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Problem. Leta, b > 0. Prove that
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whereB, T" denote the Euler’s functions of the first and second kind respectively.

Proof. Denote.Z, Z as the left, respectively the right sides of the posed inequflity (1). We have
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by [1, 3.383. (1)]. Here,f, stands for the confluent hypergeometric function. Consider now a Luke—type
inequality [2, Theorem 16, Egs. 5.5-7] (see al<o [3, Eq. (16)]):
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Applying (3) to the hypergeometric expression in the integranf]of (2), we get
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The proof is complete. O

Lastly, we can remark that the lower bound (T) mainly improves the obvious estimate .# > B(a, b).
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