RESEARCH GROUP IN MATHEMATICAL INEQUALITIES AND APPLICATIONS

PROBLEM CORNER

Problem 8, (2009)

M. Alomari

School Of Mathematical Sciences Universiti Kebangsaan Malaysia UKM, Bangi, 43600 Selangor, Malaysia Email: alomari@math.com

Received: 13 May, 2009

A function $f: \mathbb{R}^+ \to \mathbb{R}$, where $\mathbb{R}^+ = [0, \infty)$, is said to be *s*-convex in the second sense if

$$f\left(\alpha x + \beta y\right) \le \alpha^{s} f\left(x\right) + \beta^{s} f\left(y\right)$$

for all $x, y \in [0, \infty)$, $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$ and for some fixed $s \in (0, 1]$, (see [1]).

We have the following question:

If $f: I \to \mathbb{R}$, satisfies the following conditions:

- (1) f is s-Hölder continuous on I with $s \in (0, 1]$,
- **(2)** Γ,

then, f is s-convex on I. Under what condition(s) Γ would the result hold?

References

 H. HUDZIK AND L. MALIGRANDA, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100– 111.

RGMIA-pc-8-09