RESEARCH GROUP IN MATHEMATICAL INEQUALITIES AND APPLICATIONS

PROBLEM CORNER

Problem 7, (2008)

Ovidiu Furdui

The University of Toledo Department of Mathematics Toledo, OH, 43613, USA Email: Ovidiu.Furdui@utoledo.edu

Received: 21 November, 2008

Open Problem. A Hadamard sequence, $(n_k)_{k \in \mathbb{N}}$, is a sequence of positive integers such that $\inf_{k \ge 1} \frac{n_{k+1}}{n_k} > 1$. Let $(n_k)_{k \in \mathbb{N}}$ be a Hadamard sequence, let q > 1 and let $f(x) = \sum_{k=0}^{\infty} a_k x^{n_k}$, where $a_k \ge 0$ for all $k \ge 0$. Prove or disprove that there is a constant C, independent of f, such that

$$\int_{0}^{\infty} \left(\sum_{k=0}^{\infty} a_k s^{n_k} \right)^q e^{-s} ds \le C \sum_{k=0}^{\infty} a_k^q \Gamma\left(n_k q + 1\right),$$

where Γ denotes the Gamma function.

Remark. It is worth mentioning that if f is not a function with gaps then the previous inequality does not hold, as the following counterexample proves it: $f(x) = \frac{e^{kx} + e^{-kx}}{2}$, where $k \in (0, 1/2)$, and q = 2.

RGMIA-pc-7-08