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Abstract. A four-parameter homogeneous mean F (p, q; r, s; a, b) is defined by
another approach. The criterion for monotonicity and logarithmically convex-

ity of which are presented, and two refined two-parameter inequality’s chains

concerning some classical mean values are deduced.

1. Introduction

The so-called two-parameter mean or extended mean values between two unequal
positive numbers x and y were defined first by K.B. Stolarsky [10] as

(1.1) E(r, s;x, y) =



(
s(xr − yr)
r(xs − ys)

) 1
r−s

, r 6= s, rs 6= 0;(
xr − yr

r(lnx− ln y)

) 1
r

, r 6= 0, s = 0;(
xs − ys

s(lnx− ln y)

) 1
s

, r = 0, s 6= 0;

exp
(

xr lnx− yr ln y

xr − yr
− 1

r

)
, r = s 6= 0;

√
xy, r = s = 0.

.

It contains many mean values, for instance:

E(1, 0;x, y) = L(x, y) =
{ x−y

ln x−ln y , x 6= y;
x, x = y.

(1.2)

E(1, 1;x, y) = E(x, y) =

 e−1

(
xx

yy

) 1
x−y

, x 6= y;

x, x = y.

(1.3)

E(2, 1;x, y) = A(x, y) =
x + y

2
.(1.4)

E(
3
2
,
1
2
;x, y) = h(x, y) =

x +
√

xy + y

3
.(1.5)

The monotonicity of E(r, s;x, y) has been researched by K.B. Stolarsky [10], E.
B. Leach and M. C. Sholander [7] and others also in [3, 8, 9, 19] using different
ideas and simpler methods.

Feng Qi studied the log-convexity for the parameters of the extended mean in [9],
and pointed out the two-parameters mean is a log-concave function with respect to
either parameter r or s on interval (0,+∞) and is a log-convex function on interval
(−∞, 0).
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In [13], Alfred Witkowski considered more general means defined by

(1.6) R(u, v; r, s;x, y) =
[
E(u, v;xr, yr)
E(u, v;xs, ys)

] 1
r−s

further and the following results for the monotonicity of R were obtained:

Theorem 1. (Corollary 4 in [13]) R increases in r and s if u+v > 0 and decreases
otherwise.

Theorem 2. (Corollary 5 in [13]) R increases in u and v if r+s > 0 and decreases
otherwise.

On the other hand, the extended mean was generalized to two-parameter homo-
geneous functions in [15, 16]. That is:

Definition 1. Assume f : U(j R+ ×R+) → R+ is an n-order homogeneous func-
tion for variables x and y, and is continuous and 1st partial derivatives exist,
(a, b) ∈ R+ × R+ with a 6= b, (p, q) ∈ R× R.

If (1, 1) /∈ U, then define that

Hf (p, q; a, b) =
[
f(ap, bp)
f(aq, bq)

] 1
p−q

(p 6= q, pq 6= 0),(1.7)

Hf (p, p; a, b) = lim
q→p

Hf (a, b; p, q) = Gf,p(p = q 6= 0),(1.8)

where

(1.9) Gf,p = G
1
p

f (ap, bp), Gf (x, y) = exp
[
xfx(x, y) lnx + yfy(x, y) ln y

f(x, y)

]
,

fx(x, y) and fy(x, y) denote partial derivatives with respect to 1st and 2nd variable
of f(x, y) respectively.

If (1, 1) ∈ U, then define further

Hf (p, 0; a, b) =
[
f(ap, bp)
f(1, 1)

] 1
p

(p 6= 0, q = 0),(1.10)

Hf (0, q; a, b) =
[
f(aq, bq)
f(1, 1)

] 1
q

(p = 0, q 6= 0),(1.11)

Hf (0, 0; a, b) = lim
p→0

Hf (a, b; p, 0) = a
fx(1,1)
f(1,1) b

fy(1,1)
f(1,1) (p = q = 0).(1.12)

When f(x, y) = L(x, y), we can get two-parameter logarithmic meanHL(p, q; a, b),
which is just equal to extended mean E(p, q; a, b) defined by (1.1). For avoiding
confusion, the extended mean will be called two-parameter logarithmic mean, and
denote by HL(p, q; a, b) or HL(p, q) or HL in what follows.

Concerning the monotonicity and log-convexity of the two-parameter homoge-
neous functions, there are the following results:

Theorem 3. [15, 16]Let f(x, y) be a positive n-order homogenous function defined
on U(j R+×R+) and be 2nd differentiable. If I1 = (ln f)xy < (>)0, then Hf (p, q)
is strictly increasing (decreasing) in either p or q on (−∞, 0) ∪ (0,+∞).

Theorem 4. [17, 18]Let f(x, y) be a positive n-order homogenous function defined
on U(jR+ × R+) and be 3rd differentiable. If

(1.13) J = (x− y)(xI1)x < (>)0, where I1 = (ln f)xy,

then Hf (p, q) is strictly log-convex (log-concave) in either p or q on (0,+∞), and
log-concave (log-convex) on (−∞, 0).

By the above theorems we have
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Corollary 1. The conditions are the same as in Theorem 3. If (1.13) holds, then
Hf (p, 1−p) is strictly decreasing (increasing) in p on (0, 1

2 ), increasing (decreasing)
on ( 1

2 , 1).
If f(x, y) is symmetric with respect to x and y further, then the above monotone

interval can be extended from (0, 1
2 ) to (−∞, 0)∪(0, 1

2 ) and ( 1
2 , 1) to ( 1

2 , 1)∪(1,+∞),
respectively.

Corollary 2. The conditions are the same as Theorem 3. If (1.13) holds, then for
p, q ∈ (0,+∞) with p 6= q, there is

(1.14) Gf, p+q
2

< (>)Hf (p, q) < (>)
√

Gf,pGf,q.

For p, q ∈ (−∞, 0) with p 6= q, inequality (1.14) is reversed.
If f(x, y) is defined on R+×R+ and is symmetric with respect to x and y further,

then substituting p + q > 0 for p, q ∈ (0,+∞) and p + q < 0 for p, q ∈ (−∞, 0),
(1.14) is also true, respectively.

As applications of the above results, we also have the following conclusions:

Conclusion 1. For f(x, y) = L(x, y), A(x, y), E(x, y), where x, y > 0 with x 6= y,
then

1) Hf (p, q) are strictly increasing in either p or q on (−∞,+∞);
2) Hf (p, q) are strictly log-concave in either p or q on (0,+∞), and log-convex

on (−∞, 0);
3) Hf (p, 1 − p) are strictly increasing in p on (−∞, 1

2 ), and decreasing on
( 1
2 ,+∞).
4) If p + q > 0, then

(1.15) Gf, p+q
2

> Hf (p, q) >
√

Gf,pGf,q.

Inequality (1.15) is reversed if p + q < 0.

Conclusion 2. For f(x, y) = D(x, y) = |x− y|, where x, y > 0 with x 6= y, then
1) HD(p, q) is strictly decreasing in either p or q on (−∞, 0) ∪ (0,+∞);
2) Hf (p, q) is strictly log-concave in either p or q on (−∞, 0), and log-convex on

(0,+∞);
3) HD(p, 1− p) is strictly decreasing in p on (−∞, 0)∪ (0, 1

2 ), and increasing on
( 1
2 , 1) ∪ (1,+∞);
4) If p, q ∈ (0,+∞), there is

(1.16) GD, p+q
2

< HD(p, q) <
√

GD,pGD,q.

Inequality (1.16) is reversed if p, q ∈ (−∞, 0).

2. Main Results

Let us substitute HL(r, s;x, y) for f(x, y) in Definition 1, then Hf (p, q; a, b) is a
mean of positive x and y with four parameters r, s, p and q, which is called four-
parameter mean values. For expedience, we will adopt our notations to introduce
the Definition.

Definition 2. Assume (a, b) ∈ R+×R+ with a 6= b, (p, q), (r, s) ∈ R×R, then call
F (p, q; r, s; a, b) four-parameter homogeneous mean, which is defined as follows:

(2.1)

F (p, q; r, s; a, b) =
[
L(apr, bpr)
L(aps, bps)

L(aqs, bqs)
L(aqr, bqr)

] 1
(p−q)(r−s)

, if pqrs(p− q)(r − s) 6= 0,
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or

(2.2) F (p, q; r, s; a, b) =
[
apr − bpr

aps − bps

aqs − bqs

aqr − bqr

] 1
(p−q)(r−s)

,if pqrs(p− q)(r − s) 6= 0.

if pqrs(p−q)(r−s) = 0, then the F (a, b; p, q; r, s) are defined as its corresponding
limits, for example:

F (p, p; r, s; a, b) = lim
q→p

F (a, b; p, q; r, s) =
[
E(apr, bpr)
E(aps, bps)

] 1
p(r−s)

, if prs(r − s) 6= 0, p = q,

F (p, 0; r, s; a, b) = lim
q→0

F (a, b; p, q; r, s) =
[
L(apr, bpr)
L(aps, bps)

] 1
p(r−s)

, if prs(r − s) 6= 0, q = 0,

F (0, 0; r, s; a, b) = lim
p→0

F (a, b; p, 0; r, s) = G(a, b), if rs(r − s) 6= 0, p = q = 0,

where L(x, y), E(x, y)are defined by (1.2), (1.3) respectively, G(a, b) =
√

ab

In the case of not being confused, we set

F (p, q; r, s; a, b) = F (p, q) = F (r, s) = F (p, q; r, s) = F (a, b)

The following properties of four-parameter mean values F (a, b; p, q; r, s) are ver-
ified easily:
Property 1 F (p, q; r, s; a, b) are symmetric with respect to a and b, i.e.

(2.3) F (a, b) = F (b, a);

Property 2 F (p, q; r, s; a, b) are symmetric with respect to p and q , i.e.

(2.4) F (p, q) = F (q, p);

Property 3 F (p, q; r, s; a, b) are symmetric with respect to r and s, i.e.

(2.5) F (r, s) = F (s, r);

Property 4 F (p, q; r, s; a, b) are symmetric with respect to (p, q) and (r, s), i.e.

(2.6) F (p, q; r, s) = F (r, s; p, q).

Obviously, so long as the signs of I1 and J are certain, then the monotonicity
and log-convexity of Hf (p, q) with respect to either p or q are also certain with it.
For example, for f(x, y) = L(x, y), A(x, y), E(x, y), there are I1 < 0, J > 0, and
then corresponding monotonicity and log-convexity of two-parameter homogeneous
functions Hf (p, q) are confirmed.

Owing to that HL(r, s;x, y) contain L(x, y), A(x, y) and E(x, y), naturally, we
could make conjecture on there are I1 = (ln f)xy < 0, J = (x − y)(xI1)x > 0
for f(x, y) =HL(r, s;x, y). The purpose of this paper is to verify the conjecture,
and get accordingly the following results on the monotonicity and log-convexity of
Hf (p, q), where f(x, y) =HL(r, s;x, y).

Theorem 5. If r + s > (<)0, then F (p, q; r, s; a, b) are strictly increasing (decreas-
ing) in either p or q on (−∞,+∞);

Theorem 6. If r + s > (<)0, then F (p, q; r, s; a, b) are strictly log-concave (log-
convex) in either p or q on (0,+∞), and log-convex (log-concave) on (−∞, 0);

Corollary 3. If r + s > (<)0, then F (p, 1 − p; r, s; a, b) are strictly increasing
(decreasing) in p on (−∞, 1

2 ), and decreasing (increasing) on ( 1
2 ,+∞).
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Notice for f(x, y) =HL(r, s;x, y), because

Gf (x, y) = exp
[
xfx(x, y) lnx + yfy(x, y) ln y

f(x, y)

]
= exp

[
1

r − s

(
rxr

xr − yr
− sxs

xs − ys

)
lnx +

1
r − s

(
− ryr

xr − yr
+

sys

xs − ys

)
ln y

]
= exp

1
r−s

[(
xr

xr − yr
lnxr − yr

xr − yr
ln yr

)
−
(

xs

xs − ys
lnxs − ys

xs − ys
ln ys

)]
=

[
E(xr, yr)
E(xs, ys)

] 1
r−s

,

by Theorem 6 and 2, we get

Corollary 4. Suppose (p + q)(r + s)< 0, then

(2.7) GHL, p+q
2

< F (p, q; r, s; a, b) <
√

GHL,pGHL,q

where GHL,t = G
1
t
HL

(at, bt), GHL
(x, y) =

[
E(xr, yr)
E(xs, ys)

] 1
r−s

, E(x, y) is defined by

(1.3).

Inequality (2.7) is reversed if (p + q)(r + s)> 0.

3. Lemmas

The following three lemmas are useful in proofs of the main results.

Lemma 1. Suppose x, y > 0 with x 6= y,let

(3.1) K(t) =

 xtyt

[
xt − yt

t(x− y)

]−2

, t 6= 0;

L2(x, y), t = 0.

then we have
1) K(−t) = K(t);
2) K(t) is strictly increasing in (−∞, 0), and decreasing in (0,+∞).

Proof. 1) An easy computation results in part 1) of the Lemma, of which details
are omitted.

2) By directly calculations, we get

K ′(t)
K(t)

= ln x + ln y − 2(xt lnx− yt ln y)
xt − yt

+
2
t

=
2
t

[
ln
√

xtyt − (
xt lnx− yt ln y

xt − yt
− 1)

]
=

2
t

[
lnG(xt, yt)− lnE(xt, yt)

]
.

By the well-known inequality E(a, b) >
√

ab, we can get part two of the Lemma
immediately.

The following Lemma is a well-known inequality [5], which will be used in proof
of Lemma 3.

Lemma 2. For positive numbers a and b, the following inequality holds:

(3.2) L(a, b) <
A + 2G

3
=

a + 4
√

ab + b

6
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Lemma 3. Suppose x, y > 0 with x 6= y,let

(3.3) N(t) =

 xtyt x
t + yt

2

[
xt − yt

t(x− y)

]−3

, t 6= 0;

L3(x, y), t = 0.

then we have
1) N(−t) = N(t);
2) N(t) is strictly increasing in (−∞, 0), and decreasing in (0,+∞).

Proof. 1) An easy computation results in part one, of which details are omitted.
2) By direct calculations, we get

N ′(t)
N(t)

= lnx + ln y +
xt lnx + yt ln y

xt + yt
− 3(xt lnx− yt ln y)

xt − yt
+

3
t

=
(

1 +
xt

xt + yt
− 3xt

xt − yt

)
lnx +

(
1 +

yt

xt + yt
+

3yt

xt − yt

)
ln y +

3
t

= −x2t + 4xtyt + y2t

x2t − y2t
lnx +

x2t + 4xtyt + y2t

x2t − y2t
ln y +

3
t

=
3
t
− x2t + 4xtyt + y2t

x2t − y2t
(lnx− ln y)

=
3
t

2t(lnx− ln y)
x2t − y2t

[
x2t − y2t

2t(lnx− ln y)
− x2t + 4xtyt + y2t

6

]
.

Substituting a, b for x2t, y2t in the above last one expression, then

(3.4)
N ′(t)
N(t)

=
3
t
L−1(a, b)

[
L(a, b)− a + 4

√
ab + b

6

]
,

in which L(a, b)− a + 4
√

ab + b

6
< 0 by Lemma 2, and L−1(a, b) > 0. Consequently,

N ′(t) > 0 if t < 0, and N ′(t) < 0 if t > 0. The proof is completed.

4. Proofs of Main Results

Since F (a, b; p, q; r, s) = HHL
(a, b; p, q), where HL = HL(r, s;x, y) = E(r, s;x, y)

is defined by (1.3), it is enough to make certain the signs of I1 = (lnHL)xy and
J = (x− y)(xI1)x.

Proof of Theorem 5. Let us observe that

lnHL =
1

r − s
[ln |s|+ ln |xr − yr| − ln |r| − ln |xs − ys|] .

Through straightforward computations, we have

I1 = (lnHL)xy =
1

xy (r − s)

[
r2xryr

(xr − yr)2
− s2xsys

(xs − ys)2

]

=
1

xy (r − s)

[
r2xryr

(xr − yr)2
− s2xsys

(xs − ys)2

]

=
1

xy(x− y)2
K(r)−K(s)

r − s
.
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By Lemma 1, if r > s > 0, we have
K(r)−K(s)

r − s
< 0; If r > −s > 0, we have also

K(r)−K(s)
r − s

=
K(r)−K(−s)

r + (−s)
< 0. Thus I1 < 0 if r + s > 0.Likewise I1 > 0 if

r + s < 0.
By Theorem 3, this proof is completed.

proof of Theorem 6. Let us consider that

J = (x− y) (xI1)x =
x− y

xy(r − s)

[
−r3xryr (xr + yr)

(xr − yr)3
+

s3xsys(xs + ys)
(xs − ys)3

]

=
−2

xy(x− y)2
N(r)−N(s)

r − s
.

By Lemma 3, if r > s > 0, we have
N(r)−N(s)

r − s
< 0; If r > −s > 0, we also have

N(r)−N(s)
r − s

=
N(r)−N(−s)

r + (−s)
< 0. Thus J > 0 if r + s > 0.Likewise J < 0 if

r + s < 0.
Using Theorem 4, this completes the proof.

5. Inequality’s Chains for Two-parameter Means

The four-parameter homogeneous mean values F (p, q; r, s; a, b) contain a good
many two-parameter means, for example: (see Table 1)

(p, q) F (p, q; r, s; a, b) (p, q) F (p, q; r, s; a, b)

(2, 1)
(

ar + br

as + bs

) 1
r−s

( 1
2 , 1

2 )
[
E(a

r
2 , b

r
2 )

E(a
s
2 , b

s
2 )

] 2
r−s

(1, 1)
[
E(ar, br)
E(as, bs)

] 1
r−s

( 3
4 , 1

4 )

(
a

r

2 + (
√

ab)
r
2 + b

r
2

a
s
2 + (

√
ab)

s
2 + b

s
2

) 2
r−s

(1, 1
2 )

(
a

r
2 + b

r
2

a
s
2 + b

s
2

) 2
r−s

( 2
3 , 1

3 )
(

a
r
3 + b

r
3

a
s
3 + b

s
3

) 3
r−s

(0, 1)
(

s
r

ar − br

as − bs

) 1
r−s

( 3
2 ,− 1

2 )

(
ar + (

√
ab)r + br

as + (
√

ab)s + bs

) 1
2(r−s)

(
√

ab)
1
2

(1,−1)
√

ab (2,−1)
(

ar + br

as + bs

) 1
3(r−s)

(
√

ab)
2
3

%

Table 1. some familiar two-parameter mean values

Example 1. By Theorem 5, we can get a series of inequalities in form of two-
parameter. If r + s > 0, then

(5.1)
F (1,−1; r, s; a, b) < F (0, 1; r, s; a, b) < F (1, 1

2 ; r, s; a, b)

< F (1, 1; r, s; a, b) < F (2, 1; r, s; a, b),
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i.e.
(5.2)

G <

(
s

r

ar − br

as − bs

) 1
r−s

<

(
a

r
2 + b

r
2

a
s
2 + b

s
2

) 2
r−s

<

[
E(ar, br)
E(as, bs)

] 1
r−s

<

(
ar + br

as + bs

) 1
r−s

,

which can be concisely denoted by:
(5.3)

G <

[
L(ar, br)
L(as, bs)

] 1
r−s

<

[
A(a

r
2 , b

r
2 )

A(a
s
2 , b

s
2 )

] 2
r−s

<

[
E(ar, br)
E(as, bs)

] 1
r−s

<

[
A(ar, br)
A(as, bs)

] 1
r−s

,

where L, E, A are defined by (1.2)-(1.4).

Remark 1. Inequality (5.2) or (5.3) is a generalization of the following inequalities

G < L <
A + G

2
< E < A.

Example 2. By Theorem 3, we can get another more refined inequalities. If r+s >
0, then

(5.4)
F ( 1

2 , 1
2 ; r, s; a, b) > F ( 2

3 , 1
3 ; r, s; a, b) > F ( 3

4 , 1
4 ; r, s; a, b) >

F (1, 0; r, s; a, b) > F ( 3
2 ,− 1

2 ; r, s; a, b) > F (2,−1; r, s; a, b),

i.e.

(5.5)

[
E(a

r
2 ,b

r
2 )

E(a
s
2 ,b

s
2 )

] 2
r−s

>

(
a

r
3 + b

r
3

a
s
3 + b

s
3

) 3
r−s

>

(
a

r

2 +
√

a
r

2 b
r
2 + b

r
2

a
s
2 +

√
a

s
2 b

s
2 + b

s
2

) 2
r−s

>

(
s

r

ar − br

as − bs

) 1
r−s

>

(
ar +

√
arbr + br

as +
√

asbs + bs

) 1
2(r−s) √

G >

(
ar + br

as + bs

) 1
3(r−s)

G
2
3 ,

which can be concisely denoted by

(5.6)

[
E(a

r
2 , b

r
2 )

E(a
s
2 , b

s
2 )

] 2
r−s

>

[
A(a

r
3 , b

r
3 )

A(a
s
3 , b

s
3 )

] 3
r−s

>

[
h(a

r

2 , b
r
2 )

h(a
s
2 , b

s
2 )

] 2
r−s

>

[
L(ar, br)
L(as, bs)

] 1
r−s

>

[
h(ar, br)
h(as, bs)

] 1
2(r−s) √

G >

[
A(ar, br)
A(as, bs)

] 1
3(r−s)

G
2
3 ,

where L(x, y), E(x, y) A(x, y) and h(x, y) and are defined by (1.2)-(1.5), respec-
tively.

Example 3. If replace a, b with a2, b2, then inequalities (5.6) can be rewritten as:

(5.7)

[
E(ar, br)
E(as, bs)

] 1
r−s

>

[
A(a

2r
3 , b

2r
3 )

A(a
2s
3 , b

2s
3 )

] 3
2(r−s)

>

[
h(ar, br)

h(as, bs)

] 1
r−s

>

[
L(a2r, b2r)
L(a2s, b2s)

] 1
2(r−s)

>

[
h(a2r, b2r)
h(a2s, b2s)

] 1
4(r−s) √

G >

[
A(a2r, b2r)
A(a2s, b2s)

] 1
6(r−s)

G
2
3 .

Remark 2. Inequality (5.6) or (5.7) not only strengthen and generalize Lin Tong-
po and Stolarsky inequality, but also unifies them into the same inequality’s chain.
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