ON THE MONOTONICITY AND LOG-CONVEXITY OF A
FOUR-PARAMETER HOMOGENEOUS MEAN

ZHEN-HANG YANG

ABSTRACT. A four-parameter homogeneous mean F'(p, g; 1, s; a, b) is defined by
another approach. The criterion for monotonicity and logarithmically convex-
ity of which are presented, and two refined two-parameter inequality’s chains
concerning some classical mean values are deduced.

1. INTRODUCTION

The so-called two-parameter mean or extended mean values between two unequal
positive numbers z and y were defined first by K.B. Stolarsky [10] as

_1
(s(x —y)) , r#s,rs #0;
e —y))
T __ T T
e o] I r#0,5=0;
r(lnz — Iny)
(11) E(Ta s;:z:,y) = J;S _ y9 %
—— ] r=0,s#0;
s(lnz — Iny)
exp(fﬂlnl‘ylwl» s £ 0;
" =y r
/Y, r=s5=0.

It contains many mean values, for instance:
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The monotonicity of E(r, s;z,y) has been researched by K.B. Stolarsky [10], E.
B. Leach and M. C. Sholander [7] and others also in [3, [8 @, 19] using different
ideas and simpler methods.

Feng Qi studied the log-convexity for the parameters of the extended mean in [9],
and pointed out the two-parameters mean is a log-concave function with respect to
either parameter r or s on interval (0, +00) and is a log-convex function on interval
(—00,0).
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In [13], Alfred Witkowski considered more general means defined by
E(u,v;a",y") =
E(u,v; %, y*)

further and the following results for the monotonicity of R were obtained:

(1.6) Rlu,v:r, 52, y) = {

Theorem 1. (Corollary 4 in [13]) R increases inr and s if u+v > 0 and decreases
otherwise.

Theorem 2. (Corollary 5 in [13]) R increases in u and v if r+s > 0 and decreases
otherwise.

On the other hand, the extended mean was generalized to two-parameter homo-
geneous functions in [I5] [16]. That is:

Definition 1. Assume f: U(C R x Ry) — Ry is an n-order homogeneous func-
tion for wvariables x and y, and is continuous and 1st partial derivatives exist,
(a,b) e Ry xRy witha #b, (p,q) € R xR.

If (1,1) ¢ U, then define that

(L.7) Hy(p,q:a,b) [M] " #apa £0),

(1.8) Hi(ppiab) = limHy(a,bip,q) = Grp(p =g #0),

where

(L9 Gry=GH@). Gylay) = oxp | DAIRE LU,

fa(z,y) and fy(z,y) denote partial derivatives with respect to 1st and 2nd variable

of f(z,y) respectively.
If (1,1) € U, then define further

110 Hoan = LD g 200-0),
(L11)  Hs(0,g;0,0) = [WT(I)ZO,CJ#O),

. fe(1,1)  fy(,1)
(112)  H;(0,0;0,0) = limHys(a,bip,0) = a7V bTED (p =g =0).

When f(x,y) = L(x,y), we can get two-parameter logarithmic mean Hy, (p, ¢; a, b),
which is just equal to extended mean E(p,q;a,b) defined by (L.1). For avoiding
confusion, the extended mean will be called two-parameter logarithmic mean, and
denote by Hp(p, q;a,b) or Hr(p,q) or Hy in what follows.

Concerning the monotonicity and log-convexity of the two-parameter homoge-
neous functions, there are the following results:

Theorem 3. [I5] [16]Let f(x,y) be a positive n-order homogenous function defined
on U(E R, xRy ) and be 2nd differentiable. If I = (In f).y, < (>)0, then Hy(p,q)
is strictly increasing (decreasing) in either p or q¢ on (—o0,0) U (0, 400).

Theorem 4. [I7,[I8] Let f(x,y) be a positive n-order homogenous function defined
on U(ERy x Ry) and be 3rd differentiable. If

(1.13) J=(x—y)(xl), < (>)0, where I} = (In f)ay,

then Hy(p, q) is strictly log-convex (log-concave) in either p or q on (0,4+00), and
log-concave (log-convez) on (—o0,0).

By the above theorems we have
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Corollary 1. The conditions are the same as in Theorem @ If holds, then
Hy(p,1—p) is strictly decreasing (increasing) in p on (0, 1), increasing (decreasing)
on (3,1).

If f(x,y) is symmetric with respect to x and y further, then the above monotone
interval can be extended from (0, %) to (—00,0)U(0, ) and (3,1) to (5,1)U(1, +00),
respectively.

Corollary 2. The conditions are the same as Theorem @ If holds, then for
p,q € (0,400) with p # q, there is

(1.14) Gy ez < (3)Hi(0,0) < (3)V/C1pGra-

For p,q € (—0,0) with p # q, inequality 18 reversed.

If f(x,y) is defined on Ry xR and is symmetric with respect to x and y further,
then substituting p + q > 0 for p,q € (0,400) and p+ q < 0 for p,q € (—0,0),
11.14)) is also true, respectively.

As applications of the above results, we also have the following conclusions:

Conclusion 1. For f(z,y) = L(x,y), A(z,y), E(x,y), where x,y > 0 with x # vy,
then

1) Hs(p,q) are strictly increasing in either p or g on (—oo, +00);

2) H¢(p,q) are strictly log-concave in either p or g on (0,400), and log-convex
on (—o00,0);

3) Hy(p,1 — p) are strictly increasing in p on (—oo,%), and decreasing on
(3, +00).

4) If p+q >0, then

(115) Gﬁ% > Hf(pa Q) > \/m

Inequality is reversed if p+ q < 0.

Conclusion 2. For f(x,y) = D(x,y) = |x — y|, where x,y > 0 with x # y, then

1) Hp(p, q) is strictly decreasing in either p or g on (—o0,0) U (0, 4+00);

2) Hy(p, q) is strictly log-concave in either p or q on (—o00,0), and log-convex on
(0, +00);

3) Hp(p,1—p) is strictly decreasing in p on (—00,0)U (0, 1), and increasing on
(3,1) U (1,400);

4) If p,q € (0,+00), there is

(1.16) Gppga < Hp(p,q9) < VGppGp.g-
Inequality is reversed if p,q € (—00,0).

2. MAIN RESULTS

Let us substitute Hr(r, s; z,y) for f(z,y) in Definition [1} then H(p, ¢;a,b) is a
mean of positive x and y with four parameters r, s, p and ¢, which is called four-
parameter mean values. For expedience, we will adopt our notations to introduce
the Definition.

Definition 2. Assume (a,b) € Ry xRy with a #b, (p,q),(r,s) € R xR, then call
F(p,q;r,s;a,b) four-parameter homogeneous mean, which is defined as follows:

(2.1)
L(aP", b"") L(a%*, b%%) | 7005
L(ars,brs) L(a9",b4")

F(p,q;r,s;a,b) = , if pgrs(p —q)(r — s) # 0,
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or

aP” — bPT a5 — pas

aps — bps qar — par

(p—a)(r—s)
(2.2) F(p,q;r,s;a,b) = } Jif pars(p — q)(r —s) # 0.

if pgrs(p—q)(r—s) = 0, then the F(a,b;p,q;r,s) are defined as its corresponding
limits, for example:

E(aPm,bPT) | Pr=o
F(p,p;r,s;a,b) = limF(a,b;p,q;r,s) cifprs(r—s) #0,p=gq,
q—p E (aps, brs)
. L(a?", b7y ] 7= B
F(]LO,T,S,@, b) - (}I_I%F(a7b7p7Q7r S |:L aps pps :| ) prTS(T - S) 7é 07(] - 07
F(0,0;7,s;a,b) = lirr(l)F(a,b;p,O;r s) = G(a,b), if rs(r —s) #0,p=¢q =0,
p—)

where L(x,y), E(z,y)are defined by , respectively, G(a,b) = ab

In the case of not being confused, we set

F(p,q;r,s;a,b) = F(p,q) = F(r,s) = F(p,q;r,s) = F(a,b)

The following properties of four-parameter mean values F'(a, b; p, g;r, s) are ver-
ified easily:
Property 1 F(p,q;r,s;a,b) are symmetric with respect to a and b, i.e.

(2.3) F(a,b) = F(b,a);
Property 2 F(p,q;r,s;a,b) are symmetric with respect to p and q , i.e

(2.4) F(p,q) = F(q,p);

Property 3 F(p,q;r,s;a,b) are symmetric with respect to r and s, i.e.

(2.5) F(r,s) = F(s,r);

Property 4 F(p,q;r, s;a,b) are symmetric with respect to (p,q) and (r,s), i.e.
(2.6) F(p,q;r,s) = F(r,5p,q).

Obviously, so long as the signs of I; and J are certain, then the monotonicity
and log-convexity of H;(p, ¢) with respect to either p or ¢ are also certain with it.
For example, for f(x,y) = L(z,y), A(z,y), E(x,y), there are I; < 0, J > 0, and
then corresponding monotonicity and log-convexity of two-parameter homogeneous
functions Hs(p, ¢) are confirmed.

Owing to that Hp(r, s;2,y) contain L(z,y), A(x,y) and E(z,y), naturally, we
could make conjecture on there are Iy = (Inf),, < 0, J = (x — y)(xzl1); > 0
for f(x,y) =Hr(r,s;x,y). The purpose of this paper is to verify the conjecture,
and get accordingly the following results on the monotonicity and log-convexity of
Hy(p,q), where f(z,y) =Hy(r, 5 2.1).

Theorem 5. Ifr+s > (<)0, then F(p,q;r, s;a,b) are strictly increasing (decreas-
ing) in either p or q¢ on (—oo, +00);

Theorem 6. If r + s > (<)0, then F(p,q;r,s;a,b) are strictly log-concave (log-
convez) in either p or q on (0,+00), and log-conver (log-concave) on (—o0,0);

Corollary 3. If r + s > (<)0, then F(p,1 — p;r,s;a,b) are strictly increasing
(decreasing) in p on (—o0, 3), and decreasing (increasing) on (3, +00).
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Notice for f(z,y) =Hr(r,s;x,y), because

zfo(r,y) Inz +yf,(z,y) lny}
f(z,y)

Gp(z,y) = exp [

_ 1 ra” s’ 1 ry” sy®
= exp — Inx + — + Iny
r—s Ir_yr xs_ys r—s xr_yr xs_ys

T T S S
= expi x g’ — —2 Iny" | — z Inz® — —
l‘/r._y/r. x?"_y?" xs_ys xS_yS
_ [E@)]T
- LBy
by Theorem [6] and [2] we get

Corollary 4. Suppose (p+ q)(r + )< 0, then
(2.7) Gy oza < F(poqir, s10,0) < /Gy pGrip g

E(",y")] =

1 T—s
where Gy, o = Gy, (0", 0Y), Gy (2,y) = [E(xs,ys)] , E(z,y) is defined by

.

Inequality (2.7) is reversed if (p + q)(r + s)> 0.

3. LEMMAS
The following three lemmas are useful in proofs of the main results.

Lemma 1. Suppose x,y > 0 with x # y,let

o] 2y - )
(3.1) K(t) = ”y[ax—w} 7
L?(z,vy), t=0.

then we have
1) K(—t) = K(t);
2) K(t) is strictly increasing in (—00,0), and decreasing in (0,400).
Proof. 1) An easy computation results in part 1) of the Lemma, of which details

are omitted.
2) By directly calculations, we get

K'(t) 2(z'Inz —y'Iny) 2

= lnz+Iny— +Z

K(t) bt —yt t
2 zflnx —yllny

= E ln \/xtyt — (Tyt — ].)

2
= InG(z', y") —In E(z',y")] .
By the well-known inequality E(a,b) > v/ab, we can get part two of the Lemma

immediately. i

The following Lemma is a well-known inequality [5], which will be used in proof
of Lemma 3

Lemma 2. For positive numbers a and b, the following inequality holds:

A+2G  a+4Vab+b
3 6

(3.2) L(a,b) <
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Lemma 3. Suppose z,y > 0 with x # y,let

t t t t -3
2T Y | Ty
t .
(33) =] P ) e
L3(z,y), t=0.

then we have
1) N(—t) = N(t);
2) N(t) is strictly increasing in (—00,0), and decreasing in (0, +00).

Proof. 1) An easy computation results in part one, of which details are omitted.
2) By direct calculations, we get

'lnz+ytlny  3(ztlnz—y'lny) 3
ot + gt ot — gt f

xt 3t yt 3yt 3
(1+It+yt o xtyt>lna?+ (1+xt+yt +$tyt)1ny+t

22t 4 dgtyt + 2t 22t 4 Agtyt 4+ 2t 3
= — Y Y Inx + 5 y%y Iny + —
Tt —y t

= Inz+Iny+

22t _ g2t
3 $2t + 4Z‘tyt + y2t
= 77 TR (Inz — Iny)
_ 32t(nz—Iny) [ 2 -y 2 4daly’ +y*
t a2t —y?t 2t(lnz — lny) 6 ’

Substituting a, b for ¢, y?* in the above last one expression, then

(3-4) ]]\(f/((f)) = %L*l(a,b) L(a,b) — %\/M 7
_at4vab+b

in which L(a, b) < 0by Lemma and L~(a,b) > 0. Consequently,
N'(t) > 0if t <0, and N'(t) < 0 if ¢ > 0. The proof is completed. I

4. PROOFS OF MAIN RESULTS

Since F'(a,b; p, q;7,s) = Hy, (a,b;p,q), where Hy, = Hy(r, s;2,y) = E(r, s;2,9)
is defined by (|1.3)), it is enough to make certain the signs of I; = (InHp)s, and
J = (z—vy)(zl),.

Proof of Theorem[5 Let us observe that

InHy = ln|s|+In|z" —y"| —In|r| — In|z® — y*[].

r—s

Through straightforward computations, we have

1 T2xryr 82xsys
I == 1 = —
1 ( nHL)my Y (7, _ S) [(xr _ yr)Q (l‘s _ ys)Q
B 1 TQ.TT:UT B 82msys
wy(r=s) [@ —y)" (e —y)°

1 K(r)-K(s)
aylx—y)?  r-s
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K(r) = K(s)

By Lemma if r > s > 0, we have < 0; If r > —s > 0, we have also
s

K(r)— K K(r)— K(—
(r) ( = (r) (=5) < 0. Thus I; < 0 if r + s > 0.Likewise I; > 0 if
r—s r+(—s)
r+s5<0.

By Theorem [3] this proof is completed. 1

proof of Theorem[6 Let us consider that

" +y7) S3wsys(ms +ys)

J
° (25 — y°)°

B N _ T—y Ty (
@=y) @), = (a7 —y")

-2 N(r)— N(s)
zy(z — y)? r—s ’

N(r) = N(s)

By Lemma if r > s > 0, we have < 0; If r > —s > 0, we also have
s

N(r) = N N(r) — N(—

(r) = N(s) _ N(r) = N(=s) < 0. Thus J > 0 if r + s > 0.Likewise J < 0 if
r—s r+(—s)

r+s<0.

Using Theorem [4] this completes the proof. |

5. INEQUALITY’S CHAINS FOR TWO-PARAMETER MEANS

The four-parameter homogeneous mean values F(p, ¢;r, s;a,b) contain a good
many two-parameter means, for example: (see Table

(r,q) | Fp,qr,s; e, b) | (p,q) F(p,q,T,S;a,bz)
N F(a%,b3)] 7
2.1 11 o
2.1) (mbé) a3 ||3err]
S L) B R A O E
) ab + % 2.1 as + b5\ 7 o
& a3 + b3 303 a5 + b5
a” —b" = CLT+(\/CE)T+Z)T 2(r—s) N
0,1 3 -1 Vab)z
o | (2207 [oov| (28 ™
a +b7" 3(7‘ s) 2
(1.-1) | Vab ey | (555) " wa

TABLE 1. some familiar two-parameter mean values

Example 1. By Theorem [3, we can get a series of inequalities in form of two-
parameter. If r +s > 0, then
F(1,-1;r,s7a,b) < F(0,1;7,57a,b) < F(1,%;7,5;a,b)

(5.1) < F(1,1;r,8a,b) < F(2,1;7,8;a,b),
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i.€e.
(5.2)
_1 " - 2 1
G < sa” —b"\ " < az +bz\"° < E(a",b")] ™ < a”+b"\ "
ras — b az + bz E(as,b%) as + bs ’
which can be concisely denoted by:
(5.3)
G < [Ha W)™ [ Alaf,b%)
L(a®,b%) A(az,b3)
where L, E, A are defined by —.
Remark 1. Inequality or 1s a generalization of the following inequalities
A+ G

<] <]

G<L< < E < A.

Example 2. By Theorem[3, we can get another more refined inequalities. If r+s >
0, then

F(%,% r,8;a,b) >F(%,%;r,s a,b) >F(4,4,r s;a,b) >
(5.4) F(1,0;r,s;a,b) > F(%,f%;r,s a,b) > F(2,—1;r,s;a,b),
i.€.
2
. ” _3 ™ T 5 r T—s
Blab p5)]7or (a5+b3>“5 az +Vazbz + b2
[f] > (S S T >
E(az,02) as + b3 az +Vazbz 4+ b2
(5.5)

L
(sa’”—br>"15 - a4+ Varbr + b\ Y VG > < T+br>3(r X G3
ra® —bs a® +Vasbs + bs as+bs

which can be concisely denoted by

E(az,b
E(az,b>

He] ™
where L(z,y), E(z,y) A
tively.

[ o

(z,y) and h(z,y) and are defined by (1.9)-(1.5), respec-

Example 3. If replace a, b with a?,b?, then inequalities (@ can be rewritten as:

3
A(a™ b5) |29 N h(a",b") = -
A%, b%) h(a*,b%)

w\“ “\

Eele

(5.7)

wlro

L(a2r7b2r) ﬁ h(a2r7b2r) ﬁ A(a2r’b2r) ﬁ
l:L(a257b25):| > |:h(a257b2s):| \/§> |:A(a25,b25):| G

Remark 2. Inequality (@) or not only strengthen and generalize Lin Tong-
po and Stolarsky inequality, but also unifies them into the same inequality’s chain.
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