (3.8]) for the difference of means Mga(a,b) and Mgy, (a,b) along with (3.65])
we get

3
(3.66) Msa(a,b) < Msn,(a,0).
Let us consider
fon, () 2[242%% 4 (222 4 2)%/?]

_ _ € (0,00),
9smosm (1) = Ty 0y = B16a32 ¢ (2a2 1 2 ¢ € (020

This gives

VoA

L,
1

)

, - D@+ )VHEEFD [>0, 2
(3.67) Jsngsn, (T) = — 2
. [1623/2 + (222 + 2)3/2 T

In view of (3.67]), we conclude that the function gsn, sn, () is increasing in x € (0, 1)
and decreasing in x € (1,00), and hence

3
(3.68) B= sup gsnysn () = gsngsn (1) = .
z€(0,00) 4
Applying (3.8)) for the difference of means Mgy, (a,b) and Mgy, (a,b) along with ((3.68])
we get

8
(3.69) Mg, (a,b) < §MSN1 (a,b).
Combining the results given in (3.66) and (3.69) we get the proof of the inequalities
(3.54]). This completes the proof of the theorem. O

Corollary 3.4. The following inequalities hold:

S(a,b) +3G(a,b) o

(3.70) G(a,b) < - < Ny(a.b) < S(a,b) + 8Ni(a,b)

9

< N3(a,b) < Na(a,b) < A(a,b) 4; Ni(a,b) < S(a,b) + 2N;(a, b)

. <S(a, b) —1—54N2(a, b)> . (S(a, b) +43N3(a,b))i Ala.b)
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and

S(a,b) +2H(a,b) S(a,b) + H(a,b)
2 2

Proof. The inequalities (3.49)-(3.51)) lead us to (3.70) and ({3.71]). O

Remark 3.3. The inequalities can be considered as refinement over the inequality

. Thus we have three different kind of refinements given by 7 and

for the inequality . The inequalities gives alternative itmprovement among the
means G(a,b), Ni(a,b) and Ny(a,b).

(3.71) G(a,b) < < Ni(a,b) < < Na(a, b).
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