Research Group in Mathematical Inequalities and Applications

The value of the Group is greater than the sum of the values of its members.

Problem Corner

Problem 1, (2010), Solution No. 1

Seiichi Manyama

Graduate School of Science Osaka University, Japan

Email: manchanr4@gmail.com

Received: 19 March, 2010

Solution. We prove the inequality

$$(1) 1 - \frac{1}{\ln(2k)} < y_k$$

holds for $k \geq 10$.

From $1 - \frac{1}{\ln(20)} = 0.66 \cdots$ and $y_{10} = 0.67 \cdots$, the inequality (1) is true for k = 10. So we prove the inequality (1) is true for k > 11.

In order to prove this, we show that

(2)
$$f(x) = \frac{\ln(1 + \frac{1}{\ln x})}{x \ln x} > e \quad for \quad 0 < x \le \frac{1}{22}.$$

We have

$$f'(x) = -\frac{1 + (\ln x + 1)^2 \ln(1 + \frac{1}{\ln x})}{(\ln x + 1)(x \ln x)^2}.$$

Since $\ln(1+t) < t < -(\frac{t}{t+1})^2$ for $-\frac{1}{\ln(22)} \le t < 0$, we get

$$1 + (\frac{1}{t} + 1)^2 \ln(1 + t) < 0$$
 for $-\frac{1}{\ln(22)} \le t < 0$.

From this, f'(x) < 0 for $0 < x \le \frac{1}{22}$. Since $f(\frac{1}{22}) = 2.78 \dots > e$, the inequality (2) is true.

Let $g_x(a) = x^{x^a}$ and $h_x(a) = g_x(a) - a$, where $0 < x \le \frac{1}{22}$ and $-\infty < a < \infty$. The inequality (2) is equivalent to

(3)
$$h_x(1 + \frac{1}{\ln x}) > 0.$$

We get

$$(4) h_x(1) = x^x - 1 < 0.$$

We have

$$g'_x(a) = x^a (\ln x)^2 g_x(a) > 0,$$

$$g''_x(a) = x^a (\ln x)^3 (1 + x^a \ln x) g_x(a).$$

Since

$$1 + x^a \ln x \ge 1 + x^{1 + \frac{1}{\ln x}} \ln x = 1 + ex \ln x > 0$$
 for $1 + \frac{1}{\ln x} \le a$,

 $g_x''(a) < 0$ for $1 + \frac{1}{\ln x} \le a$. Therefore, $h_x''(a) < 0$ for $1 + \frac{1}{\ln x} \le a$. By the inequality (3) and the inequality (4), there is only one real α_x such that $1 + \frac{1}{\ln x} < \alpha_x < 1$ and $g_x(\alpha_x) = \alpha_x$.

Since $\alpha_{\frac{1}{2k}} < 1$ and $g'_{\frac{1}{2k}}(a) > 0$,

$$(\alpha_{\frac{1}{2k}} =) g_{\frac{1}{2k}}(\alpha_{\frac{1}{2k}}) < g_{\frac{1}{2k}}(1).$$

Since $\alpha_{\frac{1}{2k}} < g_{\frac{1}{2k}}(1)$ and $g'_{\frac{1}{2k}}(a) > 0$,

$$(\alpha_{\frac{1}{2k}} =) g_{\frac{1}{2k}}(\alpha_{\frac{1}{2k}}) < g_{\frac{1}{2k}}(g_{\frac{1}{2k}}(1)).$$

In the same way, we get

$$(\alpha_{\frac{1}{2k}} =) g_{\frac{1}{2k}}(\alpha_{\frac{1}{2k}}) < y_k.$$

Therefore,

$$1 - \frac{1}{\ln(2k)} = 1 + \frac{1}{\ln\frac{1}{2k}} < \alpha_{\frac{1}{2k}} < y_k.$$

References

[1] Ovidiu Furdui, Problem 1, (2010), Research Group In Mathematical Inequalities And Applications.