RESEARCH GROUP IN MATHEMATICAL INEQUALITIES **AND APPLICATIONS**

PROBLEM CORNER

Problem 6, (2009)

Duy Khanh Nguyen

Students, Hanoi University of Science 334 Nguyen Trai Street, Thanh Xuan District Hanoi, Vietnam Email: duykhanhhus@gmail.com

Received: 07 February, 2009

Let two circumcircles with the same center O and radii R, r with R > r. The polygon $A_1A_2...A_n$ is inscribed, (O, r). A_1A_2 intersects (O, R) at B_1 , and denote B_i as the intersection of A_iA_{i+1} with (O, R). Assuming that $n + 1 \equiv 1$, we have the polygon $B_1B_2...B_n$. Let S_A be the area of polygon $A_1A_2...A_n$ and S_B is the area of $B_1B_2...B_n$.

Prove or disprove that

$$\frac{S_B}{S_A} \ge \frac{R^2}{r^2}$$

Remark: The author has proven the above inequality for the case n = 3 and n = 4.