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Abstract. In this paper, the logarithmically complete monotonicity results

of the functions [Γ(1 + x)]y/Γ(1 + xy) and Γ(1 + y)[Γ(1 + x)]y/Γ(1 + xy) are

established.

1. Introduction

In [3], the authors presented and proved, by using a geometrical method, the

following double inequality

1
n!
≤ [Γ(1 + x)]n

Γ(1 + nx)
≤ 1 (1)

for x ∈ [0, 1] and n ∈ N.

In [14], the author showed by analytical arguments that inequality (1) is an

immediate consequence of the following monotonic property: For all y ≥ 1, the

function

f(x, y) =
[Γ(1 + x)]y

Γ(1 + xy)
(2)

is a decreasing function of x ≥ 0. This monotonicity result leads to the following

double inequality
1

Γ(1 + y)
≤ [Γ(1 + x)]y

Γ(1 + xy)
≤ 1 (3)

for all y ≥ 1 and x ∈ [0, 1], which is a generalization of inequality (1).

The purpose of this paper is to generalize the decreasingly monotonicity by

J. Sándor in [14] to logarithmically complete monotonicity. Our main results are

as follows.
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Theorem 1. For given y > 1, the function f(x, y) defined by (2) is decreasing and

logarithmically concave with respect to x ∈ (0,∞), and the second order derivative

of − ln f(x, y) with respect to x is completely monotonic in x ∈ (0,∞).

For given 0 < y < 1, the function f(x, y) is increasing and logarithmically convex

with respect to x ∈ (0,∞), and the second order derivative of ln f(x, y) with respect

to x is completely monotonic in x ∈ (0,∞).

For given x ∈ (0,∞), the function f(x, y) is logarithmically concave with respect

to y ∈ (0,∞), and the first order derivative of − ln f(x, y) with respect to y is

completely monotonic in y ∈ (0,∞).

Theorem 2. For given x ∈ (0,∞), let

Fx(y) =
Γ(1 + y)[Γ(1 + x)]y

Γ(1 + xy)
(4)

in ∈ (0,∞). If 0 < x < 1 then the second order derivative of lnFx(y) is completely

monotonic in (0,∞), if x > 1 then the second order derivative of − lnFx(y) is

completely monotonic in (0,∞).

2. Definitions and Lemmas

Recall that the definition of completely monotonic functions is well-known.

Definition 1. A function f is called completely monotonic on an interval I if f

has derivatives of all orders on I and

0 ≤ (−1)kf (k)(x) <∞ (5)

for all k ≥ 0 on I.

The class of completely monotonic functions on I is denoted by C[I].

In 2004, the paper [9] explicitly introduces the following notion or terminology.

Definition 2. A positive function f is called logarithmically completely monotonic

on an interval I if f has derivatives of all orders on I and its logarithm ln f satisfies

0 ≤ (−1)k[ln f(x)](k) <∞ (6)

for all k ∈ N on I.
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The set of logarithmically completely monotonic functions on an interval I is

denoted by L[I].

Among other things, it is proved in [8, 9, 15] that a logarithmically completely

monotonic function is always completely monotonic, that is, L[I] ⊂ C[I], but not

conversely. Motivated by the papers [9, 13], among other things, it is further re-

vealed in [4] that S\{0} ⊂ L[(0,∞)] ⊂ C[(0,∞)], where S denotes the set of Stieltjes

transforms. In [4, Theorem 1.1] and [5, 12] it is pointed out that the logarithmically

completely monotonic functions on (0,∞) can be characterized as the infinitely di-

visible completely monotonic functions studied by Horn in [6, Theorem 4.4]. In [10],

among other things, a basic property of the logarithmically completely monotonic

functions is obtained: If h′(x) ∈ C[I] and f(x) ∈ L[h(I)], then f
(
h(x)

)
∈ L[I]. For

more information on the logarithmically completely monotonic functions defined

by Definition 2, please refer to [4, 5, 8, 11, 12, 13], especially [7, 10, 15], and the

references therein.

The classical Euler gamma function Γ(x) is defined for x > 0 by

Γ(x) =
∫ ∞

0

e−ttx−1 d t. (7)

The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)/Γ(x), is called psi or

digamma function.

Lemma 1 ([2, 16, 17]). For x > 0 and r > 0,

1
xr

=
1

Γ(r)

∫ ∞

0

tr−1e−xt d t. (8)

Lemma 2 ([2, 16, 17]). The polygamma functions ψ(k)(x) can be expressed for

x > 0 and k ∈ N as

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
d t. (9)

Formula (9) means that the psi function ψ(x) is increasing, the polygamma func-

tions ψ(2k)(x) are negative and increasing, and the polygamma functions ψ(2k−1)(x)

are positive and decreasing in (0,∞) for k ∈ N.

Lemma 3 ([1, p. 153]). For k ∈ N, as x→∞,

|ψ(k)(x)| ∼ (k − 1)!
xk

. (10)
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Lemma 4 ([18]). Let fi(t) for i = 1, 2 be piecewise continuous in arbitrary finite

intervals included in (0,∞), suppose there exist some constants Mi > 0 and ci ≥ 0

such that |fi(t)| ≤Mie
cit for i = 1, 2. Then∫ ∞

0

[ ∫ t

0

f1(u)f2(t− u) du
]
e−st d t =

∫ ∞

0

f1(u)e−su du
∫ ∞

0

f2(v)e−sv dv. (11)

Remark 1. Lemma 4 is the convolution theorem of Laplace transforms. It can be

looked up in standard textbooks of integral transforms.

Lemma 5. Let i ∈ N and α ∈ R. Then the functions xα|ψ(i)(1 + x)| are strictly

increasing in (0,∞) if and only if α ≥ i. In particular, the functions x2iψ(2i)(1+x)

and x2i+1ψ(2i)(1 + x) are decreasing and the functions x2i−1ψ(2i−1)(1 + x) and

x2iψ(2i−1)(1 + x) are increasing in [0,∞).

Proof. Let gα(x) = xα|ψ(i)(1 + x)| for i ∈ N. Differentiating gα(x) and applying

(8) and (9) yields

g′α(x)
xα

=
α

x
|ψ(i)(1 + x)| − |ψ(i+1)(1 + x)|

= α

∫ ∞

0

e−xt d t
∫ ∞

0

e−(x+1)t ti

1− e−t
d t−

∫ ∞

0

e−(x+1)t ti+1

1− e−t
d t.

(12)

Using Lemma 4 leads to

g′α(x)
xα

=
∫ ∞

0

e−xthα(t) d t, (13)

where

hα(t) = α

∫ t

0

sie−s

1− e−s
ds− ti+1e−t

1− e−t
. (14)

A simple calculation gives

pα(t) , e2t
(
1− e−t

)2
t−ih′α(t) =

(
et − 1

)
(α− i− 1 + t) + t. (15)

It is clear that pα(t) > 0 in (0,∞) is equivalent with

α− i− 1 >
tet

1− et
, q(t) (16)

in (0,∞). It is easy to see that the function q(t) is decreasing in (0,∞) and

limt→0+ q(t) = −1. Thus, if α ≥ i then pα(t) > 0 and h′α(t) > 0 in (0,∞). From

that hα(t) is increasing and limt→0+ hα(t) = 0, it is obtained that hα(t) > 0 in

(0,∞), which implies that g′α(x) > 0 and gα(x) is strictly increasing for x ∈ (0,∞).
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Assume the function gα(x) is strictly increasing in (0,∞), then for x ∈ (0,∞)

xi+1−αg′α(x) = αxi|ψ(i)(1 + x)| − xi+1|ψ(i+1)(1 + x)| ≥ 0. (17)

Applying the asymptotic formula (10) we obtain

lim
x→∞

xi+1−αg′α(x) = (i− 1)!(α− i). (18)

From (17) and (18) it follows that α ≥ i. �

3. Proofs of theorems

Proof of Theorem 1. Taking the logarithm of f(x, y) and differentiating with re-

spect to x for k ∈ N yields

ln f(x, y) = y ln Γ(1 + x)− ln Γ(1 + xy), (19)

dk[ln f(x, y)]
dxk

= y
[
ψ(k−1)(1 + x)− yk−1ψ(k−1)(1 + xy)

]
=

y

xk−1

[
xk−1ψ(k−1)(1 + x)− (xy)k−1ψ(k−1)(1 + xy)

]
,

(20)

d[ln f(x, y)]
dy

= ln Γ(1 + x)− xψ(1 + xy), (21)

dk+1[ln f(x, y)]
dyk+1

= −xk+1ψ(k)(1 + xy). (22)

By using Lemma 5, from (20) it is obtained for i ∈ N that

d2i[ln f(x, y)]
dx2i

> 0, 0 < y < 1,

< 0, y > 1,
(23)

d2i+1[ln f(x, y)]
dx2i+1

< 0, 0 < y < 1,

> 0, y > 1.
(24)

Since ψ(x) is increasing in (0,∞), the first derivative

d[ln f(x, y)]
dx

> 0, 0 < y < 1,

< 0, y > 1.
(25)

For i ∈ N, from (9) it is deduced that

(−1)i d
i+1[ln f(x, y)]

dyi+1
> 0 (26)

in (0,∞). This implies d[ln f(x, y)]/dy is a decreasing function of y ∈ (0,∞). �
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Proof of Theorem 2. Taking the logarithm of Fx(y) and differentiating gives

lnFx(y) = lnΓ(1 + y) + y ln Γ(1 + x)− ln Γ(1 + xy), (27)

[lnFx(y)]′ = ψ(1 + y) + lnΓ(1 + x)− xψ(1 + xy), (28)

[lnFx(y)](i+1) = ψ(i)(1 + y)− xi+1ψ(i)(1 + xy)

=
1

yi+1

[
yi+1ψ(i)(1 + y)− (xy)i+1ψ(i)(1 + xy)

]
,

(29)

where i ∈ N.

For i ∈ N, using Lemma 5 yields

[lnFx(y)](2i+1)

< 0, 0 < x < 1,

> 0, x > 1,
(30)

[lnFx(y)](2i)

> 0, 0 < x < 1,

< 0, x > 1.
(31)

This is equivalent to

(−1)k[lnFx(y)](k)

> 0, 0 < x < 1

< 0, x > 1
(32)

for k ≥ 2. The proof is complete. �
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