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First we show, that the inequalities
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Taking f(x) = 1 inequality [1) reads
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and we see that appropriate choicex@ndb can destroy both inequalities.
Let us try to save partially the problem by showing the following

Theorem 1. If f is continuous and nonnegative then fox b
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and there is ndx such that
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holds.
Proof. Using [2) and[(B) our inequality can be rewritten as
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and to prove it, it is enough to show that
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The functionarcsin t is convex, thereforém increases fot > 0, and so does‘i The function \/11_71)
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is increasing also, thus their product monotonically grows ftam,_. oo 1 to lim, 1 Sl

This completes the first part of our proof.
To prove the second part, assume for simplicity thab) = (0, 1). For arbitrarya. > 1 there exist® < v, < 1
such that
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holds for allv > v,,. Take a functior]f which equals zero ifD, v,]. Then
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