ON THE MONOTONICITY AND LOG-CONVEXITY OF A FOUR-PARAMETER HOMOGENEOUS MEAN

ZHEN-HANG YANG

Abstract

A four-parameter homogeneous mean $\boldsymbol{F}(p, q ; r, s ; a, b)$ is defined by another approach. The criterion for monotonicity and logarithmically convexity of which are presented, and two refined two-parameter inequality's chains concerning some classical mean values are deduced.

1. Introduction

The so-called two-parameter mean or extended mean values between two unequal positive numbers x and y were defined first by K.B. Stolarsky [10] as

$$
E(r, s ; x, y)= \begin{cases}\left(\frac{s\left(x^{r}-y^{r}\right)}{r\left(x^{s}-y^{s}\right)}\right)^{\frac{1}{r-s}}, & r \neq s, r s \neq 0 \\ \left(\frac{x^{r}-y^{r}}{r(\ln x-\ln y)}\right)^{\frac{1}{r}}, & r \neq 0, s=0 \tag{1.1}\\ \left(\frac{x^{s}-y^{s}}{s(\ln x-\ln y)}\right)^{\frac{1}{s}}, & r=0, s \neq 0 \\ \exp \left(\frac{x^{r} \ln x-y^{r} \ln y}{x^{r}-y^{r}}-\frac{1}{r}\right), & r=s \neq 0 \\ \sqrt{x y}, & r=s=0\end{cases}
$$

It contains many mean values, for instance:

$$
\begin{align*}
E(1,0 ; x, y) & =L(x, y)=\left\{\begin{array}{cl}
\frac{x-y}{\ln x-\ln y}, & x \neq y ; \\
x, & x=y
\end{array}\right. \tag{1.2}\\
E(1,1 ; x, y) & =E(x, y)=\left\{\begin{array}{cl}
e^{-1}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}}, & x \neq y \\
x, & x=y
\end{array}\right. \tag{1.3}\\
E(2,1 ; x, y) & =A(x, y)=\frac{x+y}{2} . \tag{1.4}\\
E\left(\frac{3}{2}, \frac{1}{2} ; x, y\right) & =h(x, y)=\frac{x+\sqrt{x y}+y}{3} . \tag{1.5}
\end{align*}
$$

The monotonicity of $E(r, s ; x, y)$ has been researched by K.B. Stolarsky [10], E. B. Leach and M. C. Sholander [7] and others also in [3, 8, 9, 19] using different ideas and simpler methods.

Feng Qi studied the log-convexity for the parameters of the extended mean in 9, and pointed out the two-parameters mean is a log-concave function with respect to either parameter r or s on interval $(0,+\infty)$ and is a log-convex function on interval $(-\infty, 0)$.

Date: May 02, 2005.
2000 Mathematics Subject Classification. Primary 26A51, 26B25; Secondary 26D15, 26 E60.
Key words and phrases. homogeneous functions, monotonicity, log-convexity, mean, inequalities chain .

In [13], Alfred Witkowski considered more general means defined by

$$
\begin{equation*}
R(u, v ; r, s ; x, y)=\left[\frac{E\left(u, v ; x^{r}, y^{r}\right)}{E\left(u, v ; x^{s}, y^{s}\right)}\right]^{\frac{1}{r-s}} \tag{1.6}
\end{equation*}
$$

further and the following results for the monotonicity of R were obtained:
Theorem 1. (Corollary 4 in [13]) R increases in r and s if $u+v>0$ and decreases otherwise.

Theorem 2. (Corollary 5 in [13]) R increases in u and v if $r+s>0$ and decreases otherwise.

On the other hand, the extended mean was generalized to two-parameter homogeneous functions in [15, 16. That is:
Definition 1. Assume $f: \mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right) \rightarrow \mathbb{R}_{+}$is an n-order homogeneous function for variables x and y, and is continuous and 1st partial derivatives exist, $(a, b) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$with $a \neq b,(p, q) \in \mathbb{R} \times \mathbb{R}$.

If $(1,1) \notin \mathbb{U}$, then define that
where

$$
\begin{align*}
\mathcal{H}_{f}(p, q ; a, b) & =\left[\frac{f\left(a^{p}, b^{p}\right)}{f\left(a^{q}, b^{q}\right)}\right]^{\frac{1}{p-q}}(p \neq q, p q \neq 0) \tag{1.7}\\
\mathcal{H}_{f}(p, p ; a, b) & =\lim _{q \rightarrow p} \mathcal{H}_{f}(a, b ; p, q)=G_{f, p}(p=q \neq 0) \tag{1.8}
\end{align*}
$$

$$
\begin{equation*}
G_{f, p}=G_{f}^{\frac{1}{p}}\left(a^{p}, b^{p}\right), \quad G_{f}(x, y)=\exp \left[\frac{x f_{x}(x, y) \ln x+y f_{y}(x, y) \ln y}{f(x, y)}\right] \tag{1.9}
\end{equation*}
$$

$f_{x}(x, y)$ and $f_{y}(x, y)$ denote partial derivatives with respect to 1 st and $2 n d$ variable of $f(x, y)$ respectively.

If $(1,1) \in \mathbb{U}$, then define further

$$
\begin{align*}
\mathcal{H}_{f}(p, 0 ; a, b) & =\left[\frac{f\left(a^{p}, b^{p}\right)}{f(1,1)}\right]^{\frac{1}{p}}(p \neq 0, q=0) \tag{1.10}\\
\mathcal{H}_{f}(0, q ; a, b) & =\left[\frac{f\left(a^{q}, b^{q}\right)}{f(1,1)}\right]^{\frac{1}{q}}(p=0, q \neq 0) \tag{1.11}\\
\mathcal{H}_{f}(0,0 ; a, b) & =\lim _{p \rightarrow 0} \mathcal{H}_{f}(a, b ; p, 0)=a^{\frac{f_{x}(1,1)}{f(1,1)}} b^{\frac{f_{y}(1,1)}{f(1,1)}}(p=q=0) \tag{1.12}
\end{align*}
$$

When $f(x, y)=L(x, y)$, we can get two-parameter logarithmic mean $\mathcal{H}_{L}(p, q ; a, b)$, which is just equal to extended mean $E(p, q ; a, b)$ defined by 1.1. For avoiding confusion, the extended mean will be called two-parameter logarithmic mean, and denote by $\mathcal{H}_{L}(p, q ; a, b)$ or $\mathcal{H}_{L}(p, q)$ or \mathcal{H}_{L} in what follows.

Concerning the monotonicity and log-convexity of the two-parameter homogeneous functions, there are the following results:
Theorem 3. 15, 16 Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$and be 2nd differentiable. If $I_{1}=(\ln f)_{x y}<(>) 0$, then $\mathcal{H}_{f}(p, q)$ is strictly increasing (decreasing) in either p or q on $(-\infty, 0) \cup(0,+\infty)$.

Theorem 4. [17, 18 Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$and be 3rd differentiable. If

$$
\begin{equation*}
J=(x-y)\left(x I_{1}\right)_{x}<(>) 0, \text { where } I_{1}=(\ln f)_{x y} \tag{1.13}
\end{equation*}
$$

then $\mathcal{H}_{f}(p, q)$ is strictly log-convex (log-concave) in either p or q on $(0,+\infty)$, and log-concave (log-convex) on $(-\infty, 0)$.

By the above theorems we have

Corollary 1. The conditions are the same as in Theorem 3. If (1.13) holds, then $\mathcal{H}_{f}(p, 1-p)$ is strictly decreasing (increasing) in p on $\left(0, \frac{1}{2}\right)$, increasing (decreasing) on $\left(\frac{1}{2}, 1\right)$.

If $f(x, y)$ is symmetric with respect to x and y further, then the above monotone interval can be extended from $\left(0, \frac{1}{2}\right)$ to $(-\infty, 0) \cup\left(0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right)$ to $\left(\frac{1}{2}, 1\right) \cup(1,+\infty)$, respectively.

Corollary 2. The conditions are the same as Theorem 3. If (1.13) holds, then for $p, q \in(0,+\infty)$ with $p \neq q$, there is

$$
\begin{equation*}
G_{f, \frac{p+q}{2}}<(>) \mathcal{H}_{f}(p, q)<(>) \sqrt{G_{f, p} G_{f, q}} . \tag{1.14}
\end{equation*}
$$

For $p, q \in(-\infty, 0)$ with $p \neq q$, inequality (1.14) is reversed.
If $f(x, y)$ is defined on $\mathbb{R}_{+} \times \mathbb{R}_{+}$and is symmetric with respect to x and y further, then substituting $p+q>0$ for $p, q \in(0,+\infty)$ and $p+q<0$ for $p, q \in(-\infty, 0)$, (1.14) is also true, respectively.

As applications of the above results, we also have the following conclusions:
Conclusion 1. For $f(x, y)=L(x, y), A(x, y), E(x, y)$, where $x, y>0$ with $x \neq y$, then

1) $\mathcal{H}_{f}(p, q)$ are strictly increasing in either p or q on $(-\infty,+\infty)$;
2) $\mathcal{H}_{f}(p, q)$ are strictly log-concave in either p or q on $(0,+\infty)$, and log-convex on $(-\infty, 0)$;
3) $\mathcal{H}_{f}(p, 1-p)$ are strictly increasing in p on $\left(-\infty, \frac{1}{2}\right)$, and decreasing on $\left(\frac{1}{2},+\infty\right)$.
4) If $p+q>0$, then

$$
\begin{equation*}
G_{f, \frac{p+q}{2}}>\mathcal{H}_{f}(p, q)>\sqrt{G_{f, p} G_{f, q}} . \tag{1.15}
\end{equation*}
$$

Inequality 1.15) is reversed if $p+q<0$.
Conclusion 2. For $f(x, y)=D(x, y)=|x-y|$, where $x, y>0$ with $x \neq y$, then

1) $\mathcal{H}_{D}(p, q)$ is strictly decreasing in either p or q on $(-\infty, 0) \cup(0,+\infty)$;
2) $\mathcal{H}_{f}(p, q)$ is strictly log-concave in either p or q on $(-\infty, 0)$, and log-convex on $(0,+\infty)$;
3) $\mathcal{H}_{D}(p, 1-p)$ is strictly decreasing in p on $(-\infty, 0) \cup\left(0, \frac{1}{2}\right)$, and increasing on $\left(\frac{1}{2}, 1\right) \cup(1,+\infty)$;
4) If $p, q \in(0,+\infty)$, there is

$$
\begin{equation*}
G_{D, \frac{p+q}{2}}<\mathcal{H}_{D}(p, q)<\sqrt{G_{D, p} G_{D, q}} . \tag{1.16}
\end{equation*}
$$

Inequality 1.16) is reversed if $p, q \in(-\infty, 0)$.

2. Main Results

Let us substitute $\mathcal{H}_{L}(r, s ; x, y)$ for $f(x, y)$ in Definition 1, then $\mathcal{H}_{f}(p, q ; a, b)$ is a mean of positive x and y with four parameters r, s, p and q, which is called fourparameter mean values. For expedience, we will adopt our notations to introduce the Definition.

Definition 2. Assume $(a, b) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$with $a \neq b,(p, q),(r, s) \in \mathbb{R} \times \mathbb{R}$, then call $\boldsymbol{F}(p, q ; r, s ; a, b)$ four-parameter homogeneous mean, which is defined as follows:

$$
\begin{equation*}
\boldsymbol{F}(p, q ; r, s ; a, b)=\left[\frac{L\left(a^{p r}, b^{p r}\right)}{L\left(a^{p s}, b^{p s}\right)} \frac{L\left(a^{q s}, b^{q s}\right)}{L\left(a^{q r}, b^{q r}\right)}\right]^{\frac{1}{(p-q)(r-s)}} \text {, if } \operatorname{pqrs}(p-q)(r-s) \neq 0 \tag{2.1}
\end{equation*}
$$

or
(2.2) $\boldsymbol{F}(p, q ; r, s ; a, b)=\left[\frac{a^{p r}-b^{p r}}{a^{p s}-b^{p s}} \frac{a^{q s}-b^{q s}}{a^{q r}-b^{q r}}\right]^{\frac{1}{(p-q)(r-s)}}$, if $\operatorname{pqrs}(p-q)(r-s) \neq 0$.
if $\operatorname{pqrs}(p-q)(r-s)=0$, then the $\boldsymbol{F}(a, b ; p, q ; r, s)$ are defined as its corresponding limits, for example:
$\boldsymbol{F}(p, p ; r, s ; a, b)=\lim _{q \rightarrow p} \boldsymbol{F}(a, b ; p, q ; r, s)=\left[\frac{E\left(a^{p r}, b^{p r}\right)}{E\left(a^{p s}, b^{p s}\right)}\right]^{\frac{1}{p(r-s)}}$, if $p r s(r-s) \neq 0, p=q$,
$\boldsymbol{F}(p, 0 ; r, s ; a, b)=\lim _{q \rightarrow 0} \boldsymbol{F}(a, b ; p, q ; r, s)=\left[\frac{L\left(a^{p r}, b^{p r}\right)}{L\left(a^{p s}, b^{p s}\right)}\right]^{\frac{1}{p(r-s)}}$, if $\operatorname{prs}(r-s) \neq 0, q=0$,
$\boldsymbol{F}(0,0 ; r, s ; a, b)=\lim _{p \rightarrow 0} \boldsymbol{F}(a, b ; p, 0 ; r, s)=G(a, b)$, if $r s(r-s) \neq 0, p=q=0$,
where $L(x, y), E(x, y)$ are defined by (1.2), (1.3) respectively, $G(a, b)=\sqrt{a b}$
In the case of not being confused, we set

$$
\boldsymbol{F}(p, q ; r, s ; a, b)=\boldsymbol{F}(p, q)=\boldsymbol{F}(r, s)=\boldsymbol{F}(p, q ; r, s)=\boldsymbol{F}(a, b)
$$

The following properties of four-parameter mean values $\boldsymbol{F}(a, b ; p, q ; r, s)$ are verified easily:
Property $1 \boldsymbol{F}(p, q ; r, s ; a, b)$ are symmetric with respect to a and b, i.e.

$$
\begin{equation*}
\boldsymbol{F}(a, b)=\boldsymbol{F}(b, a) ; \tag{2.3}
\end{equation*}
$$

Property $2 \boldsymbol{F}(p, q ; r, s ; a, b)$ are symmetric with respect to p and q, i.e.

$$
\begin{equation*}
\boldsymbol{F}(p, q)=\boldsymbol{F}(q, p) ; \tag{2.4}
\end{equation*}
$$

Property $3 \boldsymbol{F}(p, q ; r, s ; a, b)$ are symmetric with respect to r and s, i.e.

$$
\begin{equation*}
\boldsymbol{F}(r, s)=\boldsymbol{F}(s, r) ; \tag{2.5}
\end{equation*}
$$

Property $4 \boldsymbol{F}(p, q ; r, s ; a, b)$ are symmetric with respect to (p, q) and (r, s), i.e.

$$
\begin{equation*}
\boldsymbol{F}(p, q ; r, s)=\boldsymbol{F}(r, s ; p, q) \tag{2.6}
\end{equation*}
$$

Obviously, so long as the signs of I_{1} and J are certain, then the monotonicity and log-convexity of $\mathcal{H}_{f}(p, q)$ with respect to either p or q are also certain with it. For example, for $f(x, y)=L(x, y), A(x, y), E(x, y)$, there are $I_{1}<0, J>0$, and then corresponding monotonicity and log-convexity of two-parameter homogeneous functions $\mathcal{H}_{f}(p, q)$ are confirmed.

Owing to that $\mathcal{H}_{L}(r, s ; x, y)$ contain $L(x, y), A(x, y)$ and $E(x, y)$, naturally, we could make conjecture on there are $I_{1}=(\ln f)_{x y}<0, J=(x-y)\left(x I_{1}\right)_{x}>0$ for $f(x, y)=\mathcal{H}_{L}(r, s ; x, y)$. The purpose of this paper is to verify the conjecture, and get accordingly the following results on the monotonicity and log-convexity of $\mathcal{H}_{f}(p, q)$, where $f(x, y)=\mathcal{H}_{L}(r, s ; x, y)$.

Theorem 5. If $r+s>(<) 0$, then $\boldsymbol{F}(p, q ; r, s ; a, b)$ are strictly increasing (decreasing) in either p or q on $(-\infty,+\infty)$;

Theorem 6. If $r+s>(<) 0$, then $\boldsymbol{F}(p, q ; r, s ; a, b)$ are strictly log-concave (logconvex) in either p or q on $(0,+\infty)$, and log-convex (log-concave) on $(-\infty, 0)$;

Corollary 3. If $r+s>(<) 0$, then $\boldsymbol{F}(p, 1-p ; r, s ; a, b)$ are strictly increasing (decreasing) in p on $\left(-\infty, \frac{1}{2}\right)$, and decreasing (increasing) on $\left(\frac{1}{2},+\infty\right)$.

Notice for $f(x, y)=\mathcal{H}_{L}(r, s ; x, y)$, because

$$
\begin{aligned}
G_{f}(x, y) & =\exp \left[\frac{x f_{x}(x, y) \ln x+y f_{y}(x, y) \ln y}{f(x, y)}\right] \\
& =\exp \left[\frac{1}{r-s}\left(\frac{r x^{r}}{x^{r}-y^{r}}-\frac{s x^{s}}{x^{s}-y^{s}}\right) \ln x+\frac{1}{r-s}\left(-\frac{r y^{r}}{x^{r}-y^{r}}+\frac{s y^{s}}{x^{s}-y^{s}}\right) \ln y\right] \\
& =\exp ^{\frac{1}{r-s}}\left[\left(\frac{x^{r}}{x^{r}-y^{r}} \ln x^{r}-\frac{y^{r}}{x^{r}-y^{r}} \ln y^{r}\right)-\left(\frac{x^{s}}{x^{s}-y^{s}} \ln x^{s}-\frac{y^{s}}{x^{s}-y^{s}} \ln y^{s}\right)\right] \\
& =\left[\frac{E\left(x^{r}, y^{r}\right)}{E\left(x^{s}, y^{s}\right)}\right]^{\frac{1}{r-s}},
\end{aligned}
$$

by Theorem 6 and 2 we get
Corollary 4. Suppose $(p+q)(r+s)<0$, then

$$
\begin{equation*}
G_{\mathcal{H}_{L}, \frac{p+q}{2}}<\boldsymbol{F}(p, q ; r, s ; a, b)<\sqrt{G_{\mathcal{H}_{L}, p} G_{\mathcal{H}_{L}, q}} \tag{2.7}
\end{equation*}
$$

where $G_{\mathcal{H}_{L}, t}=G_{\mathcal{H}_{L}}^{\frac{1}{t}}\left(a^{t}, b^{t}\right), G_{\mathcal{H}_{L}}(x, y)=\left[\frac{E\left(x^{r}, y^{r}\right)}{E\left(x^{s}, y^{s}\right)}\right]^{\frac{1}{r-s}}, E(x, y)$ is defined by (1.3).

Inequality 2.7) is reversed if $(p+q)(r+s)>0$.

3. Lemmas

The following three lemmas are useful in proofs of the main results.
Lemma 1. Suppose $x, y>0$ with $x \neq y$,let

$$
K(t)=\left\{\begin{array}{cc}
x^{t} y^{t}\left[\frac{x^{t}-y^{t}}{t(x-y)}\right]^{-2}, & t \neq 0 \tag{3.1}\\
L^{2}(x, y), & t=0
\end{array}\right.
$$

then we have

1) $K(-t)=K(t)$;
2) $K(t)$ is strictly increasing in $(-\infty, 0)$, and decreasing in $(0,+\infty)$.

Proof. 1) An easy computation results in part 1) of the Lemma, of which details are omitted.
2) By directly calculations, we get

$$
\begin{aligned}
\frac{K^{\prime}(t)}{K(t)} & =\ln x+\ln y-\frac{2\left(x^{t} \ln x-y^{t} \ln y\right)}{x^{t}-y^{t}}+\frac{2}{t} \\
& =\frac{2}{t}\left[\ln \sqrt{x^{t} y^{t}}-\left(\frac{x^{t} \ln x-y^{t} \ln y}{x^{t}-y^{t}}-1\right)\right] \\
& =\frac{2}{t}\left[\ln G\left(x^{t}, y^{t}\right)-\ln E\left(x^{t}, y^{t}\right)\right]
\end{aligned}
$$

By the well-known inequality $E(a, b)>\sqrt{a b}$, we can get part two of the Lemma immediately.

The following Lemma is a well-known inequality [5], which will be used in proof of Lemma 3

Lemma 2. For positive numbers a and b, the following inequality holds:

$$
\begin{equation*}
L(a, b)<\frac{A+2 G}{3}=\frac{a+4 \sqrt{a b}+b}{6} \tag{3.2}
\end{equation*}
$$

Lemma 3. Suppose $x, y>0$ with $x \neq y$, let

$$
N(t)=\left\{\begin{array}{cl}
x^{t} y^{t} \frac{x^{t}+y^{t}}{2}\left[\frac{x^{t}-y^{t}}{t(x-y)}\right]^{-3}, & t \neq 0 \tag{3.3}\\
L^{3}(x, y), & t=0
\end{array}\right.
$$

then we have

1) $N(-t)=N(t)$;
2) $N(t)$ is strictly increasing in $(-\infty, 0)$, and decreasing in $(0,+\infty)$.

Proof. 1) An easy computation results in part one, of which details are omitted.
2) By direct calculations, we get

$$
\begin{aligned}
\frac{N^{\prime}(t)}{N(t)} & =\ln x+\ln y+\frac{x^{t} \ln x+y^{t} \ln y}{x^{t}+y^{t}}-\frac{3\left(x^{t} \ln x-y^{t} \ln y\right)}{x^{t}-y^{t}}+\frac{3}{t} \\
& =\left(1+\frac{x^{t}}{x^{t}+y^{t}}-\frac{3 x^{t}}{x^{t}-y^{t}}\right) \ln x+\left(1+\frac{y^{t}}{x^{t}+y^{t}}+\frac{3 y^{t}}{x^{t}-y^{t}}\right) \ln y+\frac{3}{t} \\
& =-\frac{x^{2 t}+4 x^{t} y^{t}+y^{2 t}}{x^{2 t}-y^{2 t}} \ln x+\frac{x^{2 t}+4 x^{t} y^{t}+y^{2 t}}{x^{2 t}-y^{2 t}} \ln y+\frac{3}{t} \\
& =\frac{3}{t}-\frac{x^{2 t}+4 x^{t} y^{t}+y^{2 t}}{x^{2 t}-y^{2 t}}(\ln x-\ln y) \\
& =\frac{3}{t} \frac{2 t(\ln x-\ln y)}{x^{2 t}-y^{2 t}}\left[\frac{x^{2 t}-y^{2 t}}{2 t(\ln x-\ln y)}-\frac{x^{2 t}+4 x^{t} y^{t}+y^{2 t}}{6}\right]
\end{aligned}
$$

Substituting a, b for $x^{2 t}, y^{2 t}$ in the above last one expression, then

$$
\begin{equation*}
\frac{N^{\prime}(t)}{N(t)}=\frac{3}{t} L^{-1}(a, b)\left[L(a, b)-\frac{a+4 \sqrt{a b}+b}{6}\right] \tag{3.4}
\end{equation*}
$$

in which $L(a, b)-\frac{a+4 \sqrt{a b}+b}{6}<0$ by Lemma 2. and $L^{-1}(a, b)>0$. Consequently, $N^{\prime}(t)>0$ if $t<0$, and $N^{\prime}(t)<0$ if $t>0$. The proof is completed.

4. Proofs of Main Results

Since $\boldsymbol{F}(a, b ; p, q ; r, s)=\mathcal{H}_{\mathcal{H}_{L}}(a, b ; p, q)$, where $\mathcal{H}_{L}=\mathcal{H}_{L}(r, s ; x, y)=E(r, s ; x, y)$ is defined by (1.3), it is enough to make certain the signs of $I_{1}=\left(\ln \mathcal{H}_{L}\right)_{x y}$ and $J=(x-y)\left(x I_{1}\right)_{x}$.

Proof of Theorem 5. Let us observe that

$$
\ln \mathcal{H}_{L}=\frac{1}{r-s}\left[\ln |s|+\ln \left|x^{r}-y^{r}\right|-\ln |r|-\ln \left|x^{s}-y^{s}\right|\right] .
$$

Through straightforward computations, we have

$$
\begin{aligned}
I_{1} & =\left(\ln \mathcal{H}_{L}\right)_{x y}=\frac{1}{x y(r-s)}\left[\frac{r^{2} x^{r} y^{r}}{\left(x^{r}-y^{r}\right)^{2}}-\frac{s^{2} x^{s} y^{s}}{\left(x^{s}-y^{s}\right)^{2}}\right] \\
& =\frac{1}{x y(r-s)}\left[\frac{r^{2} x^{r} y^{r}}{\left(x^{r}-y^{r}\right)^{2}}-\frac{s^{2} x^{s} y^{s}}{\left(x^{s}-y^{s}\right)^{2}}\right] \\
& =\frac{1}{x y(x-y)^{2}} \frac{K(r)-K(s)}{r-s} .
\end{aligned}
$$

By Lemma 1 . if $r>s>0$, we have $\frac{K(r)-K(s)}{r-s}<0$; If $r>-s>0$, we have also $\frac{K(r)-K(s)}{r-s}=\frac{K(r)-K(-s)}{r+(-s)}<0$. Thus $I_{1}<0$ if $r+s>0$.Likewise $I_{1}>0$ if $r+s<0$.

By Theorem 3, this proof is completed.
proof of Theorem 6. Let us consider that

$$
\begin{aligned}
J & =(x-y)\left(x I_{1}\right)_{x}=\frac{x-y}{x y(r-s)}\left[-\frac{r^{3} x^{r} y^{r}\left(x^{r}+y^{r}\right)}{\left(x^{r}-y^{r}\right)^{3}}+\frac{s^{3} x^{s} y^{s}\left(x^{s}+y^{s}\right)}{\left(x^{s}-y^{s}\right)^{3}}\right] \\
& =\frac{-2}{x y(x-y)^{2}} \frac{N(r)-N(s)}{r-s}
\end{aligned}
$$

By Lemma 3. if $r>s>0$, we have $\frac{N(r)-N(s)}{r-s}<0$; If $r>-s>0$, we also have $\frac{N(r)-N(s)}{r-s}=\frac{N(r)-N(-s)}{r+(-s)}<0$. Thus $J>0$ if $r+s>0$.Likewise $J<0$ if $r+s<0$.

Using Theorem 4, this completes the proof.

5. Inequality's Chains for Two-Parameter Means

The four-parameter homogeneous mean values $\boldsymbol{F}(p, q ; r, s ; a, b)$ contain a good many two-parameter means, for example: (see Table 1)

(p, q)	$\boldsymbol{F}(p, q ; r, s ; a, b)$	(p, q)	$\boldsymbol{F}(p, q ; r, s ; a, b)$
$(2,1)$	$\left(\frac{a^{r}+b^{r}}{a^{s}+b^{s}}\right)^{\frac{1}{r-s}}$	$\left(\frac{1}{2}, \frac{1}{2}\right)$	$\left[\frac{E\left(a^{\frac{r}{2}}, b^{\frac{r}{2}}\right)}{E\left(a^{\frac{s}{2}}, b^{\frac{s}{2}}\right)}\right]^{\frac{2}{r-s}}$
$(1,1)$	$\left[\frac{E\left(a^{r}, b^{r}\right)}{E\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{r-s}}$	$\left(\frac{3}{4}, \frac{1}{4}\right)$	$\left(\frac{a^{\frac{r}{2}}+(\sqrt{a b})^{\frac{r}{2}}+b^{\frac{r}{2}}}{a^{\frac{s}{2}}+(\sqrt{a b})^{\frac{s}{2}}+b^{\frac{s}{2}}}\right)^{r-s}$
$\left(1, \frac{1}{2}\right)$	$\left(\frac{a^{\frac{r}{2}}+b^{\frac{r}{2}}}{a^{\frac{s}{2}}+b^{\frac{s}{2}}}\right)^{\frac{2}{r-s}}$	$\left(\frac{2}{3}, \frac{1}{3}\right)$	$\left(\frac{a^{\frac{r}{3}}+b^{\frac{r}{3}}}{a^{\frac{s}{3}}+b^{\frac{s}{3}}}\right)^{\frac{3}{r-s}}$
$(0,1)$	$\left(\frac{s}{r} \frac{a^{r}-b^{r}}{a^{s}-b^{s}}\right)^{\frac{1}{r-s}}$	$\left(\frac{3}{2},-\frac{1}{2}\right)$	$\left(\frac{a^{r}+(\sqrt{a b})^{r}+b^{r}}{a^{s}+(\sqrt{a b})^{s}+b^{s}}\right)^{\frac{1}{2(r-s)}}(\sqrt{a b})^{\frac{1}{2}}$
$(1,-1)$	$\sqrt{a b}$	$(2,-1)$	$\left(\frac{\left.a^{r}+b^{r}\right)^{\frac{1}{3(r-s)}}(\sqrt{a b})^{\frac{2}{3}}}{a^{s}+b^{s}}\right)$

TABLE 1. some familiar two-parameter mean values

Example 1. By Theorem 5, we can get a series of inequalities in form of twoparameter. If $r+s>0$, then

$$
\begin{gather*}
\boldsymbol{F}(1,-1 ; r, s ; a, b)<\boldsymbol{F}(0,1 ; r, s ; a, b)<\boldsymbol{F}\left(1, \frac{1}{2} ; r, s ; a, b\right) \\
<\boldsymbol{F}(1,1 ; r, s ; a, b)<\boldsymbol{F}(2,1 ; r, s ; a, b), \tag{5.1}
\end{gather*}
$$

i.e.
(5.2)

$$
G<\left(\frac{s}{r} \frac{a^{r}-b^{r}}{a^{s}-b^{s}}\right)^{\frac{1}{r-s}}<\left(\frac{a^{\frac{r}{2}}+b^{\frac{r}{2}}}{a^{\frac{s}{2}}+b^{\frac{s}{2}}}\right)^{\frac{2}{r-s}}<\left[\frac{E\left(a^{r}, b^{r}\right)}{E\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{r-s}}<\left(\frac{a^{r}+b^{r}}{a^{s}+b^{s}}\right)^{\frac{1}{r-s}}
$$

which can be concisely denoted by:

$$
\begin{equation*}
G<\left[\frac{L\left(a^{r}, b^{r}\right)}{L\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{r-s}}<\left[\frac{A\left(a^{\frac{r}{2}}, b^{\frac{r}{2}}\right)}{A\left(a^{\frac{s}{2}}, b^{\frac{s}{2}}\right)}\right]^{\frac{2}{r-s}}<\left[\frac{E\left(a^{r}, b^{r}\right)}{E\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{r-s}}<\left[\frac{A\left(a^{r}, b^{r}\right)}{A\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{r-s}} \tag{5.3}
\end{equation*}
$$

where L, E, A are defined by (1.2)-1.4.
Remark 1. Inequality (5.2) or (5.3) is a generalization of the following inequalities

$$
G<L<\frac{A+G}{2}<E<A
$$

Example 2. By Theorem[3, we can get another more refined inequalities. If $r+s>$ 0 , then

$$
\begin{align*}
\boldsymbol{F}\left(\frac{1}{2}, \frac{1}{2} ; r, s ; a, b\right) & >\boldsymbol{F}\left(\frac{2}{3}, \frac{1}{3} ; r, s ; a, b\right)>\boldsymbol{F}\left(\frac{3}{4}, \frac{1}{4} ; r, s ; a, b\right)> \\
\boldsymbol{F}(1,0 ; r, s ; a, b) & >\boldsymbol{F}\left(\frac{3}{2},-\frac{1}{2} ; r, s ; a, b\right)>\boldsymbol{F}(2,-1 ; r, s ; a, b), \tag{5.4}
\end{align*}
$$

i.e.

$$
\left[\frac{E\left(a^{\frac{r}{2}}, b^{\frac{r}{2}}\right)}{E\left(a^{\frac{s}{2}}, b^{\frac{s}{2}}\right)}\right]^{\frac{2}{r-s}}>\left(\frac{a^{\frac{r}{3}}+b^{\frac{r}{3}}}{a^{\frac{s}{3}}+b^{\frac{s}{3}}}\right)^{\frac{3}{r-s}}>\left(\frac{a^{\frac{r}{2}}+\sqrt{a^{\frac{r}{2}} b^{\frac{r}{2}}}+b^{\frac{r}{2}}}{a^{\frac{s}{2}}+\sqrt{a^{\frac{s}{2}} b^{\frac{s}{2}}}+b^{\frac{s}{2}}}\right)^{\frac{2}{r-s}}>
$$

$$
\begin{equation*}
\left(\frac{s}{r} \frac{a^{r}-b^{r}}{a^{s}-b^{s}}\right)^{\frac{1}{r-s}}>\left(\frac{a^{r}+\sqrt{a^{r} b^{r}}+b^{r}}{a^{s}+\sqrt{a^{s} b^{s}}+b^{s}}\right)^{\frac{1}{2(r-s)}} \sqrt{G}>\left(\frac{a^{r}+b^{r}}{a^{s}+b^{s}}\right)^{\frac{1}{3(r-s)}} G^{\frac{2}{3}} \tag{5.5}
\end{equation*}
$$

which can be concisely denoted by

$$
\begin{gather*}
{\left[\frac{E\left(a^{\frac{r}{2}}, b^{\frac{r}{2}}\right)}{E\left(a^{\frac{s}{2}}, b^{\frac{s}{2}}\right)}\right]^{\frac{2}{r-s}}>\left[\frac{A\left(a^{\frac{r}{3}}, b^{\frac{r}{3}}\right)}{A\left(a^{\frac{s}{3}}, b^{\frac{s}{3}}\right)}\right]^{\frac{3}{r-s}}>\left[\frac{h\left(a^{\frac{r}{2}}, b^{\left.\frac{r}{2}\right)}\right.}{h\left(a^{\frac{s}{2}}, b^{\frac{s}{2}}\right)}\right]^{\frac{2}{r-s}}>} \\
{\left[\frac{L\left(a^{r}, b^{r}\right)}{L\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{r-s}}>\left[\frac{h\left(a^{r}, b^{r}\right)}{h\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{2(r-s)}} \sqrt{G}>\left[\frac{A\left(a^{r}, b^{r}\right)}{A\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{3(r-s)}} G^{\frac{2}{3}},} \tag{5.6}
\end{gather*}
$$

where $L(x, y), E(x, y) A(x, y)$ and $h(x, y)$ and are defined by (1.2)-1.5), respectively.

Example 3. If replace a, b with a^{2}, b^{2}, then inequalities (5.6) can be rewritten as:

$$
\begin{gather*}
{\left[\frac{E\left(a^{r}, b^{r}\right)}{E\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{r-s}}>\left[\frac{A\left(a^{\frac{2 r}{3}}, b^{\left.\frac{2 r}{3}\right)}\right.}{A\left(a^{\frac{2 s}{3}}, b^{\frac{2 s}{3}}\right)}\right]^{\frac{3}{2(r-s)}}>\left[\frac{h\left(a^{r}, b^{r}\right)}{h\left(a^{s}, b^{s}\right)}\right]^{\frac{1}{r-s}}>} \\
{\left[\frac{L\left(a^{2 r}, b^{2 r}\right)}{L\left(a^{2 s}, b^{2 s}\right)}\right]^{\frac{1}{2(r-s)}}>\left[\frac{h\left(a^{2 r}, b^{2 r}\right)}{h\left(a^{2 s}, b^{2 s}\right)}\right]^{\frac{1}{4(r-s)}} \sqrt{G}>\left[\frac{A\left(a^{2 r}, b^{2 r}\right)}{A\left(a^{2 s}, b^{2 s}\right)}\right]^{\frac{1}{6(r-s)}} G^{\frac{2}{3} .}} \tag{5.7}
\end{gather*}
$$

Remark 2. Inequality (5.6) or (5.7) not only strengthen and generalize Lin Tongpo and Stolarsky inequality, but also unifies them into the same inequality's chain.

References

[1] Péter Czinder and Zsolt Pales, An Extension of the Hermite-Hadmard Inequality and An Application for GINI and Stolarsky Means, JIPAM, 5(2)(2004), 1-8. [ONLINE] Available online at http://jipam.vu.edu.au/images/167_03_JIPAM/167_03_www.pdf
[2] C. Gini, Diuna formula comprensiva delle media, Metron, 13(1938), 3-22.
[3] Baini Guo, Shiqin Zhang and Feng Qi, An Elementary proof of Monotonicity for Extend Mean Values With Two Parameters, Mathematics in Practice and Theory, 29(2)(1999), 169-173.
[4] Peter. A. Hästö, A Montonicity Property of Ratios of Symmetric Homogeneous Means. [ONLINE] Available online at http://jipam-old.vu.edu.au/v3n5/013_02.pdf
[5] J.-Ch. Kuang, Applied Inequalities, 2nd ed., Hunan Education Press, Changsha City, Hunan Province, China, 1993. (Chinese)
[6] J.-Ch. Kuang, Applied Inequalities, 3rd ed., Shangdong Science and Technology Press, Jinan City, Shangdong Province, China, 2004. (Chinese)
[7] E. B. leach and M. C. Sholander, Extended mean values, Amer. Math. Monthly, 85(1978), 84-90.
[8] E. B. leach and M. C. Sholander . Extended mean values, J. Math. Anal. Appl. 92(1983), 207-223.
[9] Feng Qi, Logarithmic Convexities of the Extended Mean, Values, RGMIA Research Report Collection, 2(5), Article 5, 1999.
[10] K. B. Stolarsky, Generalizations of the Logarithmic Mean, Math. Mag. 48(1975), 87-92.
[11] Alfred Witkowski, Weighted extended mean values, Colloq. Math. 2004 (accepted). RGMIA Research Report Collection, 7(1), Article 6, 2004, [ONLINE] Available online at http://rgmia.vu.edu.au/v7n1.html
[12] Alfred Witkowski, Convexity of Weighted Extended Mean values, RGMIA Research Report Collection, 7(2), Article 10, 2004, [ONLINE] Available online at http://rgmia.vu.edu.au/v7n2.html
[13] Alfred Witkowski, Comparishon Theorem for Generalization of Stolarsky Means, RGMIA Research Report Collection, 8(1), Article 6, 2005, [ONLINE] Available online at http://rgmia.vu.edu.au/v8n1.html
[14] Zhen-Hang Yang, Simple Discriminance for Convexity of Homogeneous Functions and Applications, Study in College Mathematics, 4(7)(2004), 14-19.
[15] Zhen-Hang Yang, On the Monotinity and Log-convexity for Two-parameter Homogeneous Hunctions, Inequalities Research Bulletin, 11(2)(2004), 302-324.
[16] Zhen-Hang Yang, On the Homogeneous Functions with Two Parameters and Its Monotonicity, RGMIA Research Report Collection, 8(2), Article 10, 2005. [ONLINE] Available online at http://rgmia.vu.edu.au/v8n2.html
[17] Zhen-Hang Yang, On The Logarithmic Convexity for Two-parameters Homogeneous Functions, RGMIA Research Report Collection, 8(2), Article 21, 2005. [ONLINE] Available online at http://rgmia.vu.edu.au/v8n2.html
[18] Zhen-Hang Yang, The refinements and extensions of log-convexity for two-parameter homogeneous functions.
[19] Pales Z. Inequalities for differences of powers, J. Math. Anal. Appl. 131(1988), 271-281.
Zhejiang Electric Power Vocational Technical College
E-mail address: yzhkm@163.com

