ON REFINEMENTS AND EXTENSIONS OF LOG-CONVEXITY FOR TWO-PARAMETER HOMOGENEOUS FUNCTIONS

ZHEN-HANG YANG

Abstract

In this paper, the log-convexity of two-parameter homogeneous functions and its corollaries in [4] are refined and extended. As applications, some conclusions about $\mathrm{L}, \mathrm{A}, \mathrm{E}$ and D are also strengthened and generalized.

1. Introduction and Main Results

The conception of two-parameter homogeneous functions was established by [3]:

Definition 1. Assume $f: \mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right) \rightarrow \mathbb{R}_{+}$is a homogeneous function for variable x and y, and is continuous and exist 1st partial derivative, $(a, b) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$with $a \neq b,(p, q) \in \mathbb{R} \times \mathbb{R}$. If $(1,1) \notin \mathbb{U}$, then define that

$$
\begin{align*}
\mathcal{H}_{f}(a, b ; p, q) & =\left[\frac{f\left(a^{p}, b^{p}\right)}{f\left(a^{q}, b^{q}\right)}\right]^{\frac{1}{p-q}}(p \neq q, p q \neq 0), \tag{1.1}\\
\mathcal{H}_{f}(a, b ; p, p) & =\lim _{q \rightarrow p} \mathcal{H}_{f}(a, b ; p, q)=G_{f}^{\frac{1}{p}}\left(a^{p}, b^{p}\right)(p=q \neq 0),
\end{align*}
$$

where

$$
\begin{equation*}
G_{f}(x, y)=\exp \left[\frac{x f_{x}(x, y) \ln x+y f_{y}(x, y) \ln y}{f(x, y)}\right], \tag{1.3}
\end{equation*}
$$

$f_{x}(x, y)$ and $f_{y}(x, y)$ denote a partial derivative with respect to 1 st and 2 nd variable of $f(x, y)$ respectively.

If $(1,1) \in \mathbb{U}$, then define further

$$
\begin{align*}
\mathcal{H}_{f}(a, b ; p, 0) & =\left[\frac{f\left(a^{p}, b^{p}\right)}{f(1,1)}\right]^{\frac{1}{p}}(p \neq 0, q=0), \tag{1.4}\\
\mathcal{H}_{f}(a, b ; 0, q) & =\left[\frac{f\left(a^{q}, b^{q}\right)}{f(1,1)}\right]^{\frac{1}{q}}(p=0, q \neq 0), \tag{1.5}\\
\mathcal{H}_{f}(a, b ; 0,0) & =\lim _{p \rightarrow 0} \mathcal{H}_{f}(a, b ; p, 0)=G_{f, 0}(a, b)(p=q=0) . \tag{1.6}
\end{align*}
$$

[^0]In the case of not being confused, we set

$$
\begin{align*}
\mathcal{H}_{f} & =\mathcal{H}_{f}(p, q)=\mathcal{H}_{f}(a, b ; p, q) \tag{1.7}\\
G_{f, p} & =G_{f, p}(a, b)=G_{f}^{\frac{1}{p}}\left(a^{p}, b^{p}\right)=\mathcal{H}_{f}(p, p) \tag{1.8}
\end{align*}
$$

The author studied the log-convexity of $\mathcal{H}_{f}(a, b ; p, q)$ in [4], and got the following results:

Theorem 1. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be 3-time differentiable. If

$$
\begin{equation*}
J=(x-y)\left(x I_{1}\right)_{x}<(>) 0, \text { where } I_{1}=(\ln f)_{x y} \tag{1.9}
\end{equation*}
$$

then when $p, q \in(0,+\infty), \mathcal{H}_{f}(p, q)$ is logarithmically convex (concave) strictly for p or q respectively; while $p, q \in(-\infty, 0), \mathcal{H}_{f}(p, q)$ is logarithmically concave (convex) strictly for p or q respectively.

Corollary 1. The conditions are the same as in Theorem 1. If (1.9) holds then $\mathcal{H}_{f}(p, 1-p)$ is strictly monotone decreasing (increasing) in $p \in\left(0, \frac{1}{2}\right)$, strictly monotone increasing (decreasing) in $p \in\left(\frac{1}{2}, 1\right)$.

Corollary 2. The conditions are the same as in Theorem 1. If (1.9) holds, then for $p, q \in(0,+\infty)$ with $p \neq q$, there is

$$
\begin{equation*}
G_{f, \frac{p+q}{2}}<(>) \mathcal{H}_{f}(p, q)<(>) \sqrt{G_{f, p} G_{f, q}} \tag{1.10}
\end{equation*}
$$

where $G_{f, p}$ is defined by (1.8)
For $p, q \in(-\infty, 0)$ with $p \neq q$, the inequality 1.10 reverses.
The aim of this paper is to refine and generalize the above results, which are stated as follows:

Theorem 2 (A Refinement of Theorem 1). The conditions are the same as in Theorem 1. If (1.9) holds, then $\mathcal{H}_{f}(p, q)$ is strictly log-convex (logconcave) with respect to either p or q on $(0,+\infty)$, and log-concave (logconvex) on $(-\infty, 0)$.

Remark 1. This is an extension of Feng Qi's result on the log-convexity of extended mean values (see [2]).

Applying Theorem 1. Corollary 1 can be refined as:
Corollary 3 (An Extension of Corollary 1). The conditions are the same as Theorem 1 's, and $f(x, y)$ is symmetric with respect to x and y further. If (1.9) holds, then $\mathcal{H}_{f}(p, 1-p)$ is strictly decreasing (increasing) in p on $(-\infty, 0) \cup\left(0, \frac{1}{2}\right)$, increasing (decreasing) on $\left(\frac{1}{2}, 1\right) \cup(1,+\infty)$.

Corollary 4 (An Extension of Corollary 2). The conditions are the same as in Theorem 1, and $\mathbb{U}=\mathbb{R}_{+} \times \mathbb{R}_{+}$and $f(x, y)$ is symmetric with respect to x and y further. If (1.9) holds, then (1.10) is also true for $p+q>0$ with $p \neq q$, 1.10 reverses for $p+q<0$ with $p \neq q$.

2. Properties and Lemmas

The following properties of $\mathcal{H}_{f}(p, q)$ are obvious by some easy calculations: Property $1 \mathcal{H}_{f}(a, b ; p, q)$ are symmetric with respect to a, b and p, q, i.e.

$$
\begin{align*}
\mathcal{H}_{f}(a, b ; p, q) & =\mathcal{H}_{f}(a, b ; q, p), \tag{2.1}\\
\mathcal{H}_{f}(a, b ; p, q) & =\mathcal{H}_{f}(b, a ; p, q) . \tag{2.2}
\end{align*}
$$

Property 2 Let

$$
\begin{equation*}
T(t)=\ln f\left(a^{t}, b^{t}\right) . \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
T^{\prime}(t)=\frac{a^{t} f_{x}\left(a^{t}, b^{t}\right) \ln a+b^{t} f_{y}\left(a^{t}, b^{t}\right) \ln b}{f\left(a^{t}, b^{t}\right)}=\ln G_{f, t}(a, b), \tag{2.4}
\end{equation*}
$$

where $t \neq 0$ if $(1,1) \notin \mathbb{U}, G_{f, t}(a, b)$ is defined by (1.8)
Property 3 If $T^{\prime}(t)$ is continuous on $[p, q]$, then

$$
\begin{equation*}
\ln \mathcal{H}_{f}(p, q)=\frac{1}{p-q} \int_{q}^{p} T^{\prime}(t) d t=\frac{1}{p-q} \int_{q}^{p} \ln G_{f, t} d t \tag{2.5}
\end{equation*}
$$

Property 4 Suppose $f(x, y)$ is a n-order homogeneous function for variable x and y, and $f(x, y)=f(y, x)$ for all $(x, y) \in \mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, then

$$
\begin{align*}
f\left(a^{-t}, b^{-t}\right) & =G^{-2 n t} f\left(a^{t}, b^{t}\right), \tag{2.6}\\
\mathcal{H}_{f}(t,-t) & =G^{n}, \tag{2.7}\\
T(t)-T(-t) & =2 n t \ln G, \tag{2.8}
\end{align*}
$$

where $G=\sqrt{a b}$.
The following Lemmas will be used in the proof of main results.
Lemma 1. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$and be 3-time differentiable. Then

$$
\begin{align*}
& T^{\prime}(t)=\frac{a^{t} f_{x}\left(a^{t}, b^{t}\right) \ln a+b^{t} f_{y}\left(a^{t}, b^{t}\right) \ln b}{f\left(a^{t}, b^{t}\right)}=\ln G_{f}^{\frac{1}{t}}\left(a^{t}, b^{t}\right), \tag{2.9}\\
& T^{\prime \prime}(t)=-x y I_{1} \ln ^{2}(b / a), \quad I_{1}=(\ln f)_{x y}, \tag{2.10}\\
& T^{\prime \prime \prime}(t)=-C t^{-3} J, \quad J=(x-y)\left(x I_{1}\right)_{x}, \quad C=\frac{x y \ln ^{3}(x / y)}{x-y}>0, \tag{2.11}
\end{align*}
$$

in which $x=a^{t}, y=b^{t}$ with $t \neq 0$.
Remark 2. By Lemma 1, it is no difficult to get the following conclusions:

1) $T(t)$ is strictly convex (concave) in $t \in(-\infty, 0) \cup(0,+\infty)$ if $I_{1}<(>) 0$;
2) $T^{\prime}(t)$ is strictly increasing (decreasing) in $t \in(-\infty, 0) \cup(0,+\infty)$ if $I_{1}<(>) 0$;
3) If $J<(>) 0$, then $T^{\prime}(t)$ is strictly convex (concave) in $t \in(0,+\infty)$, and strictly concave (convex) in $t \in(-\infty, 0)$;
4) If $J<(>) 0$, then $T^{\prime \prime}(t)$ is strictly increasing (decreasing) in $t \in$ $(0,+\infty)$, and strictly decreasing (increasing) in $t \in(-\infty, 0)$.

The following Lemma will be used in proof of Corollary 1 and 2.

Lemma 2. The conditions of this Lemma are the same as in Lemma 1, and $f(x, y)$ is symmetric with respect to x and y, then the following equations hold:

$$
\begin{align*}
T^{\prime}(t)+T^{\prime}(-t) & =2 n \ln G \tag{2.12}\\
T^{\prime \prime}(-t) & =T^{\prime \prime}(t) \tag{2.13}\\
T^{\prime \prime \prime}(-t) & =-T^{\prime \prime \prime}(t) \tag{2.14}
\end{align*}
$$

where $t \neq 0, G=\sqrt{a b}$.
Proof. By direct calculations of the first, second and third derivative to variable t in two sides of equation (2.8) respectively, the equations (2.12)(2.14) are derived immediately. The proof is completed.

Remark 3. If $(1,1) \in \mathbb{U}$, i.e. $T^{\prime}(0)$ exists, then $T^{\prime}(0)=n \ln G ;$ If $(1,1) \notin \mathbb{U}$, we define $T^{\prime}(0)=\lim _{t \rightarrow 0} T^{\prime}(t)=n \ln G$. Thus the 2.12 can be written as

$$
\begin{equation*}
T^{\prime}(t)+T^{\prime}(-t)=2 T^{\prime}(0) \tag{2.15}
\end{equation*}
$$

Corollary 4 is deduced from the following Lemma presented by Péter Czinder and Zsolt Páles (see[1]).
Lemma 3. Let $f: \mathcal{J} \rightarrow R$ be symmetric with respect to an element $m \in \overline{\mathcal{J}}$, furthermore, suppose that f is convex over the interval $J \cap(-\infty, m]$ and concave over $J \cap[m,+\infty)$. Then, for any interval $[p, q] \subset \mathcal{J}$

$$
\begin{equation*}
f\left(\frac{p+q}{2}\right) \leq(\geq) \frac{1}{p-q} \int_{q}^{p} f(t) d t \leq(\geq) \frac{f(p)+f(q)}{2} \tag{2.16}
\end{equation*}
$$

holds if $\frac{p+q}{2} \leq(\geq) m$.
In 2.16) the reversed inequalities are valid if f is concave over the interval $J \cap[-\infty, m)$ and convex over $\mathcal{J} \cap[m,+\infty)$.

3. Proofs of Main Results

Proof of 2. It is sufficient to prove the convexity for p of $\ln \mathcal{H}_{f}$.

1) when $p \neq q, \ln \mathcal{H}_{f}=\frac{T(p)-T(q)}{p-q}$,

$$
\begin{align*}
\frac{\partial \ln \mathcal{H}_{f}}{\partial p} & =\frac{(p-q) T^{\prime}(p)-T(p)+T(q)}{(p-q)^{2}}=\frac{g(p, q)}{(p-q)^{2}} \tag{3.1}\\
\frac{\partial g(p, q)}{\partial p} & =(p-q) T^{\prime \prime}(p) \tag{3.2}\\
\frac{\partial^{2} \ln \mathcal{H}_{f}}{\partial p^{2}} & =\frac{(p-q) g_{p}(p, q)-2 g(p, q)}{(p-q)^{3}}=\frac{k(p, q)}{(p-q)^{3}} \tag{3.3}\\
\frac{\partial k(p, q)}{\partial p} & =(p-q)^{2} T^{\prime \prime \prime}(p) \tag{3.4}
\end{align*}
$$

Notice $k(q, q)=0$. Obviously, if $T^{\prime \prime \prime}(p)>0$, then $\frac{\partial^{2} \ln \mathcal{H}_{f}}{\partial p^{2}}=\frac{k(p, q)}{(p-q)^{3}}>0$, i.e. $\ln \mathcal{H}_{f}$ is log-convexity in p; If $T^{\prime \prime \prime}(p)<0$, then it is reversed.

From Lemma1, when $J=(x-y)\left(x I_{1}\right)_{x}<0$, if $p \in(0,+\infty)$, then $T^{\prime \prime \prime}(p)=$ $-C p^{-3} J>0$. While $p \in(-\infty, 0)$, then $T^{\prime \prime \prime}(p)=-C p^{-3} J<0$.

In the same way, when $J=(x-y)\left(x I_{1}\right)_{x}>0$, if $p \in(0,+\infty)$, then $T^{\prime \prime \prime}(p)=-C p^{-3} J<0$. While $p \in(-\infty, 0)$, then $T^{\prime \prime \prime}(p)=-C p^{-3} J>0$.

2) when $p=q$. The proof was given by [4], of which details are omitted. Combining 1) with 2), the proof is completed.
proof of Corollary 圆. It is enough to prove in the case of $J=(x-y)\left(x I_{1}\right)_{x}<$ 0 . 1) By Corollary 1. $\mathcal{H}_{f}(p, 1-p)$ is strictly monotone decreasing (increasing) in $p \in\left(0, \frac{1}{2}\right)$, strictly monotone increasing (decreasing) in $p \in\left(\frac{1}{2}, 1\right)$.
2) If $p \in(1,+\infty)$ and $f(x, y)$ is symmetric with respect to x and y. Set

$$
\begin{equation*}
\alpha=\frac{p_{2}-p_{1}}{p_{2}-p_{1}+1}, \beta=\frac{1}{p_{2}-p_{1}+1} \text { with } 1<p_{1}<p_{2}, \tag{3.5}
\end{equation*}
$$

then $\alpha, \beta>0, \alpha+\beta=1$ and

$$
\begin{align*}
\alpha p_{2}+\beta\left(p_{1}-1\right) & =p_{2}-1, \tag{3.6}\\
\alpha\left(p_{1}-1\right)+\beta p_{2} & =p_{1} . \tag{3.7}
\end{align*}
$$

By the log-convexity of $\mathcal{H}_{f}(p, q)$ in p on $(0,+\infty)$, we have

$$
\left\{\begin{align*}
\mathcal{H}_{f}^{\alpha}\left(p_{2}, 1-p_{2}\right) \mathcal{H}_{f}^{\beta}\left(p_{1}-1,1-p_{2}\right) & >\mathcal{H}_{f}\left(p_{2}-1,1-p_{2}\right) ; \tag{3.8}\\
\mathcal{H}_{f}^{\alpha}\left(p_{1}-1,-p_{1}\right) \mathcal{H}_{f}^{\beta}\left(p_{2},-p_{1}\right) & >\mathcal{H}_{f}\left(p_{1},-p_{1}\right)
\end{align*}\right.
$$

Since $f(x, y)=f(y, x)$, it follows from (2.6) that

$$
\begin{aligned}
\mathcal{H}_{f}\left(p_{1}-1,1-p_{2}\right) & =\left[\frac{f\left(p_{1}-1\right)}{f\left(1-p_{2}\right)}\right]^{\frac{1}{p_{2}+p_{1}-2}}=G^{\frac{2 n\left(p_{1}-1\right)}{p_{2}+p_{1}-2}}\left[\frac{f\left(1-p_{1}\right)}{f\left(1-p_{2}\right)}\right]^{\frac{1}{p_{2}+p_{1}-2}}, \\
\mathcal{H}_{f}\left(p_{2}-1,1-p_{2}\right) & =\mathcal{H}_{f}\left(p_{1},-p_{1}\right)=G^{n}, \\
\mathcal{H}_{f}\left(p_{1}-1,-p_{1}\right) & =G^{2 n} \mathcal{H}_{f}^{-1}\left(p_{1}, 1-p_{1}\right), \\
\mathcal{H}_{f}\left(p_{2},-p_{1}\right) & =\left[\frac{f\left(p_{2}\right)}{f\left(-p_{1}\right)}\right]^{\frac{1}{p_{2}+p_{1}}}=G^{\frac{2 n p_{1}}{p_{2}+p_{1}}\left[\frac{f\left(p_{2}\right)}{f\left(p_{1}\right)}\right]^{\frac{1}{p_{2}+p_{1}}},}
\end{aligned}
$$

and then $(\sqrt{3.8})$ is equivalent to

$$
\left\{\begin{array}{l}
\mathcal{H}_{f}^{\alpha}\left(p_{2}, 1-p_{2}\right) G^{\frac{2 \beta n\left(p_{1}-1\right)}{p_{2}+p_{1}-2}}\left[\frac{f\left(1-p_{1}\right)}{f\left(1-p_{2}\right)}\right]^{\frac{\beta}{p_{2}+p_{1}-2}}>G^{n}, \tag{3.9}\\
G^{2 \alpha n} \mathcal{H}_{f}^{-\alpha}\left(p_{1}, 1-p_{1}\right) G^{\frac{2 n \beta p_{1}}{p_{2}+p_{1}}}\left[\frac{f\left(p_{2}\right)}{f\left(p_{1}\right)}\right]^{\frac{\beta}{p_{2}+p_{1}}}>G^{n} .
\end{array}\right.
$$

Taking the $\frac{p_{2}+p_{1}-2}{\beta}$-th, $\frac{p_{2}+p_{1}}{\beta}$-th power of the two sides in the the above two inequalities, respectively, then

$$
\left\{\begin{align*}
\mathcal{H}_{f}^{\alpha\left(p_{2}+p_{1}-2\right)}\left(p_{2}, 1-p_{2}\right) G^{2 \beta n\left(p_{1}-1\right)}\left[\frac{f\left(1-p_{1}\right)}{f f\left(1-p_{2}\right)}\right]^{\beta} & >G^{n\left(p_{2}+p_{1}-2\right)} \tag{3.10}\\
G^{2 \alpha n\left(p_{2}+p_{1}\right)} \mathcal{H}_{f}^{-\alpha\left(p_{2}+p_{1}\right)}\left(p_{1}, 1-p_{1}\right) G^{2 n \beta p_{1}}\left[\frac{f\left(p_{2}\right)}{f\left(p_{1}\right)}\right]^{\beta} & >G^{n\left(p_{2}+p_{1}\right)}
\end{align*}\right.
$$

Let the left sides of two inequalities in (3.10) multiply each other and the right sides do also. Then we have

$$
\begin{array}{r}
\mathcal{H}_{f}^{\alpha\left(p_{2}+p_{1}-2\right)}\left(p_{2}, 1-p_{2}\right) \mathcal{H}_{f}^{-\alpha\left(p_{2}+p_{1}\right)}\left(p_{1}, 1-p_{1}\right)\left[\frac{f\left(1-p_{1}\right)}{f\left(1-p_{2}\right)} \frac{f\left(p_{2}\right)}{f\left(p_{1}\right)}\right]^{\beta} \tag{3.11}\\
>G^{2 n\left(p_{2}+p_{1}-1\right)} G^{-2 \beta n\left(2 p_{1}-1\right)-2 \alpha n\left(p_{2}+p_{1}\right)},
\end{array}
$$

in which the left side equals to

$$
\begin{aligned}
& \mathcal{H}_{f}^{\alpha\left(p_{2}+p_{1}-2\right)}\left(p_{2}, 1-p_{2}\right) \mathcal{H}_{f}^{-\alpha\left(p_{2}+p_{1}\right)}\left(p_{1}, 1-p_{1}\right)\left[\frac{f\left(1-p_{1}\right)}{f\left(p_{1}\right)} \frac{f\left(p_{2}\right)}{f\left(1-p_{2}\right)}\right]^{\beta} \\
= & \mathcal{H}_{f}^{\alpha\left(p_{2}+p_{1}-2\right)+\beta\left(2 p_{2}-1\right)}\left(p_{2}, 1-p_{2}\right) \mathcal{H}_{f}^{-\alpha\left(p_{2}+p_{1}\right)+\beta\left(1-2 p_{1}\right)}\left(p_{1}, 1-p_{1}\right) \\
= & \mathcal{H}_{f}^{p_{2}+p_{1}-1}\left(p_{2}, 1-p_{2}\right) \mathcal{H}_{f}^{-\left(p_{2}+p_{1}-1\right)}\left(p_{1}, 1-p_{1}\right),
\end{aligned}
$$

the right side equals to 1 , because

$$
\begin{aligned}
& 2 n\left(p_{2}+p_{1}-1\right)-2 \beta n\left(2 p_{1}-1\right)-2 \alpha n\left(p_{2}+p_{1}\right) \\
= & 2 n\left(p_{2}+p_{1}-1\right)-\frac{2 n\left(2 p_{1}-1\right)+2 n\left(p_{2}+p_{1}\right)\left(p_{2}-p_{1}\right)}{p_{2}-p_{1}+1} \\
= & 2 n\left[\left(p_{2}+p_{1}-1\right)-\frac{\left(2 p_{1}-1\right)+\left(p_{2}+p_{1}\right)\left(p_{2}-p_{1}\right)}{p_{2}-p_{1}+1}\right. \\
= & 2 n\left[\left(p_{2}+p_{1}-1\right)-\frac{p_{2}^{2}-\left(p_{1}^{2}-2 p_{1}+1\right)}{p_{2}-p_{1}+1}\right] \\
= & 0 .
\end{aligned}
$$

Consequently, there is

$$
\mathcal{H}_{f}^{p_{2}+p_{1}-1}\left(p_{2}, 1-p_{2}\right) \mathcal{H}_{f}^{-\left(p_{2}+p_{1}-1\right)}\left(p_{1}, 1-p_{1}\right)>1
$$

from (3.11), which is equivalent to

$$
\begin{equation*}
\mathcal{H}_{f}\left(p_{2}, 1-p_{2}\right)>\mathcal{H}_{f}\left(p_{1}, 1-p_{1}\right) \tag{3.12}
\end{equation*}
$$

for $p_{2}+p_{1}-1>0$, i.e. $\mathcal{H}_{f}(p, 1-p)$ is strictly increasing in p on $(1,+\infty)$ if $f(x, y)$ is symmetric with respect to x and y.

If $p \in(-\infty, 0)$. Assume $p_{1}, p_{2} \in(-\infty, 0)$ with $p_{1}<p_{2}$, then $1-p_{2}, 1-$ $p_{1} \in(1,+\infty)$ with $1-p_{2}<1-p_{1}$. It follows from (3.12) that

$$
\begin{equation*}
\mathcal{H}_{f}\left(1-p_{1}, 1-\left(1-p_{1}\right)\right)>\mathcal{H}_{f}\left(1-p_{2}, 1-\left(1-p_{2}\right)\right), \tag{3.13}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\mathcal{H}_{f}\left(1-p_{1}, p_{1}\right)>\mathcal{H}_{f}\left(1-p_{2}, p_{2}\right) . \tag{3.14}
\end{equation*}
$$

By (2.2), inequality (3.12) is reversed, which shows that $\mathcal{H}_{f}(p, 1-p)$ is strictly decreasing in p on $(-\infty, 0)$.

Combining 1) with 2), the proof is completed.
proof of Corollary 4 . It proves only in the case of $J=(x-y)\left(x I_{1}\right)_{x}<0$.
Since $f(x, y)$ is defined on $\mathbb{R}_{+} \times \mathbb{R}_{+}$and is symmetric with respect to x and y further, by 2.15), $T^{\prime}(t): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is symmetric with respect to 0 ; It follows from 2.11) that $T^{\prime}(t)$ is strictly convex in t on $(0,+\infty)$ and concave on $(-\infty, 0)$ if $J=(x-y)\left(x I_{1}\right)_{x}<0$.

Using Lemma 3, that

$$
\begin{equation*}
T^{\prime}\left(\frac{p+q}{2}\right)<(>) \frac{1}{p-q} \int_{q}^{p} T^{\prime}(t) \mathrm{d} t<(>) \frac{T^{\prime}(p)+T^{\prime}(q)}{2} \tag{3.15}
\end{equation*}
$$

holds if $\frac{p+q}{2}>(<) 0$ with $p \neq q$.
It follows from (2.5) that (1.10) is true.
The proof is completed.

4. Refinements of Some Conclusion about L, A, E and D

Applying Theorem 2 and Corollary 3 and 4 , the Conclusions about L, A, E and D in [4] can be refined and extended by:

Conclusion 1. For $f(x, y)=L(x, y), A(x, y)$ and $E(x, y)$,

1) $\mathcal{H}_{f}(p, q)$ are strictly log-concave with respect to either p or q on $(0,+\infty)$, and strictly log-convex on $(-\infty, 0)$.
2) $\mathcal{H}_{f}(p, 1-p)$ are strictly increasing in p on $\left(-\infty, \frac{1}{2}\right)$, and strictly decreasing on $\left(\frac{1}{2},+\infty\right)$.
3) If $p+q>0$, then

$$
\begin{equation*}
G_{f, \frac{p+q}{2}}>\mathcal{H}_{f}(p, q)>\sqrt{G_{f, p} G_{f, q}} \tag{4.1}
\end{equation*}
$$

Inequality 4.1) is reversed if $p+q<0$.
Conclusion 2. 1) $\mathcal{H}_{D}(p, q)$ is strictly log-convex with respect to either p or q on $(0,+\infty)$, and strictly log-concave on $(-\infty, 0)$.
2) $\mathcal{H}_{D}(p, 1-p)$ is strictly decreasing in p on $(-\infty, 0) \cup\left(0, \frac{1}{2}\right)$, and strictly increasing on $\left(\frac{1}{2}, 1\right) \cup(1,+\infty)$.

Using Conclusion 1, the (3.8), (3.9) and (3.10) in [4] can be extended by

$$
\begin{align*}
G^{\frac{2}{3}} A^{\frac{1}{3}} & <\sqrt{G h_{1}}<G^{\frac{2}{5}} M_{\frac{1}{3}}^{\frac{1}{5}} M_{\frac{2}{3}}^{\frac{2}{5}}<L<M_{\frac{1}{5}}^{\frac{1}{3}} M_{\frac{2}{5}}^{\frac{2}{3}} \tag{4.2}\\
& <h_{\frac{1}{2}}<M_{\frac{1}{3}}<h_{\frac{2}{5}}^{2} M_{\frac{1}{5}}^{-1}<E_{\frac{1}{2}}
\end{align*}
$$

where $M_{p}=\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}}, E_{p}=E^{\frac{1}{p}}\left(a^{p}, b^{p}\right), E(a, b)=e^{-1}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}, h_{p}=$ $\left[\frac{a^{p}+(\sqrt{a b})^{p}+b^{p}}{3}\right]^{\frac{1}{p}}$.

$$
\begin{align*}
G^{\frac{2}{3}} M_{2}^{\frac{2}{3}} A^{-\frac{1}{3}} & <G^{\frac{1}{2}} M_{\frac{3}{2}}^{\frac{3}{4}} M_{\frac{1}{2}}^{-\frac{1}{4}}<G^{\frac{2}{5}} M_{\frac{4}{3}}^{\frac{4}{5}} M_{\frac{1}{3}}^{-\frac{1}{5}}<A<M_{\frac{4}{5}}^{\frac{4}{3}} M_{\frac{1}{5}}^{-\frac{1}{3}} \tag{4.3}\\
& <M_{\frac{3}{4}}^{\frac{3}{2}} M_{\frac{1}{4}}^{-\frac{1}{2}}<M_{\frac{2}{3}}^{2} M_{\frac{1}{3}}^{-1}<M_{\frac{3}{5}}^{3} M_{\frac{2}{5}}^{-2}<Z_{\frac{1}{2}}
\end{align*}
$$

where $M_{p}=\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}}, Z_{p}=Z^{\frac{1}{p}}\left(a^{p}, b^{p}\right), Z(a, b)=a^{\frac{a}{a+b}} b^{\frac{b}{a+b}}$.

$$
\begin{align*}
G^{\frac{2}{3}} Z_{1}^{\frac{1}{3}} & <G^{\frac{1}{2}} E_{\frac{3}{2}}^{\frac{3}{4}} E_{\frac{1}{2}}^{-\frac{1}{4}}<G^{\frac{2}{5}} Z_{\frac{1}{3}}^{\frac{1}{5}} Z_{\frac{2}{3}}^{\frac{2}{5}}<E<Z_{\frac{1}{5}}^{\frac{1}{3}} Z_{\frac{2}{5}}^{\frac{2}{3}} \tag{4.4}\\
& <E_{\frac{3}{4}}^{\frac{3}{2}} E_{\frac{1}{4}}^{-\frac{1}{2}}<Z_{\frac{1}{3}}<E_{\frac{3}{5}}^{3} E_{\frac{2}{5}}^{-2}<Y_{\frac{1}{2}}
\end{align*}
$$

where $Z_{p}=Z^{\frac{1}{p}}\left(a^{p}, b^{p}\right), E_{p}=E^{\frac{1}{p}}\left(a^{p}, b^{p}\right), Y_{p}=Y^{\frac{1}{p}}\left(a^{p}, b^{p}\right), Y(a, b)=E e^{1-\frac{G^{2}}{L^{2}}}$.

If replace a, b with a^{2}, b^{2} in $(4.2)-(4.4)$, then they may be rewritten into

$$
\begin{align*}
& E>h_{\frac{4}{5}}^{2} M_{\frac{2}{5}}^{-1}>M_{\frac{2}{3}}>h>M_{\frac{2}{5}}^{\frac{1}{3}} M_{\frac{4}{5}}^{\frac{2}{3}}> \\
& L_{2}>G^{\frac{2}{5}} M_{\frac{2}{5}}^{\frac{1}{5}} M_{\frac{4}{3}}^{\frac{2}{5}}>\sqrt{G h_{2}}>G^{\frac{2}{3}} M_{2}^{\frac{1}{3}} \tag{4.5}\\
& Z>M_{\frac{6}{5}}^{3} M_{\frac{4}{5}}^{-2}>M_{\frac{4}{3}}^{2} M_{\frac{2}{3}}^{-1}>M_{\frac{3}{2}}^{\frac{3}{2}} M_{\frac{1}{2}}^{-\frac{1}{2}}>M_{\frac{8}{5}}^{\frac{4}{3}} M_{\frac{2}{5}}^{-\frac{1}{3}}> \tag{4.6}\\
& \\
& M_{2}>G^{\frac{2}{5}} M_{\frac{8}{3}}^{\frac{4}{5}} M_{\frac{2}{3}}^{-\frac{1}{5}}>G^{\frac{1}{2}} M_{3}^{\frac{3}{4}} A^{-\frac{1}{4}}>G^{\frac{2}{3}} M_{4}^{\frac{2}{3}} M_{2}^{-\frac{1}{3}} \\
& Y>E_{\frac{6}{5}}^{3} E_{\frac{4}{5}}^{-2}>Z_{\frac{2}{3}}>E_{\frac{3}{2}}^{\frac{3}{2}} E_{\frac{1}{2}}^{-\frac{1}{2}}>Z_{\frac{2}{5}}^{\frac{1}{3}} Z_{\frac{4}{5}}^{\frac{2}{3}}> \tag{4.7}\\
& E_{2}>G^{\frac{2}{5}} Z_{\frac{2}{3}}^{\frac{1}{5}} Z_{\frac{4}{3}}^{\frac{2}{5}}>G^{\frac{1}{2}} E_{3}^{\frac{3}{4}} E_{1}^{-\frac{1}{4}}>G^{\frac{2}{3}} Z_{2}^{\frac{1}{3}}
\end{align*}
$$

respectively, where $L_{p}=L^{\frac{1}{p}}\left(a^{p}, b^{p}\right)$.
Form (4.7) it follows that

$$
\begin{equation*}
Y>Z_{\frac{2}{3}}>E_{2} \tag{4.8}
\end{equation*}
$$

Likewise from (4.5), we also have

$$
\begin{equation*}
E>M_{\frac{2}{3}}>L_{2} \tag{4.9}
\end{equation*}
$$

And then we can get a new inequalities chain:

$$
\begin{equation*}
Y>Z_{\frac{2}{3}}>E_{2}>M_{\frac{4}{3}}>L_{4} \tag{4.10}
\end{equation*}
$$

which precisely characterize the relations among means Y, Z, E, A and L, and is very interesting.

References

[1] Péter Czinder and Zsolt Pales, An Extension of the Hermite-Hadmard Inequality and An Application for Gini and Stolarsky Means, JIPAM, 5(2)(2004), 1-8. [ONLINE] Available online athttp://jipam.vu.edu.au/images/167_03_JIPAM/167_03_www.pdf.
[2] Feng Qi, Logarithmic Convexities of the Extended Mean, Values, RGMIA Research Report Collection, 2(5), Article 5, 1999. [ONLINE] Available online at http://rgmia.vu.edu.au/v2n5.html.
[3] Zhen-Hang Yang, On the Homogeneous Functions with Two Parameters and Its Monotonicity, RGMIA Research Report Collection, 8(2), Article 10, 2005. [ONLINE] Available online at http://rgmia.vu.edu.au/v8n2.html.
[4] Zhen-Hang Yang, On The Logarithmic Convexity for Two-parameters Homogeneous Functions, RGMIA Research Report Collection, 8(2), Article 21, 2005. [ONLINE] Available online at http://rgmia.vu.edu.au/v8n2.html.

Zhejiang Electric Power Vocational Technical College, Hangzhou, Zhejiang, China, 311600

E-mail address: yzhkm@163.com

[^0]: Date: May 26, 2005.
 2000 Mathematics Subject Classification. Primary 26B25, 26D07; Secondary 26E60, 26A48.

 Key words and phrases. log-convexity, two-homogeneous function, mean, inequality.

