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ABSTRACT. In this paper, we investigate the generalized Hyers—Ulam stability of
the following functional inequality

1f(az + by + cz) = 2bf (y) — 2¢f (2)[| < || f(az — by — c2)|| + &(x, y, 2)
associated with Cauchy—Jensen additive mappings. As a result, we obtain that if a
mapping satisfies the functional inequalities with perturbation which satisfies certain
conditions then there exists a Cauchy—Jensen additive mapping near the mapping.

1. INTRODUCTION

In 1940, S. M. Ulam [16] gave a talk before the Mathematics Club of the University
of Wisconsin in which he discussed a number of unsolved problems. Among these was
the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G' with metric p(-,-). Given € > 0,
(

does there exist a 6 > 0 such that if f: G — G’ satisfies p(f(xy), f(x)f(y)) < 0 for
all x,y € G, then a homomorphism h : G — G’ exists with p(f(x),h(x)) < € for all
reG?

In 1941, D. H. Hyers [7] considered the case of approximately additive mappings
f:E — E', where E and E’ are Banach spaces and [ satisfies Hyers inequality

1f(z+y) = fle) = fFly)l < e

for all x,y € E. It was shown that the limit L(x) = lim,,
and that L : E — FE’ is the unique additive mapping satisfying

If(z) = L{z)] < e

In 1978, Th. M. Rassias [13] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded.

(2 x)

exists for all z € B
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Let f: E — E’ be a mapping from a normed vector space F into a Banach space
E’ subject to the inequality

1z +y) = f(2) = F)l < e(llz]” + [lyl]") (1.1)

for all z,y € F, where € and p are constants with ¢ > 0 and p < 1.
Then the limit L(z) = lim,, f(g::c) exists for all x € F and L : E — E’ is the unique
additive mapping which satisfies

2¢

1) - L@l < 5=

for all z € E. If p < 0 then inequality (1.1) holds for z,y # 0 and (1.2) for = # 0.

In 1991, Z. Gajda [3] following the same approach as in Th. M. Rassias [13], gave
an affirmative solution to this question for p > 1. It was shown by Z. Gajda [3], as well
as by Th. M. Rassias and P. Semrl [14] that one cannot prove a Th. M. Rassias’ type
theorem when p = 1. The inequality (1.1) that was introduced for the first time by Th.
M. Rassias [13] provided a lot of influence in the development of a generalization of the
Hyers—Ulam stability concept. This new concept of stability is known as generalized
Hyers—Ulam stability or Hyers—Ulam—Rassias stability of functional equations (cf. the
books of P. Czerwik [1], D. H. Hyers, G. Isac and Th. M. Rassias [8]).

P. Gavruta [6] provided a further generalization of Th. M. Rassias’ Theorem. During
the last two decades a number of papers and research monographs have been published
on various generalizations and applications of the generalized Hyers-Ulam stability to
a number of functional equations and mappings (see [9],[12]-[14]).

Gilanyi[4] and Rétz[15] showed that if f satisfies the functional inequality

12f(x) + 2f(y) = flay™ I < [ f(=y)]] (1.3)
then f satisfies the Jordan—von Neumann functional equation
2f(2) +2f(y) = flzy) + flay™).

Gilanyi [5] and Fechner [2] proved the generalized Hyers—Ulam stability of the func-
tional inequality (1.3).

][” (1.2)

Now, we consider the following functional inequality

[f(az + by + cz) = 2bf (y) = 2¢f ()| < |[f(az —by — c2)|| + o(x,y,2), (1.4)

which is associated with Jordan—von Neumann type Cauchy—Jensen additive functional
equations, where the function ¢ is a perturbing term of the functional inequality

[f(az + by + cz) = 2bf (y) — 2¢f(2)[| < |[f(az —by —c2)|.

The purpose of this paper is to prove that if f satisfies one of the inequality (1.4)
which satisfies certain conditions, then we can find a Cauchy—Jensen additive map-
ping near f and thus we prove the generalized Hyers—Ulam stability of the functional
inequality (1.4).
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2. STABILITY OF FUNCTIONAL INEQUALITY (1.4)

Throughout this paper, let G be a normed vector space and Y a Banach space.
First, we consider solutions of the functional inequality (1.4) with perturbing term
ZEro.

Lemma 2.1. Let f: G — Y be a mapping with f(0) =0 such that
1/ (az + by + cz) = 2bf (y) — 2¢f(2)|| < [[f(az — by — c2)| (2.1)
for all x,y,z € G, where abc # 0. Then f is Cauchy—Jensen additive.

Proof. By setting y := 9% and z := 0in (2.1), we get || f(2az) —2bf(5)| < [|f(0)]] =0,
which implies

f(2x) = 20f(3) =0 (2.2)
for all x € G. Similarly, we have
f(2w) = 20f(2) =0 (2.3)

for all x € G.
Also by letting z := 0, y :=

—CTXT

b
[bf(==) + cf @)l < IFO)] =0 (24)
for all z € G. These three equalities (2.2), (2.3) and (2.4) lead to
20f(~a) = f(=2ex) = ] () = ~2¢f(a)

for all x € G. Therefore the mapping f is odd.
Letting z = L;by in (2.1), we get

and z := x in (2.1), we get

ax — by

I (2az) — 2bf (y) — 2¢f( )< 1£0)[ =0

for all 7,y € G. It follows from the equalities (2.3) and (2.4) that 2cf(%2)+2bf(=2) —
2cf (=) = 0, that is, f(u) — f(v) — f(u—1v) =0 for all u,v € G, as desired. O

Cc

We prove the generalized Hyers—Ulam stability of a functional inequality (1.4) asso-
ciated with a Jordan—von Neumann type 3-variable Cauchy—Jensen additive functional
equation.

Theorem 2.2. Assume that a mapping f : G — Y with f(0) = 0 satisfies the func-
tional inequality

1f(ax + by + cz) = 2bf (y) — 2¢f(2)|| < [[f(ax — by — c2)|| + d(x,y,2)  (2.D)
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and that the map ¢ : G x G x G — [0,00) satisfies the condition

Wr.y.2) = YL L D) < oo

7=1
for all x,y,z € G. Then there exists a unique Cauchy—Jensen additive mapping A :
G —Y, defined by A(r) = lim,_. 2" f(57), such that

|A(azx + by + cz) — 2bA(y) — 2cA(2)]| < ||A(a:13 — by —c2)||, (2.6)

JA) — f@) < 1 [P 55 20) + 95 0.0) + 00, )

forall z,y, z € G.

Proof. Letting y := 0 and z := % in (2.5), we get

X

|7(2a2) = 2e£(%)| < 60,0, %) (27)

for all x € G. By letting x := 0, y := —y and z := b?y in (2.5), one obtains

by by
g+ 2o < o0, ) 28)
for all x € G. Replacing z by L_by in (2.5), we get
by axr — by
f2ax _Qbf()_Qf( ) qu(x,y, )
And then substitute y := —y in the last inequality to obtain that
ax + by ax + by
[7(202) - 20g(-) = 2es () | < o, -, ST (2:9)
for all x € G.
It follows from (2.7), (2.8) and (2.9) that
by azr + by
2l £ + 1) = 1)
ar + by ax by
S QS(':E’ Y, ) +¢( 07?) +¢<Oa _ya?%
which yields the Cauchy difference
1f(z) + f(y) — flz+y)ll (2.10)
1 cr —cy —Cy
< (= )
<2 S— =~ I+y)+¢( ) +6(0, ==, y)

for all z € G.
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Now it follows from (2.10) that

1 - -
12/(a) = 0 < gy [0 520 +0(70,0) +0(0, )
and so |2 f<§>—2m <2”fn>u
.- J J x
< 3 I21(5) =2 ()l (2.11)
1 & —cx 2x cx - x
< 2210 G a2+ g 00 37) + 00,757 50

for all z € G and for all nonnegative integers m and [ with m > [. It means that
for any * € G a sequence {2" f(5-)} is Cauchy in Y. Since Y is complete, the
sequence {2™ f(5%)} converges. So one can define a mapping A : G — Y by A(x) :=
lim,, . 2 f(5m) for all 2 € G. Moreover, letting I = 0 and passing the limit m — oo
n (2.11), we get the approximation (2.6) of f by A

Next, we claim that the mapping A : G — Y is Cauchy—Jensen additive satisfying
the functional inequality (2.1). In fact, it follows easily from (2.5) and the condition
of ¢ that

|A(ax + by + cz) — 2bA(y) — 2cA(2)]|

= Jim 2 (SRS () - et ()|
< tim 2 () ol )
= ||A(az — by — cz)|.

Thus the mapping A : G — Y is Cauchy—Jensen additive by Lemma 2.1.
Now, let T': G — Y be another Cauchy—Jensen additive mapping satisfying (2.6).
Then we obtain

T T
2" f =2"|f(—=)—-T(—
|27 (5) = T = 217 (5) = TG0
1 cxr —cxr 2x cx T —cr
— " —_——, — O(—. 0, — o0, —, —
4| | [ (a2”’ A 2”)+ (a2"’ ’2")+ (0, b2”’2”)
1 & —cxr 2x —cr
<X Bt ) T 0, 2) 4600, 5 2]

which tends to zero as n — co. So we can conclude that A(x) = T'(z) for all z € G.
This proves the uniqueness of A. O
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Theorem 2.3. Assume that a mapping f : G — Y with f(0) = 0 satisfies the inequal-
ity (2.5) and that the map ¢ : G x G x G — [0, 00) satisfies the condition

> 1 } A A
O(r,y,2) = Zggb(?ﬂm,?]yﬂ]z) < 00
=0

for all x,y,z € G. Then there exists a unique Cauchy—Jensen additive mapping A :
G — Y, defined by A(z) :=limy, .o 55 f(2"2), such that

| A(az + by + c2) — 2bA(y) — 2A(2)]| < [[A(az — by — 2)]

1 cr —cx cx —cx
Alx) — < — | O(—, —.2 d(—.0 O(0, — 2.12
A@) = @) < 57 (o5 55 20) + 0(E0.0) + 00, =5 )] 212)
forall z,y,z € G.
Proof. We get by (2.10)
1 l 1 m
| F2) = 5 F2" ) (213)
STy L g
< ;HW-JC@ ) — ﬁf@ )|
1 ™=l Qecx —cx . 2 cx - —ex .
<—N —|® 27+l i 2 i 27
—_ 4|C| Z 2] ( a ) b ) x) + ( a 707 x) + (07 b Y ‘r)

j=l
for all nonnegative integers m and [ with m > [ and all x € G. It means that a
sequence { 2%,1 f(2™z)} is Cauchy sequence in Y for all x € G. Since Y is complete,
the sequence {5 f(2™x)} converges. So one can define a mapping A : G — Y by
A(z) = limy o0 55 f(2™x) for all z € G. Moreover, letting [ = 0 and passing the
limit m — oo in (2.13), we get (2.12).

The remaining proof goes through by the similar argument to Theorem 2.2. 0

Corollary 2.4. Assume that there exists a nonnegative numbers § such that a mapping
f:G—=Y with f(0) =0 satisfies the inequality

[f(az + by + cz) = 2bf (y) — 2¢f(2)[| < [[f(ax — by — cz)|[ + 6

forall z,y, z € G.
Then there exists a unique Cauchy—Jensen additive mapping A : G — 'Y such that

|A(ax + by + cz) — 2bA(y) — 2cA(2)|| < ||A(az — by — cz)||,
30

1f(z) = A(z)]] < el (2.14)

forall z,y,z € G.
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We recall that a subadditive function is a function ¢ : A — B, having a domain
A and a codomain (B, <) that are both closed under addition, with the following

property:
oz +y) < o(z) +¢(y), Va,y € A.
Now we say that a function ¢ : A — B is contractively subadditive if there exists a
constant L with 0 < L < 1 such that
o(z +y) < Llo(x) + ¢(y)], Vo,y € A.

Then ¢ satisfies the following properties ¢(2x) < 2L¢(x) and so ¢(2"x) < (2L)"¢(x).
Similarly, we say that a function ¢ : A — B is expansively superadditive if there exists
a constant L with 0 < L < 1 such that

o(r +y) > i[ﬂS(x) + ¢(y)], Yo,y € A.

Then ¢ satisfies the following properties ¢(z) < £¢(2z) and so ¢(£) < (£)"¢(x).

Theorem 2.5. Assume that a mapping f : G — Y with f(0) = 0 satisfies the inequal-
ity (2.5) and that the map ¢ : G x G x G — [0,00) is expansively superadditive with a
constant L. Then there exists a unique Cauchy—Jensen additive mapping A: G — Y,
defined by A(x) := lim, . 2" f(5%), such that
|A(azx + by + cz) — 2bA(y) — 2cA(2)|| < ||A(az — by — cz)]|, (2.15)
L cxr —cr cx —cr
—A < — |, —.2 —,0 0, —
1) = A < =y [0S =20 + 95 0,2) + 000,57 2)
forall x,y,z € G.

Proof. We observe by the contractively superadditive condition that for any z,y, 2z € G
gb((x’;ﬁ;’z)) < (£)"¢(z,y,z). Thus it follows from (2.10) and (2.11) that

H%fcf>—2mf«f»n

x
Z 127 2" 1f(ﬁ)ll
j=l+1
s —cx 2x cxT -
4| Zli a2J b21’§)+¢(a7 )+¢( 23)]
1 & —cz cx —cx
Z ,2[E)+¢(*70,I)+¢(0,7,1’)
4 ] i1 b a b

for all x € G and for all nonnegative integers m and [ with m > [. It means that

a sequence {2™ f(5%)} is Cauchy sequence for all z € G. Since Y is complete, the
sequence {2™ f(5% )} converges. So one can define a mapping A : G — Y by A(z) :=
lim,,, . 2 f (5 ) for all z € G. Moreover, letting [ = 0 and passing the limit m — oo
in the last inequality, we get (2.15).
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The remaining proof goes through by the similar argument to Theorem 2.2. 0

Corollary 2.6. Assume that there exist a nonnegative numbers 6 and a real p > 1
such that a mapping f: G — Y with f(0) =0 satisfies the inequality

[f(az + by + cz) = 2bf (y) — 2¢f(2)[| < [[f(ax = by — cz)|[ + O([[«[|” + [[y]]” + [|=[|")

forall z,y,z € G.
Then there exists a unique Cauchy—Jensen additive mapping A : G — Y such that

|A(ax + by + cz) — 2bA(y) — 2cA(2)|| < ||A(az — by — cz)||,
Ollzl[P [2]e[P | 2lcf?

176) = A = 51 =5y [Japr + o T2 72

forall x,y,z € G.

Theorem 2.7. Assume that a mapping f : G — Y with f(0) = 0 satisfies the inequal-
ity (2.5) and that the map ¢ : G x G x G — [0,00) is contractively subadditive with a
constant L. then there exists a unique Cauchy—Jensen additive mapping A : G — Y,

defined by A(z) :=lim,_.oc 55 f(2"2), such that
|A(azx + by + cz) — 2bA(y) — 2cA(2)]| < ||A(az — by —c2)|l, (2.16)

1 cxr —cx

19() =A@ < =y (6 520+ 0l 0.2) + 60, =, 2)

forall z,y, z € G.

Proof. We get by (2.10) and (2.11)
I f2) = o F(2m) mz Q}Hﬂzﬂ‘“x)u (217)
< 217”2 o [gb(”f, ‘Qb‘“ 27ia) + o1, 0.2%0) + 000, 75 )|
< 41mZ _EI,Q:U)+¢(%,O,x)+¢(o,_7cx,x)

for all nonnegative integers m and [ with m > [ and all x+ € G. It means that
a sequence {2%1 f(2mx)} is Cauchy sequence for all x € G. Since Y is complete,
the sequence {2%,1 f(2™x)} converges. So one can define a mapping A : G — Y by
A(z) = limpy, o0 55 f(2™x) for all z € G. Moreover, letting [ = 0 and passing the
limit m — oo in (2.17), we get (2.16).

The remaining proof goes through by the similar argument to Theorem 2.5. 0J
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Corollary 2.8. Assume that there exist a nonnegative numbers 0,6 and a real p < 1
such that a mapping f: G — Y with f(0) = 0 satisfies the inequality

1f(az + by 4 cz) — 2bf (y) — 2¢f(2)|| < |[f(ax — by — c2)[| + O([|z[|” + [[y]” + [|=[]")
forall x,y,z € G.

Then there exists a unique Cauchy—Jensen additive mapping A : G — 'Y such that

|A(ax + by + cz) — 2bA(y) — 2cA(2)|| < ||A(ax — by — c2)||

1f(2) — A(z)]| < — Nzl 2el” | 2lel”

2P 1+ 9
<oz [Jap T 2T

forall z,y,z € G.
The following approximation of f by A has much simpler upper bound than that of
(2.6).

Theorem 2.9. Assume that a mapping f : G — Y with f(0) = 0 satisfies the func-
tional inequality

[f(az + by + cz) = 2bf (y) — 2¢f(2)|| < |[faz — by — c2)[| + é(z,y,2)  (2.18)
and that the map ¢ : G x G x G — [0, 00) satz’sﬁes the condition

(2,9, 2 ZI chzﬁ )<

forall x,y, z € G, where \ .= 2(b+c) # 0. Then there exists a unique Cauchy—Jensen
additive mapping A : G —'Y, defined by A(x) = lim, .o A" f(5%), such that

|A(az + by + cz) — 2bA(y) — 2cA(2)|| < ||A(ax — by — cz)|], (2.19)
b+c
J4G0) - sl < o (“E e

forall x,y,z € G.

g

Proof. Replacing (x,y, z) by (b+cx x x) in (2.18), we get

170w) ~ A @) <¢(+x . x) (220)
Now it follows from (2.20) that
INF() = Xl < gw )= X

1l b+c =z x x
j+1
< |>\| Z ¢< a N1+ )\j+1>

for all x € G and for all nonnegative integers m and [ with m > [.
The rest of proof is similar to the corresponding part of Theorem 2.2. O
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Theorem 2.10. Assume that a mapping f : G — Y with f(0) = 0 satisfies the
inequality (2.5) and that the map ¢ : G x G x G — [0,00) satisfies the condition

o0

1 4 . .
(I)(‘rayVZ) = ZW ()\jx, )\]y,/\Jz) < 00

j=0
forall x,y,z € G, where X\ := 2(b+c) # 0. Then there ezists a unique Cauchy—Jensen
additive mapping A : G — 'Y, defined by A(x) := lim,,_ /\%f()\”x), such that

|A(ax + by + cz) — 2bA(y) — 2cA(2)|| < ||A(az — by — cz)||,

1 b+c
J4G0) = sl < o (“E e

forall z,y,z € G.

Corollary 2.11. Assume that there exists a nonnegative numbers 6 such that a map-
ping [ : G — Y with f(0) =0 satisfies the inequality

1/ (az + by + cz) = 2bf (y) — 2¢f(2)|| < [|f(ax — by — cz)[[ + 6

for all x,y,z € G, where 0 < |A :=2(b+ ¢)| # 1 Then there exists a unique Cauchy—-
Jensen additive mapping A : G — 'Y such that

|A(ax + by + cz) — 2bA(y) — 2cA(2)]| < ||A(az — by — cz)||,

@) - A < — (2.21)
‘Q\b +c| — 1‘

forall z,y,z € G.

We observe that the best approximation between (2.14) and (2.21) of f by A is
determined by constants b, c.
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