SOME IDENTITIES FOR MEANS AND APPLICATIONS

ZHEN-HANG YANG

ABSTRACT. In this paper, the power-exponential mean is introduced,
several identities involving exponential mean and power-exponential mean
are given. As applications, some new inequalities for means are pre-
sented.

1. INTRODUCTION

Exponential mean or identical mean of two unequal positive numbers a

and b is defined by

1

(1.1) E = E(a,b) = €”<a>a7a#h

, a=>o.

Q <

Regarding the exponential mean F(a,b) there are many interesting and use-
ful results, such as (see [5] [9, 10])

- A(a,b) + G(a,b) B

(1.2) G(a,b) < L(a,b) (a,b) < A(a,b),
where
a b—a .
A= Aa,b) = ;b; G = G(a,b) = Vab; L= L(a,b) = { i Zig
and
(1.3) E(a,b) > A2(a,b),
(1.4) L(a,b) + E(a,b) < Aza, b) + G(a,b),

=

where A; = Ay(a,b) = (#)X, ete. .

In [10], Zhen-hang Yang considered two-parameter mean related E(a,b)
which is defined by

1
E(a?,bP)\ 71
<EWHM> , PFG
(1.5) Hg(a,b;p,q) = ) ,
GEepla,b), p=q#0;
G(a,b), p=q=0.
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where

GE,p(a> b) = va(CL, b) = Y%(ap7 bp) = Y;%
2
Y(a,b) = Ee' 72,
It was proved that (see [10, [11])

Theorem 1. 1) Hg(p,q) is strictly increasing in p or q¢ on (—oo, +00).
2) HE(p, q) are strictly log-concave with respect to either p or q on (0,+00),
and log-convex on (—o0,0).

3) He(p,1 —p) are strictly increasing in p on (—oo, L

,5), and strictly de-

creasing on (%, +00).
4) If p+ q > 0 with p # q, then

(1.6) Gprta > Hep,q) > VGppGrg.
Inequality @) is reversed if p+ q < 0 with p # q.

In [6l [7, 8], J. Sandor and Wan-ran Wang investigated identity involving
the identical mean, logarithmic mean, Stolarsky mean and power mean, and
presented the following results:

E?(a, V/b) G-L

D =—pen = I

pa b (4
O —1

E'(at,bt) Si=2(at,b1)G7 (a,b) — La, b)
(1.9) IDW = (t—l)[ 2 Lab) -1/,

1
where S,(a,b) = (%225) """ (p # 1), So(a, b) = L(a,b), S1(a,b) = E(a,b).

Applying the above identities, they obtained some new inequalities.

The purpose of this paper is to give other general identities and inequal-
ities concerning exponential mean and power-exponential mean, and corre-
sponding inequalities will be presented. In section 2, the power-exponential
mean and its meanings are introduced; In section 3, certain identities for
exponential mean are stated; In section 4, we will present corresponding
inequalities.

2. POWER-EXPONENTIAL MEAN Z(A,B)

2.1. Definition and Property. Let us consider weighted geometric mean

of unequal positive numbers a and b: G(a,b;p,q) = a%b?, where p,q > 0

with p + ¢ = L.Setting p = 15,9 = aLer, obviously 4= b+ is also a mean

of a and b, which is called power-exponential mean and denote by Z(a,b).
It is easy to obtain the properties of Z(a, b).

Property 1 Z(a,b) is symmetric with respect to a and b, i.e.

Z(a,b) = Z(b,a).
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Property 2 Z(a,b) is homogeneous with respect to a and b, i.e.

Z(ta,tb) =tZ(a,b) for t > 0.
Property 3 Z(a,b) has an upper bound and lower bound, i.e.
min(a,b) < Z(a,b) < max(a,b).

2.2. Two Other Meanings of Z(a,b). The so-called Gini mean of positive
numbers a and b is defined by

1
as + b5\ 7
Gs,t(a, b) = <(,‘Lt—i—bt> (S ;é t),

1
- . CLS + bs s—t o 14+ ¢
Gri(a,b) = lim (at—i—bt> =Zt(a’,b") (t#0),
Goola,b) = %n%z%@t,bt) = G(a,b) (t=0).

It shows that Z(a,b) is a case of limit for Gini mean.
Let

Zi(at,bt), t#0;
Z — 9 9 9
«(a,b) { G(a,b), t=0.

Then according to the monotonicity and log-convexity of Gini mean, we
have

Theorem 2. [10], Corollary 2.1] Z;(a, b) is increasing in t on interval (—oo, +00).

Theorem 3. [I1, 1) of Conclusion 1] .Z;(a,b) is strictly log-convex in t on
interval (—00,0), and log-concave on interval (0,+00).
In addition, Z(a,b) has another concise expression.
Theorem 4. [10, Remark 4.1]
E(a?,b?)
Z(a,b) = ————.
(@.0) =05

2.3. Some Inequalities for Power-exponential Mean. Concerning Z(a,b)
with a # b, there are the following inequalities (See [10] eq. 4.3, 4.5]:

a+b a+b \? a® + b?
2.1) vab < < < Z(a,b) < ——,
(2.1) 2 <\/ZL + \/B> (a,5) a+b
G2
(22) Vab < E(a,b) < 2> (\/a, \/5) < Bexp(l - 73) < Z(ab).
The following inequalities were presented by [I1], eq. 3.9, 3.10]:

2 2 1 13 1 2 4 1 4 1
(23)  G3A3A™s < G2ALA* <G5AJA,° <A< AIAB
5 i12 3 3 5 5
< A2A < AZAVN < AZALE < 74,
4 1 3 3 5 5 2
aP + bP

where A4, = ( )%, Z, = Z%(ap,bp),Z(a, b) = =) ==

2
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N
A\

3 1 2 1 2
(2.4) GiZs < GiELE,*<G3Z3Z <E<Z}Z}
2 2 3 3 5 5
3 _1
< E2E,?<Zi <E3E;?><Yu,
4 1 3 5 5 2

1-¢2

where Z, = Z7 (a?, ), E, = E¥ (a?,bP), Y, = Y7 (a?, ), Y (a,b) = Ee"~ i
From (2.3) and (2.4), we can obtain

3 _1
(2.5) A < AZA %< 7.,

11 2
(2.6) E < Zi<Yi,

3 2
respectively, which may be transformed into

3 _1
(2.7) Ay < AZA,? < Z,
2 2
(2.8) Eys < Z< Yg.
3
3 1 . a2 + b2
That A3A,2 < Z may be transformed into Z > — —=a+b—Vab,
2 3 az + b2
i.e.
Z+G

(2.9) Toa
Let us consider the right approximations of Z in A,. By ({2.7) we have

21 p2
(2.10) Z >4/ ;r = Ay,

Here p = 2 is the best constant? The following Theorem answer the question:
Theorem 5. For positive numbers a and b, the following is always true:

(2.11) Z(a,b) > (ap;bpf,

where p = 2 1s the best constant.
Proof. Set x = 2, then inequality lb is equivalent to
1
P + 1) P

x

(2.12) T > (

2

» 1
Let f(z) = lna1 —In (Z5)r = s nz — %ln (£5rL). Then

z+1+Inx P~ 1

/ — J—
_ 1 ng— (z+ 1) (2P~ = 1)
(x +1)2 P +1
1 R A R |
= (—1—1)2(lnx_x —|—xp+1:c >
X X
And let
D =1 _ 1
(2.13) g@) =g T FT 7

P +1
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further. Then ¢(1) =0 and

1 A 1yp—2_ B o .
g'(:r) _ E _ [pxPT +(p—1)aP 1]((1;1;4;11))2(xp+xp z—1)paP
(x4+1)% [z 141 ( 0 pe1
= —p—1)z
z(aP+ 12| z+1 P

Obviously, ¢'(1) =2 —p.
1) If ¢'(1) =2 — p > 0. By inequality (2.1, p > 1, we have

141 ol (zP — 1) (2P~ —1) 50
r+1 B x+1 ’
therefor
2p—1 1
% —(p—DaP >t —(p—1)aP = (2 - p)aPt >0,

ie. ¢ (z) > 0. So g(x) > g(1) = 0 if x > 1, which shows f/'(z) > 0,
consequently we have f(z) > f(1) = 0; Likewise we have f(z) > f(1) =0 if
0 < z < 1. Thus inequality is always valid if > 0 with x # 1, i.e.
holds.

2) If (1) = 2 — p < 0. Because ¢'(+00) =1 > 0 and ¢'(z) is continuous
on (0,400), by the properties of continuous functions, there exists =1 €
(1,+00), such that ¢’(x1) = 0. If 1 < z < x1, then ¢'(x) < 0; While
x1 < x < 400 then ¢’(z) > 0. Thus g(z) < g(1) =0if 1 < z < 21, and then
f(z) <0, thereby f(z) < f(1) =0.

On the other hand, since f (1) = f(z), we have

f(Hoo) = f(+0) = lim |-~ P2 p

It is obvious that f(z) does not have certain sign on (0, 4+00), i.e. inequality

(2.12]) does not always hold, naturally inequality (2.11]) is not valid.
Combining 1) with 2), this complete the proof. &

3. SOME EXPRESSIONS OF E(A,B)

Theorem 6. Let p,q € R with p+ q = 1. For positive numbers a and b ,we

have
qa + pb
1 E — aPpd _1
(3.1) (a,b) = a’b?exp [L(a,b) }
Proof.
blnb—alna
InE(a,b) = ——m—— —1
n (a’ ) b_a
B blnb—blna-l—blna—alna_l
a b—a
B blnb—blna—l—blna—alna_1
a b—a
= b +Ilna—1,

L(a,b)
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i.e.

(3.2) E(a,b) = aeTon ",
In this way, we have

(3.3) E(a,b) = beT@n .
And then

E(a,b) = FEP(a,b)E%a,b)
b1 p a 1149
— |:a€ L(a,b) :| |:b€ L(a,b) :|
qa + pb
-1
L(a,b)
It follows that (3.1]) holds. This proof is completed. &

= aPblexp [

(3.1) contains many expressions of E(a,b), for example:
1) Let p=¢q= %.We easily obtain:

Ala,b

(3.4) E(a,b) = G(a,b) exp [ LEZ ; - 1] ,

which also can be simply denoted by

(3.5) E=Get .
L—a b—L
2) Let p = eyl b_a.We have:
L—a b-L
E =qgb-apb—a

t t

3) Let p=—p"r,q= btb_—at with ¢ # 0, by an easy operation, we have:
t—1, G?

. E =F —
(3 6) (a7 b) teXp t (L . Jt_l

where E, = Ei(at,b!),G = Vab, J,_1 = J,_1(a,b),

t(att1—ptt1)

_1)>

W+ D) (@ —b1) t#0,-1;
(3.7) Ji(a,b) = L(a,b), t = 0;
G?(a,b) o
Tla ) ° t=-—1.
In 1’ taking t = 2, %, %, we can get the following identities:
1 2
(3.5) B(ab) = vE@ P exp {2<LG . 1@ |
G
(39) Blat) = E(vavien(1- ).
1 -
AiGs
(3.10) Blab) = B(Va Vhep? [1-—— |

respectively.
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Remark 1. Replace t with %, then we can obtain identity from @)
In fact, identities (3.9) and are just and (1.8).

4) Let p= bt‘jr—tat, q= b&%? by an easy operation, we have:

G2
(3.11) E(a,b) = Z;exp <L~Et —1) ,
where Z; = Z%(at,bt),ﬁt = L(a,b),
at + vt
(3.12) Li(a,b) = P

is called Lehmer mean.
In 1} taking t = 2,1, %, %, we can get the following identities:

2
(3.13) E(a,b) = +/Z(a?b?)exp (LACZ% - 1) ,

2
(3.14) E(a,b) = Z(a,b)exp <[C/;A - 1> ,
(3.15) Blab) = Z3(va,Vb)exp (f - 1) ,
A1G3
5 2
(316) E(Cl, b) = Zs(%v \/I;) eXp2 . 1 1 )
LA}
3
respectively.

5) taking i-th power of two sides of |i and %—th power of two sides
of (3.15)), and then let them multiply each other, we get

Ala,b)+2G(a,b)
3 o 1] ,

(3.17) E(a,b) = G3(a,b)Z T L(ab)

ISy

(a,b) exp

or concisely denoted by

2
(3.18) E=G527 exp [A+2G —1].
2

3L

In addition, substituting the right side of (3.4]) for the left side of (3.15]),
then we get

Ela,b) = G(a,b) exp <‘2§Z Z; - 1) — 22(\a, V) exp 6((;‘ 2)) _ 1) .

It follows that the following Corollary is valid.

Corollary 1. For positive numbers a and b, there is

A(a,b)—G(a,b)
(3.19) Z*(Va,Vb) = G(a,b)e  L@b)

which can be concisely denoted by

(3.20) Z
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Applying (3.4), for p # q,

(B ) G [é((zizz; _1] :
He(a,bip,q) = (E(aq,bq)> R G(a?,b7) exp [ﬁ(zzg _1]
- o1 [A2) Ay
Let
(3.21) €(p,g;a,0) = piq [218222 B 218:22] '

Then the part 1), 2) and 3) of Theorem |1 can be restated as follows:

Corollary 2. 1) £(p, q;a,b) are strictly increasing in p or q on (—oo, +00).
2) E(p, q; a,b) are strictly concave with respect to either p or q on (0,400),
and convex on (—00,0).
3) E(p,1 —p;a,b) are strictly increasing in p on (—oo, %), and decreasing
on (3, +00).

Observe that

) ) G?(a", b
InGpyla,b) = 1nyi(at,bt) - glnE(at,bt)eXp[l N ngat’bt))]
ot g Al GAat,b)
= [lnG(a b))+ L(al, ) 1+1 L2(at, bt)
A(al, b))  G?(at,bt)

In G(a, b) +% [

|

L(at,bt)  L2(at,bt)

substituting for (1.6, after rearranging, ([1.6] is transformed as

)] > E(p,q;a,b) >

(3.22)

G2(at, b9)
L2(af1,bq)] '

And then part 4) of Theorem [l can be restated as follows:

Corollary 3. If p+ q > 0 with p # q, then inequality are valid.
Inequalities reversed if p+q < 0 with p # q.
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4. SOME APPLICATIONS

Example 1. By identity using the well-known inequalities e* > 1+ x
forx e R withx #0 and ¢* > 1+ x + % for x > 0, we get immediately:

pb+ qa
4.1 E(a,b Ppe
( ) (a’7 ) > a L(a, b) I
1 (pb + qa)?
4.2 E(a,b —aPb? | ——+1
which are rewritten as:
(4.3) L(a,b)E(a,b) > da”bi(pb+ qa),
1
(4.4) L*(a,b)E(a,b) > b [(pb + qa)* + L*(a,b)]
where p,q € R with p+q = 1.
1) Let p=gq = % We have
(4.5) LE > AG,
1
(4.6) L’E > G [A%+L7].
2) Let p = —%,q = % with ¢ # 0,1. We have
(4.7) LI E™T > EF'G?
i
(4.8) (LI, )2 EvT > BT [G2 + (LJt_l)ﬂ .
In particular, for t = %, there are
(4.9) LE% > FEG,
1
(4.10) L’By > SE[G*+L7].
3) Let p = bt‘i—tat,q = bti%' We have
(4.11) LLE > Z,G?
1
(4.12) (LL)E > 57 [G2 + (thﬂ :
In particular, for t = %, there are
(4.13) LE > Z%G7
1
2 1L 2 2
(4.14) L°E > 57 G+ L7].

Example 2. By identity E(a,b) is comparable to aPb? if and only if
L(a,b) is comparable to pb+ aq.

1) Forp = —bt‘fat,q = btlfat, since By = E%(at,bt) is increasing in t

on interval (—oo,+00), so E > (<)E; if t > (<)1, it follows from

(5.6) that

t—l( G?
t “L-Jiq

<0, ift>1;
—1)q¢ >0, if0<t<1;
>0, ift<O0.
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i.e.
2

G
4.15 L>
(4.15) T

Inequality ({.15) is reversed if t < 0.

ift > 0.

2 1
2) For (3.16), it follows from that AgGg/(LAi) -1<0, e
3 3
2 2 1 1
5 + b3 b3 + bas
(416) L> 4 (ah)h = S
a3 + b3 a3 + b3
which was presented first by J. Karamata ([4]). Here give another
proof of it.
3) In the same way, for , it follows from well-known inequality
A+2G
(4.17) L< 'g
that
2
(4.18) E>GiZ3,
2

which s stronger than inequality E > 75G5.
Example 3 (A left approximation of Gauss AGM [I, 2, B3]). For (5.1),
A-G
from it follows that Z1 = Ge L > A, which can be transformed as
2

A-G
(4.19) L < TA-LG
Let
(4.20) gl = Eﬁigéﬁwbn+1:: Vanbn,n=0,1,2,- - -
with ag = a > 0,bg = b > 0. Then by there is
(4.21) L(an,bn) < L(an+1,bnt1).

It is easy to prove that sequence {ay} is monotone decreasing and bounded,
while {by} is monotone increasing and bounded. Then their limits both exist,

and equal by , and might as well set pyq = pac(a,b). Thus we have

A+ G
G < VAG <\|VAG ; by < < g

m+m>2 A+ G
2 < 2

(4.22) <-~<%m<< < A.

On the other hand, by sequence { L(an,by)} is monotone increasing,
and bounded above because L(an,by) < % = Gpt1 < a. It follows that
the limit of sequence {L(ay,b,)} exists.

According to continuity of L(x,y) on Ry x Ry, we have

(4.23) lim L(ap,b,) = L( lim ay, lim b,) = L(kag, bag) = Hac-
n—o0 n—oo n—o0

And then it follows from that
(4.24) L(a,b) < L(A,G) < -+ < L(ap,by) < -+ < fiag-
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It is another left approximation of Gauss AGM that more precise than {a,}.

Remark 2. By and well-known Lin Tong-po inequality, we can obtain
a new inequality regarding L, A and G:

(e/maa)”’
L<|——F—

(4.25) 5

Example 4 (A new compound mean EGM and inequalities). That (-)
can be rewritten as

A A-1L
(4.26) lnE—lnG:f—lzT;
On the other hand, inequality can be rewritten as
(4.27) EFE-G<A-L.
It follows from (4.26]) and (-) that
(4.28) L(E,.G)< L
Let
(4.29) enp1 = E(cn,dn), dng1 = V/endyn
with cg = a > 0,dg = b > 0. Then by there is
(4.30) L(cnt1,dn+1) < L(cn, dy).
First, using the well-known inequality vab < E(a,b) < a—‘”’, we have
i1 = Elen,dn) > Vendn = dnga,
Cntl — Cn = E(cn,dn)—cn<cn_|2_d —cn—d _Cn<0,

o1 —dn = endp — dp = \/dp(/Cn — \F>0

which implies sequence {c,} is monotone decreasing and {d,} is monotone
decreasing. Hence

(4.31) Vab=dy < d, < cp < 1 = E(a,b),

which show that sequence {cy} and {d,} are bounded. It follows that limit
of sequence {c,} and {d,} both exist.
Second, by we have lim ¢, = lim d,, and might as well set ppo =

n—oo n—oo

tra(a,b). Thus we have

G < VEG<\/VEGE(E,G) - <d,<---<Uuga
(4.32) < -+-<¢-<EWEG,E(E,G)) < E(E,G)< E

Third, by sequence { L(cy, d,)} is monotone decreasing and bounded
because

Vab = dy < dp+1 = vV endn < L(ep,dy) < E(ep,dyp) = cnt1 < c1 = E(a,b).

It follows that the limit of sequence {L(cn, dn)} exists.
According to continuity of L(x,y) on Ry x Ry, we have

(4.33) lim L(cp,dy) = L( lim ¢y, lim d,) = L(ppa, bEq) = MEG-
n—oo n—oo n—oo
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And then it follows from that
(4.34) L(a,b) > L(E,G) > - -+ > L(cp,dp) > -+ > ppa-
It is another right approximation of EGM that more precise than {cy,}.
Remark 3. By (4.29), (4-24), (4-32) and (4.34), we obtain immediately
the following inequality chain:
(4.35) VEG < pugg<---<L(cy,dy) <---<L(E,G) < L(a,b)
A+G
2

< L(AG) < < L(an,bp) < -+ < pgg <
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