SOME IDENTITIES FOR MEANS AND APPLICATIONS

ZHEN-HANG YANG

Abstract

In this paper, the power-exponential mean is introduced, several identities involving exponential mean and power-exponential mean are given. As applications, some new inequalities for means are presented.

1. Introduction

Exponential mean or identical mean of two unequal positive numbers a and b is defined by

$$
E=E(a, b)=\left\{\begin{array}{cl}
e^{-1}\left(\frac{a^{a}}{b^{b}}\right)^{\frac{1}{a-b}}, & a \neq b \tag{1.1}\\
a, & a=b
\end{array}\right.
$$

Regarding the exponential mean $E(a, b)$ there are many interesting and useful results, such as (see [5, 9, 10])

$$
\begin{equation*}
G(a, b)<L(a, b)<\frac{A(a, b)+G(a, b)}{2}<E(a, b)<A(a, b) \tag{1.2}
\end{equation*}
$$

where

$$
A=A(a, b)=\frac{a+b}{2} ; \quad G=G(a, b)=\sqrt{a b} ; \quad L=L(a, b)=\left\{\begin{array}{cl}
\frac{b-a}{\ln b-\ln a}, & a \neq b \\
a, & a=b
\end{array}\right.
$$

and

$$
\begin{align*}
E(a, b) & >A_{\frac{2}{3}}(a, b) \tag{1.3}\\
L(a, b)+E(a, b) & <A(a, b)+G(a, b) \tag{1.4}
\end{align*}
$$

where $A_{t}=A_{t}(a, b)=\left(\frac{a^{t}+b^{t}}{2}\right)^{\frac{1}{t}}$, etc. .
In [10], Zhen-hang Yang considered two-parameter mean related $E(a, b)$ which is defined by

$$
\mathcal{H}_{E}(a, b ; p, q)= \begin{cases}\left(\frac{E\left(a^{p}, b^{p}\right)}{E\left(a^{q}, b^{q}\right)}\right)^{\frac{1}{p-q}}, & p \neq q \tag{1.5}\\ G_{E, p}(a, b), & p=q \neq 0 \\ G(a, b), & p=q=0\end{cases}
$$

Date: August 18, 2005.
2000 Mathematics Subject Classification. Primary 26E60, 26D20.
Key words and phrases. Mean identity, Exponential mean, Power-exponential mean, Compound mean, inequality.
where

$$
\begin{aligned}
G_{E, p}(a, b) & =Y_{p}(a, b)=Y^{\frac{1}{p}}\left(a^{p}, b^{p}\right)=Y_{p}, \\
Y(a, b) & =E e^{1-\frac{G^{2}}{L^{2}}} .
\end{aligned}
$$

It was proved that (see [10, 11])
Theorem 1. 1) $\mathcal{H}_{E}(p, q)$ is strictly increasing in p or q on $(-\infty,+\infty)$.
2) $\mathcal{H}_{E}(p, q)$ are strictly log-concave with respect to either p or q on $(0,+\infty)$, and log-convex on $(-\infty, 0)$.
3) $\mathcal{H}_{E}(p, 1-p)$ are strictly increasing in p on $\left(-\infty, \frac{1}{2}\right)$, and strictly decreasing on $\left(\frac{1}{2},+\infty\right)$.
4) If $p+q>0$ with $p \neq q$, then

$$
\begin{equation*}
G_{E, \frac{p+q}{2}}>\mathcal{H}_{E}(p, q)>\sqrt{G_{E, p} G_{E, q}} . \tag{1.6}
\end{equation*}
$$

Inequality (1.6) is reversed if $p+q<0$ with $p \neq q$.
In [6, 7, 8, J. Sandor and Wan-ran Wang investigated identity involving the identical mean, logarithmic mean, Stolarsky mean and power mean, and presented the following results:

$$
\begin{equation*}
\ln \frac{E^{2}(\sqrt{a}, \sqrt{b})}{E(a, b)}=\frac{G-L}{L} \tag{1.7}
\end{equation*}
$$

$$
\begin{align*}
\ln \frac{E^{3}(\sqrt[3]{a}, \sqrt[3]{b})}{E(a, b)} & =2\left(\frac{A_{\frac{1}{3}}^{\frac{1}{3}} G^{\frac{2}{3}}}{L}-1\right) \tag{1.8}\\
\ln \frac{E^{t}\left(a^{\frac{1}{t}}, b^{\frac{1}{t}}\right)}{E(a, b)} & =(t-1)\left[\frac{S_{t-2}^{t-2}\left(a^{\frac{1}{t}}, b^{\frac{1}{t}}\right) G^{\frac{2}{t}}(a, b)-L(a, b)}{L(a, b)}-1\right], \tag{1.9}
\end{align*}
$$

where $S_{p}(a, b)=\left(\frac{b^{p}-a^{p}}{p(b-a)}\right)^{\frac{1}{p-1}}(p \neq 1), S_{0}(a, b)=L(a, b), S_{1}(a, b)=E(a, b)$.
Applying the above identities, they obtained some new inequalities.
The purpose of this paper is to give other general identities and inequalities concerning exponential mean and power-exponential mean, and corresponding inequalities will be presented. In section 2, the power-exponential mean and its meanings are introduced; In section 3, certain identities for exponential mean are stated; In section 4, we will present corresponding inequalities.

2. Power-exponential Mean $Z(a, b)$

2.1. Definition and Property. Let us consider weighted geometric mean of unequal positive numbers a and $b: G(a, b ; p, q)=a^{q} b^{p}$, where $p, q>0$ with $p+q=1$. Setting $p=\frac{a}{a+b}, q=\frac{b}{a+b}$, obviously $a^{\frac{a}{a+b}} b^{\frac{b}{a+b}}$ is also a mean of a and b, which is called power-exponential mean and denote by $Z(a, b)$.

It is easy to obtain the properties of $Z(a, b)$.
Property $1 Z(a, b)$ is symmetric with respect to a and b, i.e.

$$
Z(a, b)=Z(b, a) .
$$

Property $2 Z(a, b)$ is homogeneous with respect to a and b, i.e.

$$
Z(t a, t b)=t Z(a, b) \text { for } t>0
$$

Property $3 Z(a, b)$ has an upper bound and lower bound, i.e.

$$
\min (a, b) \leq Z(a, b) \leq \max (a, b)
$$

2.2. Two Other Meanings of $Z(a, b)$. The so-called Gini mean of positive numbers a and b is defined by

$$
\begin{aligned}
G_{s, t}(a, b) & =\left(\frac{a^{s}+b^{s}}{a t+b^{t}}\right)^{\frac{1}{s-t}}(s \neq t) \\
G_{t, t}(a, b) & =\lim _{s \rightarrow t}\left(\frac{a^{s}+b^{s}}{a t+b^{t}}\right)^{\frac{1}{s-t}}=Z^{\frac{1}{t}}\left(a^{t}, b^{t}\right) \quad(t \neq 0) \\
G_{0,0}(a, b) & =\lim _{t \rightarrow 0} Z^{\frac{1}{t}}\left(a^{t}, b^{t}\right)=G(a, b) \quad(t=0)
\end{aligned}
$$

It shows that $Z(a, b)$ is a case of limit for Gini mean.
Let

$$
Z_{t}(a, b)=\left\{\begin{array}{cc}
Z^{\frac{1}{t}}\left(a^{t}, b^{t}\right), & t \neq 0 \\
G(a, b), & t=0
\end{array}\right.
$$

Then according to the monotonicity and log-convexity of Gini mean, we have

Theorem 2. [10, Corollary 2.1] $Z_{t}(a, b)$ is increasing in t on interval $(-\infty,+\infty)$.
Theorem 3. [11, 1) of Conclusion 1].$Z_{t}(a, b)$ is strictly log-convex in t on interval $(-\infty, 0)$, and log-concave on interval $(0,+\infty)$.

In addition, $Z(a, b)$ has another concise expression.
Theorem 4. [10, Remark 4.1]

$$
Z(a, b)=\frac{E\left(a^{2}, b^{2}\right)}{E(a, b)}
$$

2.3. Some Inequalities for Power-exponential Mean. Concerning $Z(a, b)$ with $a \neq b$, there are the following inequalities (See [10, eq. 4.3, 4.5]:

$$
\begin{align*}
& \sqrt{a b}<\frac{a+b}{2}<\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right)^{2}<Z(a, b)<\frac{a^{2}+b^{2}}{a+b} \tag{2.1}\\
& \sqrt{a b}<E(a, b)<Z^{2}(\sqrt{a}, \sqrt{b})<E \exp \left(1-\frac{G^{2}}{L^{2}}\right)<Z(a, b) \tag{2.2}
\end{align*}
$$

The following inequalities were presented by [11, eq. 3.9, 3.10]:

$$
\begin{align*}
G^{\frac{2}{3}} A_{2}^{\frac{2}{3}} A^{-\frac{1}{3}} & <G^{\frac{1}{2}} A_{\frac{3}{2}}^{\frac{3}{4}} A_{\frac{1}{2}}^{-\frac{1}{4}}<G^{\frac{2}{5}} A_{\frac{4}{3}}^{\frac{4}{5}} A_{\frac{1}{3}}^{-\frac{1}{5}}<A<A_{\frac{4}{5}}^{\frac{4}{3}} A_{\frac{1}{5}}^{-\frac{1}{3}} \tag{2.3}\\
& <A_{\frac{3}{4}}^{\frac{3}{2}} A_{\frac{1}{4}}^{-\frac{1}{2}}<A_{\frac{2}{3}}^{2} A_{\frac{1}{3}}^{-1}<A_{\frac{3}{5}}^{3} A_{\frac{2}{5}}^{-2}<Z_{\frac{1}{2}}
\end{align*}
$$

where $A_{p}=\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}}, Z_{p}=Z^{\frac{1}{p}}\left(a^{p}, b^{p}\right), Z(a, b)=a^{\frac{a}{a+b}} b^{\frac{b}{a+b}}$.

$$
\begin{align*}
G^{\frac{2}{3}} Z^{\frac{1}{3}} & <G^{\frac{1}{2}} E_{\frac{3}{2}}^{\frac{3}{4}} E_{\frac{1}{2}}^{-\frac{1}{4}}<G^{\frac{2}{5}} Z_{\frac{1}{3}}^{\frac{1}{5}} Z_{\frac{2}{3}}^{\frac{2}{5}}<E<Z_{\frac{1}{5}}^{\frac{1}{3}} Z_{\frac{2}{5}}^{\frac{2}{3}} \tag{2.4}\\
& <E_{\frac{3}{4}}^{\frac{3}{2}} E_{\frac{1}{4}}^{-\frac{1}{2}}<Z_{\frac{1}{3}}<E_{\frac{3}{5}}^{3} E_{\frac{2}{5}}^{-2}<Y_{\frac{1}{2}}
\end{align*}
$$

where $Z_{p}=Z^{\frac{1}{p}}\left(a^{p}, b^{p}\right), E_{p}=E^{\frac{1}{p}}\left(a^{p}, b^{p}\right), Y_{p}=Y^{\frac{1}{p}}\left(a^{p}, b^{p}\right), Y(a, b)=E e^{1-\frac{G^{2}}{L^{2}}}$.
From (2.3) and (2.4), we can obtain

$$
\begin{align*}
& A<A_{\frac{3}{4}}^{\frac{3}{2}} A_{\frac{1}{4}}^{-\frac{1}{2}}<Z_{\frac{1}{2}} \tag{2.5}\\
& E<Z_{\frac{1}{3}}<Y_{\frac{1}{2}} \tag{2.6}
\end{align*}
$$

respectively, which may be transformed into

$$
\begin{align*}
& A_{2}<A_{\frac{3}{2}}^{\frac{3}{2}} A_{\frac{1}{2}}^{-\frac{1}{2}}<Z \tag{2.7}\\
& E_{3}<Z<Y_{\frac{3}{2}} \tag{2.8}
\end{align*}
$$

That $A_{\frac{3}{2}}^{\frac{3}{2}} A_{\frac{1}{2}}^{-\frac{1}{2}}<Z$ may be transformed into $Z>\frac{a^{\frac{3}{2}}+b^{\frac{3}{2}}}{a^{\frac{1}{2}}+b^{\frac{1}{2}}}=a+b-\sqrt{a b}$, i.e.

$$
\begin{equation*}
\frac{Z+G}{2}>A \tag{2.9}
\end{equation*}
$$

Let us consider the right approximations of Z in A_{p}. By 2.7 we have

$$
\begin{equation*}
Z>\sqrt{\frac{a^{2}+b^{2}}{2}}=A_{2} \tag{2.10}
\end{equation*}
$$

Here $p=2$ is the best constant? The following Theorem answer the question:
Theorem 5. For positive numbers a and b, the following is always true:

$$
\begin{equation*}
Z(a, b)>\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}} \tag{2.11}
\end{equation*}
$$

where $p=2$ is the best constant.
Proof. Set $x=\frac{b}{a}$, then inequality 2.11 is equivalent to

$$
\begin{equation*}
x^{\frac{x}{x+1}}>\left(\frac{x^{p}+1}{2}\right)^{\frac{1}{p}} \tag{2.12}
\end{equation*}
$$

Let $f(x)=\ln x^{\frac{x}{x+1}}-\ln \left(\frac{x^{p}+1}{2}\right)^{\frac{1}{p}}=\frac{x}{x+1} \ln x-\frac{1}{p} \ln \left(\frac{x^{p}+1}{2}\right)$.Then

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x+1+\ln x}{(x+1)^{2}}-\frac{x^{p-1}}{x^{p}+1} \\
& =\frac{1}{(x+1)^{2}}\left(\ln x-\frac{(x+1)\left(x^{p-1}-1\right)}{x^{p}+1}\right) \\
& =\frac{1}{(x+1)^{2}}\left(\ln x-\frac{x^{p}+x^{p-1}-x-1}{x^{p}+1}\right) .
\end{aligned}
$$

And let

$$
\begin{equation*}
g(x)=\ln x-\frac{x^{p}+x^{p-1}-x-1}{x^{p}+1} \tag{2.13}
\end{equation*}
$$

further. Then $g(1)=0$ and

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{x}-\frac{\left[p x^{p-1}+(p-1) x^{p-2}-1\right]\left(x^{p}+1\right)-\left(x^{p}+x^{p-1}-x-1\right) p x^{p-1}}{\left(x^{p}+1\right)^{2}} \\
& =\frac{(x+1)^{2}}{x\left(x^{p}+1\right)^{2}}\left[\frac{x^{2 p-1}+1}{x+1}-(p-1) x^{p-1}\right] .
\end{aligned}
$$

Obviously, $g^{\prime}(1)=2-p$.

1) If $g^{\prime}(1)=2-p \geqslant 0$. By inequality (2.1), $p>1$, we have

$$
\frac{x^{2 p-1}+1}{x+1}-x^{p-1}=\frac{\left(x^{p}-1\right)\left(x^{p-1}-1\right)}{x+1}>0
$$

therefor

$$
\frac{x^{2 p-1}+1}{x+1}-(p-1) x^{p-1}>x^{p-1}-(p-1) x^{p-1}=(2-p) x^{p-1}>0
$$

i.e. $g^{\prime}(x)>0$. So $g(x)>g(1)=0$ if $x>1$, which shows $f^{\prime}(x)>0$, consequently we have $f(x)>f(1)=0$; Likewise we have $f(x)>f(1)=0$ if $0<x<1$. Thus inequality 2.12 is always valid if $x>0$ with $x \neq 1$, i.e. (2.11) holds.
2) If $g^{\prime}(1)=2-p<0$. Because $g^{\prime}(+\infty)=1>0$ and $g^{\prime}(x)$ is continuous on $(0,+\infty)$, by the properties of continuous functions, there exists $x_{1} \in$ $(1,+\infty)$, such that $g^{\prime}\left(x_{1}\right)=0$. If $1<x<x_{1}$, then $g^{\prime}(x)<0$; While $x_{1}<x<+\infty$ then $g^{\prime}(x)>0$. Thus $g(x)<g(1)=0$ if $1<x<x_{1}$, and then $f^{\prime}(x)<0$, thereby $f(x)<f(1)=0$.

On the other hand, since $f\left(\frac{1}{x}\right)=f(x)$, we have

$$
f(+\infty)=f(+0)=\lim _{x \rightarrow+0}\left[\frac{x}{x+1} \ln x-\frac{1}{p} \ln \frac{x^{p}+1}{2}\right]=\frac{1}{p} \ln 2>0
$$

It is obvious that $f(x)$ does not have certain sign on $(0,+\infty)$, i.e. inequality (2.12) does not always hold, naturally inequality 2.11 is not valid.

Combining 1) with 2), this complete the proof.

3. Some Expressions of $\mathrm{E}(\mathrm{A}, \mathrm{B})$

Theorem 6. Let $p, q \in \mathbb{R}$ with $p+q=1$. For positive numbers a and b, we have

$$
\begin{equation*}
E(a, b)=a^{p} b^{q} \exp \left[\frac{q a+p b}{L(a, b)}-1\right] \tag{3.1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\ln E(a, b) & =\frac{b \ln b-a \ln a}{b-a}-1 \\
& =\frac{b \ln b-b \ln a+b \ln a-a \ln a}{b-a}-1 \\
& =\frac{b \ln b-b \ln a+b \ln a-a \ln a}{b-a}-1 \\
& =\frac{b}{L(a, b)}+\ln a-1
\end{aligned}
$$

i.e.

$$
\begin{equation*}
E(a, b)=a e^{\frac{b}{L(a, b)}-1} . \tag{3.2}
\end{equation*}
$$

In this way, we have

$$
\begin{equation*}
E(a, b)=b e^{\frac{a}{L(a, b)}-1} . \tag{3.3}
\end{equation*}
$$

And then

$$
\begin{aligned}
E(a, b) & =E^{p}(a, b) E^{q}(a, b) \\
& =\left[a e^{\frac{b}{L(a, b)}-1}\right]^{p}\left[b e^{\frac{a}{L(a, b)}-1}\right]^{q} \\
& =a^{p} b^{q} \exp \left[\frac{q a+p b}{L(a, b)}-1\right] .
\end{aligned}
$$

It follows that (3.1) holds. This proof is completed.
(3.1) contains many expressions of $E(a, b)$, for example:

1) Let $p=q=\frac{1}{2}$.we easily obtain:

$$
\begin{equation*}
E(a, b)=G(a, b) \exp \left[\frac{A(a, b)}{L(a, b)}-1\right], \tag{3.4}
\end{equation*}
$$

which also can be simply denoted by

$$
\begin{equation*}
E=G e^{\frac{A}{L}-1} . \tag{3.5}
\end{equation*}
$$

2) Let $p=\frac{L-a}{b-a}, q=\frac{b-L}{b-a}$. We have:

$$
E=a^{\frac{L-a}{b-a}} b^{\frac{b-L}{b-a}}
$$

3) Let $p=-\frac{a^{t}}{b^{t}-a^{t}}, q=\frac{b^{t}}{b^{t}-a^{t}}$ with $t \neq 0$, by an easy operation, we have:

$$
\begin{equation*}
E(a, b)=E_{t} \exp \left[\frac{t-1}{t}\left(\frac{G^{2}}{L \cdot J_{t-1}}-1\right)\right] \tag{3.6}
\end{equation*}
$$

where $E_{t}=E^{\frac{1}{t}}\left(a^{t}, b^{t}\right), G=\sqrt{a b}, J_{t-1}=J_{t-1}(a, b)$,

$$
J_{t}(a, b)=\left\{\begin{array}{cc}
\frac{t\left(a^{t+1}-b^{t+1}\right)}{(t+1)\left(a^{t}-b^{t}\right)}, & t \neq 0,-1 ; \tag{3.7}\\
L(a, b), & t=0 ; \\
\frac{G^{2}(a, b)}{L(a, b)}, & t=-1 .
\end{array}\right.
$$

In 3.6, taking $t=2, \frac{1}{2}, \frac{1}{3}$, we can get the following identities:

$$
\begin{align*}
& E(a, b)=\sqrt{E\left(a^{2}, b^{2}\right)} \exp \left[\frac{1}{2}\left(\frac{G^{2}}{L \cdot A}-1\right)\right] \tag{3.8}\\
& E(a, b)=E^{2}(\sqrt{a}, \sqrt{b}) \exp \left(1-\frac{G}{L}\right) \tag{3.9}\\
& E(a, b)=E^{3}(\sqrt[3]{a}, \sqrt[3]{b}) \exp ^{2}\left(1-\frac{A_{\frac{1}{3}}^{\frac{1}{3}} G^{\frac{2}{3}}}{L}\right), \tag{3.10}
\end{align*}
$$

respectively.

Remark 1. Replace t with $\frac{1}{t}$, then we can obtain identity (1.9) from (3.6). In fact, identities (3.9) and (3.10) are just (1.7) and (1.8).
4) Let $p=\frac{a^{t}}{b^{t}+a^{t}}, q=\frac{b^{t}}{b^{t}+a^{t}}$, by an easy operation, we have:

$$
\begin{equation*}
E(a, b)=Z_{t} \exp \left(\frac{G^{2}}{L \cdot \mathcal{L}_{t}}-1\right) \tag{3.11}
\end{equation*}
$$

where $Z_{t}=Z^{\frac{1}{t}}\left(a^{t}, b^{t}\right), \mathcal{L}_{t}=\mathcal{L}_{t}(a, b)$,

$$
\begin{equation*}
\mathcal{L}_{t}(a, b)=\frac{a^{t}+b^{t}}{a^{t-1}+b^{t-1}} \tag{3.12}
\end{equation*}
$$

is called Lehmer mean.
In 3.11, taking $t=2,1, \frac{1}{2}, \frac{1}{3}$, we can get the following identities:

$$
\begin{align*}
E(a, b) & =\sqrt{Z\left(a^{2}, b^{2}\right)} \exp \left(\frac{A G^{2}}{L \cdot A_{2}^{2}}-1\right) \tag{3.13}\\
E(a, b) & =Z(a, b) \exp \left(\frac{G^{2}}{L A}-1\right) \tag{3.14}\\
E(a, b) & =Z^{2}(\sqrt{a}, \sqrt{b}) \exp \left(\frac{G}{L}-1\right) \tag{3.15}\\
E(a, b) & =Z^{3}(\sqrt[3]{a}, \sqrt[3]{b}) \exp ^{2}\left(\frac{A_{\frac{2}{3}}^{\frac{2}{3}} G^{\frac{2}{3}}}{L A_{\frac{1}{3}}^{\frac{1}{3}}}-1\right) \tag{3.16}
\end{align*}
$$

respectively.
5) taking $\frac{1}{3}$-th power of two sides of (3.4) and $\frac{2}{3}$-th power of two sides of 3.15), and then let them multiply each other, we get

$$
\begin{equation*}
E(a, b)=G^{\frac{1}{3}}(a, b) Z_{\frac{1}{2}}^{\frac{2}{3}}(a, b) \exp \left[\frac{\frac{A(a, b)+2 G(a, b)}{3}}{L(a, b)}-1\right], \tag{3.17}
\end{equation*}
$$

or concisely denoted by

$$
E=G^{\frac{1}{3}} Z_{\frac{1}{2}}^{\frac{2}{3}} \exp \left[\frac{A+2 G}{3 L}-1\right]
$$

In addition, substituting the right side of (3.4) for the left side of (3.15), then we get

$$
E(a, b)=G(a, b) \exp \left(\frac{A(a, b)}{L(a, b)}-1\right)=Z^{2}(\sqrt{a}, \sqrt{b}) \exp \left(\frac{G(a, b)}{L(a, b)}-1\right) .
$$

It follows that the following Corollary is valid.
Corollary 1. For positive numbers a and b, there is

$$
\begin{equation*}
Z^{2}(\sqrt{a}, \sqrt{b})=G(a, b) e^{\frac{A(a, b)-G(a, b)}{L(a, b)}} \tag{3.19}
\end{equation*}
$$

which can be concisely denoted by

$$
\begin{equation*}
Z_{\frac{1}{2}}=G e^{\frac{A-G}{L}} \tag{3.20}
\end{equation*}
$$

Applying (3.4), for $p \neq q$,

$$
\begin{aligned}
\mathcal{H}_{E}(a, b ; p, q) & =\left(\frac{E\left(a^{p}, b^{p}\right)}{E\left(a^{q}, b^{q}\right)}\right)^{\frac{1}{p-q}}=\left\{\frac{G\left(a^{p}, b^{p}\right) \exp \left[\frac{A\left(a^{p}, b^{p}\right)}{L\left(a^{p}, b^{p}\right)}-1\right]}{G\left(a^{q}, b^{q}\right) \exp \left[\frac{A\left(a^{q}, b^{q}\right)}{L\left(a^{q}, b^{q}\right)}-1\right]}\right\}^{\frac{1}{p-q}} \\
& =G(a, b) \exp \left\{\frac{1}{p-q}\left[\frac{A\left(a^{p}, b^{p}\right)}{L\left(a^{p}, b^{p}\right)}-\frac{A\left(a^{q}, b^{q}\right)}{L\left(a^{q}, b^{q}\right)}\right]\right\} .
\end{aligned}
$$

Let

$$
\begin{equation*}
\mathcal{E}(p, q ; a, b)=\frac{1}{p-q}\left[\frac{A\left(a^{p}, b^{p}\right)}{L\left(a^{p}, b^{p}\right)}-\frac{A\left(a^{q}, b^{q}\right)}{L\left(a^{q}, b^{q}\right)}\right] . \tag{3.21}
\end{equation*}
$$

Then the part 1), 2) and 3) of Theorem 1 can be restated as follows:
Corollary 2. 1) $\mathcal{E}(p, q ; a, b)$ are strictly increasing in p or q on $(-\infty,+\infty)$.
2) $\mathcal{E}(p, q ; a, b)$ are strictly concave with respect to either p or q on $(0,+\infty)$, and convex on $(-\infty, 0)$.
3) $\mathcal{E}(p, 1-p ; a, b)$ are strictly increasing in p on $\left(-\infty, \frac{1}{2}\right)$, and decreasing on $\left(\frac{1}{2},+\infty\right)$.

Observe that

$$
\begin{aligned}
\ln G_{E, t}(a, b) & =\ln Y^{\frac{1}{t}}\left(a^{t}, b^{t}\right)=\frac{1}{t} \ln E\left(a^{t}, b^{t}\right) \exp \left[1-\frac{G^{2}\left(a^{t}, b^{t}\right)}{L^{2}\left(a^{t}, b^{t}\right)}\right] \\
& =\frac{1}{t}\left[\ln G\left(a^{t}, b^{t}\right)+\frac{A\left(a^{t}, b^{t}\right)}{L\left(a^{t}, b^{t}\right)}-1+1-\frac{G^{2}\left(a^{t}, b^{t}\right)}{L^{2}\left(a^{t}, b^{t}\right)}\right] \\
& =\ln G(a, b)+\frac{1}{t}\left[\frac{A\left(a^{t}, b^{t}\right)}{L\left(a^{t}, b^{t}\right)}-\frac{G^{2}\left(a^{t}, b^{t}\right)}{L^{2}\left(a^{t}, b^{t}\right)}\right]
\end{aligned}
$$

substituting for (1.6), after rearranging, (1.6) is transformed as

$$
\begin{align*}
& \frac{2}{p+q}\left[\frac{A\left(a^{\frac{p+q}{2}}, b^{\frac{p+q}{2}}\right)}{L\left(a^{\frac{p+q}{2}}, b^{\frac{p+q}{2}}\right)}-\frac{G^{2}\left(a^{\frac{p+q}{2}}, b^{\frac{p+q}{2}}\right)}{L^{2}\left(a^{\frac{p+q}{2}}, b^{\frac{p+q}{2}}\right)}\right]>\mathcal{E}(p, q ; a, b)> \\
& \frac{1}{2 p}\left[\frac{A\left(a^{p}, b^{p}\right)}{L\left(a^{p}, b^{p}\right)}-\frac{G^{2}\left(a^{p}, b^{p}\right)}{L^{2}\left(a^{p}, b^{p}\right)}\right]+\frac{1}{2 q}\left[\frac{A\left(a^{q}, b^{q}\right)}{L\left(a^{q}, b^{q}\right)}-\frac{G^{2}\left(a^{q}, b^{q}\right)}{L^{2}\left(a^{q}, b^{q}\right)}\right] . \tag{3.22}
\end{align*}
$$

And then part 4) of Theorem 1 can be restated as follows:
Corollary 3. If $p+q>0$ with $p \neq q$, then inequality (3.22) are valid. Inequalities (3.22) reversed if $p+q<0$ with $p \neq q$.

4. Some Applications

Example 1. By identity (3.1) using the well-known inequalities $e^{x}>1+x$ for $x \in \mathbb{R}$ with $x \neq 0$ and $e^{x}>1+x+\frac{x^{2}}{2}$ for $x>0$, we get immediately:

$$
\begin{align*}
& E(a, b)>a^{p} b^{q} \frac{p b+q a}{L(a, b)} \tag{4.1}\\
& E(a, b)>\frac{1}{2} a^{p} b^{q}\left[\frac{(p b+q a)^{2}}{L^{2}(a, b)}+1\right] \tag{4.2}
\end{align*}
$$

which are rewritten as:

$$
\begin{align*}
L(a, b) E(a, b) & >a^{p} b^{q}(p b+q a) \tag{4.3}\\
L^{2}(a, b) E(a, b) & >\frac{1}{2} a^{p} b^{q}\left[(p b+q a)^{2}+L^{2}(a, b)\right] \tag{4.4}
\end{align*}
$$

where $p, q \in \mathbb{R}$ with $p+q=1$.

1) Let $p=q=\frac{1}{2}$. We have

$$
\begin{align*}
L E & >A G \tag{4.5}\\
L^{2} E & >\frac{1}{2} G\left[A^{2}+L^{2}\right] \tag{4.6}
\end{align*}
$$

2) Let $p=-\frac{a^{t}}{b^{t}-a^{t}}, q=\frac{b^{t}}{b^{t}-a^{t}}$ with $t \neq 0,1$. We have

$$
\begin{align*}
L J_{t-1} E^{\frac{t}{t-1}} & >E_{t}^{\frac{t}{t-1}} G^{2} \tag{4.7}\\
\left(L J_{t-1}\right)^{2} E^{\frac{t}{t-1}} & >E_{t}^{\frac{t}{t-1}}\left[G^{2}+\left(L J_{t-1}\right)^{2}\right] \tag{4.8}
\end{align*}
$$

In particular, for $t=\frac{1}{2}$, there are

$$
\begin{equation*}
L E_{\frac{1}{2}}>E G \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
L^{2} E_{\frac{1}{2}}>\frac{1}{2} E\left[G^{2}+L^{2}\right] \tag{4.10}
\end{equation*}
$$

3) Let $p=\frac{a^{t}}{b^{t}+a^{t}}, q=\frac{b^{t}}{b^{t}+a^{t}}$. We have

$$
\begin{align*}
L \mathcal{L}_{t} E & >Z_{t} G^{2} \tag{4.11}\\
\left(L \mathcal{L}_{t}\right)^{2} E & >\frac{1}{2} Z_{t}\left[G^{2}+\left(L \mathcal{L}_{t}\right)^{2}\right] \tag{4.12}
\end{align*}
$$

In particular, for $t=\frac{1}{2}$, there are

$$
\begin{align*}
L E & >Z_{\frac{1}{2}} G \tag{4.13}\\
L^{2} E & >\frac{1}{2} Z_{\frac{1}{2}}\left[G^{2}+L^{2}\right] \tag{4.14}
\end{align*}
$$

Example 2. By identity 3.1, $E(a, b)$ is comparable to $a^{p} b^{q}$ if and only if $L(a, b)$ is comparable to $p b+a q$.

1) For $p=-\frac{a^{t}}{b^{t}-a^{t}}, q=\frac{b^{t}}{b^{t}-a^{t}}$, since $E_{t}=E^{\frac{1}{t}}\left(a^{t}, b^{t}\right)$ is increasing in t on interval $(-\infty,+\infty)$, so $E>(<) E_{t}$ if $t>(<) 1$, it follows from (3.6) that

$$
\frac{t-1}{t}\left(\frac{G^{2}}{L \cdot J_{t-1}}-1\right) \begin{cases}<0, & \text { if } t>1 \\ >0, & \text { if } 0<t<1 \\ >0, & \text { if } t<0\end{cases}
$$

i.e.

$$
\begin{equation*}
L>\frac{G^{2}}{J_{t-1}} \text { if } t>0 . \tag{4.15}
\end{equation*}
$$

Inequality (4.15) is reversed if $t<0$.
2) For 3.16), it follows from 2.6) that $A_{\frac{2}{3}}^{\frac{2}{3}} G^{\frac{2}{3}} /\left(L A_{\frac{1}{3}}^{\frac{1}{3}}\right)-1<0$, i.e.

$$
\begin{equation*}
L>\frac{a^{\frac{2}{3}}+b^{\frac{2}{3}}}{a^{\frac{1}{3}}+b^{\frac{1}{3}}}(a b)^{\frac{1}{3}}=\frac{a b^{\frac{1}{3}}+b a^{\frac{1}{3}}}{a^{\frac{1}{3}}+b^{\frac{1}{3}}}, \tag{4.16}
\end{equation*}
$$

which was presented first by J. Karamata ([4). Here give another proof of it.
3) In the same way, for (3.20), it follows from well-known inequality

$$
\begin{equation*}
L<\frac{A+2 G}{3} \tag{4.17}
\end{equation*}
$$

that

$$
\begin{equation*}
E>G^{\frac{1}{3}} Z_{\frac{1}{2}}^{\frac{2}{3}}, \tag{4.18}
\end{equation*}
$$

which is stronger than inequality $E>Z^{\frac{1}{3}} G^{\frac{2}{3}}$.
Example 3 (A left approximation of Gauss AGM [1, 2, 3). For (3.18), from 2.5) it follows that $Z_{\frac{1}{2}}=G e^{\frac{A-G}{L}}>A$, which can be transformed as

$$
\begin{equation*}
L<\frac{A-G}{\ln A-\ln G} . \tag{4.19}
\end{equation*}
$$

Let

$$
\begin{equation*}
a_{n+1}=\frac{a_{n}+b_{n}}{2}, b_{n+1}=\sqrt{a_{n} b_{n}}, n=0,1,2, \cdots \tag{4.20}
\end{equation*}
$$

with $a_{0}=a>0, b_{0}=b>0$. Then by (4.19) there is

$$
\begin{equation*}
L\left(a_{n}, b_{n}\right)<L\left(a_{n+1}, b_{n+1}\right) \tag{4.21}
\end{equation*}
$$

It is easy to prove that sequence $\left\{a_{n}\right\}$ is monotone decreasing and bounded, while $\left\{b_{n}\right\}$ is monotone increasing and bounded. Then their limits both exist, and equal by (4.20), and might as well set $\mu_{A G}=\mu_{A G}(a, b)$. Thus we have

$$
\begin{align*}
G & <\sqrt{A G}<\sqrt{\sqrt{A G} \frac{A+G}{2}} \cdots<b_{n}<\cdots<\mu_{A G} \\
& <\cdots<a_{n} \cdots<\left(\frac{\sqrt{A}+\sqrt{G}}{2}\right)^{2}<\frac{A+G}{2}<A . \tag{4.22}
\end{align*}
$$

On the other hand, by (4.21) sequence $\left\{L\left(a_{n}, b_{n}\right)\right\}$ is monotone increasing, and bounded above because $L\left(a_{n}, b_{n}\right)<\frac{a_{n}+b_{n}}{2}=a_{n+1}<a$. It follows that the limit of sequence $\left\{L\left(a_{n}, b_{n}\right)\right\}$ exists.

According to continuity of $L(x, y)$ on $\mathbb{R}_{+} \times \mathbb{R}_{+}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L\left(a_{n}, b_{n}\right)=L\left(\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} b_{n}\right)=L\left(\mu_{A G}, \mu_{A G}\right)=\mu_{A G} . \tag{4.23}
\end{equation*}
$$

And then it follows from 4.21) that

$$
\begin{equation*}
L(a, b)<L(A, G)<\cdots<L\left(a_{n}, b_{n}\right)<\cdots<\mu_{A G} . \tag{4.24}
\end{equation*}
$$

It is another left approximation of Gauss AGM that more precise than $\left\{a_{n}\right\}$.
Remark 2. By 4.19) and well-known Lin Tong-po inequality, we can obtain a new inequality regarding L, A and G :

$$
\begin{equation*}
L<\left(\frac{\sqrt[3]{A}+\sqrt[3]{G}}{2}\right)^{3} \tag{4.25}
\end{equation*}
$$

Example 4 (A new compound mean EGM and inequalities). That (3.5) can be rewritten as

$$
\begin{equation*}
\ln E-\ln G=\frac{A}{L}-1=\frac{A-L}{L} \tag{4.26}
\end{equation*}
$$

On the other hand, inequality (1.4) can be rewritten as

$$
\begin{equation*}
E-G<A-L \tag{4.27}
\end{equation*}
$$

It follows from 4.26) and 4.27 that

$$
\begin{equation*}
L(E, G)<L \tag{4.28}
\end{equation*}
$$

Let

$$
\begin{equation*}
c_{n+1}=E\left(c_{n}, d_{n}\right), d_{n+1}=\sqrt{c_{n} d_{n}} \tag{4.29}
\end{equation*}
$$

with $c_{0}=a>0, d_{0}=b>0$. Then by (4.28) there is

$$
\begin{equation*}
L\left(c_{n+1}, d_{n+1}\right)<L\left(c_{n}, d_{n}\right) \tag{4.30}
\end{equation*}
$$

First, using the well-known inequality $\sqrt{a b}<E(a, b)<\frac{a+b}{2}$, we have

$$
\begin{aligned}
c_{n+1} & =E\left(c_{n}, d_{n}\right)>\sqrt{c_{n} d_{n}}=d_{n+1} \\
c_{n+1}-c_{n} & =E\left(c_{n}, d_{n}\right)-c_{n}<\frac{c_{n}+d_{n}}{2}-c_{n}=\frac{d_{n}-c_{n}}{2}<0 \\
d_{n+1}-d_{n} & =\sqrt{c_{n} d_{n}}-d_{n}=\sqrt{d_{n}}\left(\sqrt{c_{n}}-\sqrt{d_{n}}\right)>0
\end{aligned}
$$

which implies sequence $\left\{c_{n}\right\}$ is monotone decreasing and $\left\{d_{n}\right\}$ is monotone decreasing. Hence

$$
\begin{equation*}
\sqrt{a b}=d_{1}<d_{n}<c_{n}<c_{1}=E(a, b) \tag{4.31}
\end{equation*}
$$

which show that sequence $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ are bounded. It follows that limit of sequence $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ both exist.

Second, by 4.29) we have $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} d_{n}$, and might as well set $\mu_{E G}=$ $\mu_{E G}(a, b)$. Thus we have

$$
\begin{align*}
G & <\sqrt{E G}<\sqrt{\sqrt{E G} E(E, G)} \cdots<d_{n}<\cdots<\mu_{E G} \\
& <\cdots<c_{n} \cdots<E(\sqrt{E G}, E(E, G))<E(E, G)<E \tag{4.32}
\end{align*}
$$

Third, by 4.30) sequence $\left\{L\left(c_{n}, d_{n}\right)\right\}$ is monotone decreasing and bounded because

$$
\sqrt{a b}=d_{1}<d_{n+1}=\sqrt{c_{n} d_{n}}<L\left(c_{n}, d_{n}\right)<E\left(c_{n}, d_{n}\right)=c_{n+1}<c_{1}=E(a, b)
$$

It follows that the limit of sequence $\left\{L\left(c_{n}, d_{n}\right)\right\}$ exists.
According to continuity of $L(x, y)$ on $\mathbb{R}_{+} \times \mathbb{R}_{+}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L\left(c_{n}, d_{n}\right)=L\left(\lim _{n \rightarrow \infty} c_{n}, \lim _{n \rightarrow \infty} d_{n}\right)=L\left(\mu_{E G}, \mu_{E G}\right)=\mu_{E G} \tag{4.33}
\end{equation*}
$$

And then it follows from (4.30) that

$$
\begin{equation*}
L(a, b)>L(E, G)>\cdots>L\left(c_{n}, d_{n}\right)>\cdots>\mu_{E G} \tag{4.34}
\end{equation*}
$$

It is another right approximation of EGM that more precise than $\left\{c_{n}\right\}$.
Remark 3. By (4.22), (4.24), 4.32) and (4.34, we obtain immediately the following inequality chain:

$$
\begin{align*}
\sqrt{E G} & <\mu_{E G}<\cdots<L\left(c_{n}, d_{n}\right)<\cdots<L(E, G)<L(a, b) \tag{4.35}\\
& <L(A, G)<\cdots<L\left(a_{n}, b_{n}\right)<\cdots<\mu_{A G}<\frac{A+G}{2}
\end{align*}
$$

References

[1] J. M. Borwein and P. B. Borwein and, Pi and the AGM, John Wiley and Sons, 1987. (New York)
[2] J. M. Borwein and P. B. Borwein, Inequalities for compound mean iterations with logarithmic asymptotes, J. Math. Anal., 177(1993), 585-608.
[3] B. C. Carlson and M. Vuorinen, An inequality of the AGM and the logarithmic mean, SIAM Rev., 33(1991), 655, Problem 91-117.
[4] J. Karamata, quélques problémes posés par Ramanujan J. Indian Math. Soc. (N. S.) 24(1960), 343-365.
[5] J.-Ch. Kuang, Applied Inequalities, 2nd ed., Hunan Education Press, Changsha City, Hunan Province, China, 1993. (Chinese)
[6] J. Sandor, On the identric and logarithmic means. Aequations Math. 40(1990), 261270.
[7] J. Sandor, On certain identities for means, Studia Univ. Babes-Bolyai, 38(1993), 7-141.
[8] J. Sandor and Wanlan Wang, On Certain Identities for Means II, Journal of Chengdu University (Natural science), 20(2)(2001), 6-8.
[9] K. B. Stolarsky, Generalizations of the Logarithmic Mean, Math. Mag. 48(1975), 87-92.
[10] Zhen-Hang Yang, On the Homogeneous Functions with Two Parameters and Its Monotonicity, RGMIA Research Report Collection, 8(2), Article 10, 2005. [ONLINE] Available online at http://rgmia.vu.edu.au/v8n2.html.
[11] Zhen-Hang Yang, On The Logarithmic Convexity for Two-parameters Homogeneous Functions, RGMIA Research Report Collection, 8(2), Article 21, 2005. [ONLINE] Available online at http://rgmia.vu.edu.au/v8n2.html.
[12] Zhen-Hang Yang, On Refinements and Extensions of Log-convexity for Twoparameter Homogeneous Functions, RGMIA Research Report Collection, 8(3), Article 12, 2005. [ONLINE] Available online at http://rgmia.vu.edu.au/v8n3.html.

Zhejiang Electric Power Vocational Technical College, Hangzhou, Zhejiang, China, 311600

E-mail address: yzhkm@163.com

