
ON THE STABILITY OF FUNCTIONAL INEQUALITIES WITH
CAUCHY–JENSEN MAPPINGS

MIHYUN HAN AND HARK-MAHN KIM

Abstract. In this paper, we investigate the generalized Hyers–Ulam stability of
the following functional inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖+ φ(x, y, z)

associated with Cauchy–Jensen additive mappings. As a result, we obtain that if a
mapping satisfies the functional inequalities with perturbation which satisfies certain
conditions then there exists a Cauchy–Jensen additive mapping near the mapping.

1. Introduction

In 1940, S. M. Ulam [16] gave a talk before the Mathematics Club of the University

of Wisconsin in which he discussed a number of unsolved problems. Among these was

the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·). Given ε > 0,

does there exist a δ > 0 such that if f : G → G′ satisfies ρ(f(xy), f(x)f(y)) < δ for

all x, y ∈ G, then a homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε for all

x ∈ G?

In 1941, D. H. Hyers [7] considered the case of approximately additive mappings

f : E → E ′, where E and E ′ are Banach spaces and f satisfies Hyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit L(x) = limn→∞
f(2nx)

2n exists for all x ∈ E

and that L : E → E ′ is the unique additive mapping satisfying

‖f(x)− L(x)‖ ≤ ε.

In 1978, Th. M. Rassias [13] provided a generalization of Hyers’ Theorem which

allows the Cauchy difference to be unbounded.
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Let f : E → E ′ be a mapping from a normed vector space E into a Banach space

E ′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1.

Then the limit L(x) = limn→∞
f(2nx)

2n exists for all x ∈ E and L : E → E ′ is the unique

additive mapping which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0.

In 1991, Z. Gajda [3] following the same approach as in Th. M. Rassias [13], gave

an affirmative solution to this question for p > 1. It was shown by Z. Gajda [3], as well

as by Th. M. Rassias and P. Šemrl [14] that one cannot prove a Th. M. Rassias’ type

theorem when p = 1. The inequality (1.1) that was introduced for the first time by Th.

M. Rassias [13] provided a lot of influence in the development of a generalization of the

Hyers–Ulam stability concept. This new concept of stability is known as generalized

Hyers–Ulam stability or Hyers–Ulam–Rassias stability of functional equations (cf. the

books of P. Czerwik [1], D. H. Hyers, G. Isac and Th. M. Rassias [8]).

P. Găvruta [6] provided a further generalization of Th. M. Rassias’ Theorem. During

the last two decades a number of papers and research monographs have been published

on various generalizations and applications of the generalized Hyers–Ulam stability to

a number of functional equations and mappings (see [9],[12]–[14]).

Gilányi[4] and Rätz[15] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖ (1.3)

then f satisfies the Jordan–von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

Gilányi [5] and Fechner [2] proved the generalized Hyers–Ulam stability of the func-

tional inequality (1.3).

Now, we consider the following functional inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖+ φ(x, y, z), (1.4)

which is associated with Jordan–von Neumann type Cauchy–Jensen additive functional

equations, where the function φ is a perturbing term of the functional inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖.
The purpose of this paper is to prove that if f satisfies one of the inequality (1.4)

which satisfies certain conditions, then we can find a Cauchy–Jensen additive map-

ping near f and thus we prove the generalized Hyers–Ulam stability of the functional

inequality (1.4).
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2. Stability of functional inequality (1.4)

Throughout this paper, let G be a normed vector space and Y a Banach space.

First, we consider solutions of the functional inequality (1.4) with perturbing term

zero.

Lemma 2.1. Let f : G → Y be a mapping with f(0) = 0 such that

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖ (2.1)

for all x, y, z ∈ G, where abc 6= 0. Then f is Cauchy–Jensen additive.

Proof. By setting y := ax
b

and z := 0 in (2.1), we get ‖f(2ax)−2bf(ax
b
)‖ ≤ ‖f(0)‖ = 0,

which implies

f(2x)− 2bf(
x

b
) = 0 (2.2)

for all x ∈ G. Similarly, we have

f(2x)− 2cf(
x

c
) = 0 (2.3)

for all x ∈ G.

Also by letting x := 0, y := −cxx
b

and z := x in (2.1), we get

‖bf(
−cx

b
) + cf(x)‖ ≤ ‖f(0)‖ = 0 (2.4)

for all x ∈ G. These three equalities (2.2), (2.3) and (2.4) lead to

2cf(−x) = f(−2cx) = 2bf(
−cx

b
) = −2cf(x)

for all x ∈ G. Therefore the mapping f is odd.

Letting z = ax−by
c

in (2.1), we get

‖f(2ax)− 2bf(y)− 2cf(
ax− by

c
)‖ ≤ ‖f(0)‖ = 0

for all x, y ∈ G. It follows from the equalities (2.3) and (2.4) that 2cf(ax
c
)+2bf(−by

c
)−

2cf(ax−by
c

) = 0, that is, f(u)− f(v)− f(u− v) = 0 for all u, v ∈ G, as desired. ¤

We prove the generalized Hyers–Ulam stability of a functional inequality (1.4) asso-

ciated with a Jordan–von Neumann type 3-variable Cauchy–Jensen additive functional

equation.

Theorem 2.2. Assume that a mapping f : G → Y with f(0) = 0 satisfies the func-

tional inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖+ φ(x, y, z) (2.5)
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and that the map φ : G×G×G → [0,∞) satisfies the condition

Φ(x, y, z) :=
∞∑

j=1

2jφ(
x

2j
,

y

2j
,

z

2j
) < ∞

for all x, y, z ∈ G. Then there exists a unique Cauchy–Jensen additive mapping A :

G → Y, defined by A(x) = limn→∞ 2nf( x
2n ), such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖, (2.6)

‖A(x)− f(x)‖ ≤ 1

4|c|
[
Φ(

cx

a
,
−cx

b
, 2x) + Φ(

cx

a
, 0, x) + Φ(0,

−cx

b
, x)

]

for all x, y, z ∈ G.

Proof. Letting y := 0 and z := ax
c

in (2.5), we get
∥∥∥∥f(2ax)− 2cf(

ax

c
)
∥∥∥∥ ≤ φ(x, 0,

ax

c
) (2.7)

for all x ∈ G. By letting x := 0, y := −y and z := by
c

in (2.5), one obtains
∥∥∥∥∥2bf(−y) + 2cf(

by

c
)

∥∥∥∥∥ ≤ φ(0,−y,
by

c
) (2.8)

for all x ∈ G. Replacing z by ax−by
c

in (2.5), we get
∥∥∥∥∥f(2ax)− 2bf(y)− 2cf(

ax− by

c
)

∥∥∥∥∥ ≤ φ(x, y,
ax− by

c
).

And then substitute y := −y in the last inequality to obtain that
∥∥∥∥∥f(2ax)− 2bf(−y)− 2cf(

ax + by

c
)

∥∥∥∥∥ ≤ φ(x,−y,
ax + by

c
) (2.9)

for all x ∈ G.

It follows from (2.7), (2.8) and (2.9) that

2|c|
∥∥∥∥∥f(

ax

c
) + f(

by

c
)− f(

ax + by

c
)

∥∥∥∥∥

≤ φ(x,−y,
ax + by

c
) + φ(x, 0,

ax

c
) + φ(0,−y,

by

c
),

which yields the Cauchy difference

‖f(x) + f(y)− f(x + y)‖ (2.10)

≤ 1

2|c|
[
φ(

cx

a
,
−cy

b
, x + y) + φ(

cx

a
, 0, x) + φ(0,

−cy

b
, y)

]

for all x ∈ G.
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Now it follows from (2.10) that

‖2f(x)− f(2x)‖ ≤ 1

2|c|
[
φ(

cx

a
,
−cx

b
, 2x) + φ(

cx

a
, 0, x) + φ(0,

−cx

b
, x)

]
,

and so ‖2lf(
x

2l
)− 2mf(

x

2m
)‖

≤
m∑

j=l+1

‖2jf(
x

2j
)− 2j−1f(

x

2j−1
)‖ (2.11)

≤ 1

4|c|
m∑

j=l+1

2j
[
φ(

cx

a2j
,
−cx

b2j
,
2x

2j
) + φ(

cx

a2j
, 0,

x

2j
) + φ(0,

−cx

b2j
,

x

2j
)
]

for all x ∈ G and for all nonnegative integers m and l with m > l. It means that

for any x ∈ G a sequence {2mf( x
2m )} is Cauchy in Y . Since Y is complete, the

sequence {2mf( x
2m )} converges. So one can define a mapping A : G → Y by A(x) :=

limm→∞ 2mf( x
2m ) for all x ∈ G. Moreover, letting l = 0 and passing the limit m →∞

in (2.11), we get the approximation (2.6) of f by A.

Next, we claim that the mapping A : G −→ Y is Cauchy–Jensen additive satisfying

the functional inequality (2.1). In fact, it follows easily from (2.5) and the condition

of φ that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖

= lim
m→∞ 2m

∥∥∥∥∥f
(

ax + by + cz

2m

)
− 2bf

( y

2m

)
− 2cf

( z

2m

)∥∥∥∥∥

≤ lim
m→∞ 2m

[∥∥∥∥f
(ax− by − cz

2m

)∥∥∥∥ + φ
( x

2m
,

y

2m
,

z

2m

)]

= ‖A(ax− by − cz)‖.

Thus the mapping A : G −→ Y is Cauchy–Jensen additive by Lemma 2.1.

Now, let T : G −→ Y be another Cauchy–Jensen additive mapping satisfying (2.6).

Then we obtain

‖2nf(
x

2n
)− T (x)‖ = 2n‖f(

x

2n
)− T (

x

2n
)‖

≤ 1

4|c|2
n

[
Φ(

cx

a2n
,
−cx

b2n
,
2x

2n
) + Φ(

cx

a2n
, 0,

x

2n
) + Φ(0,

−cx

b2n
,

x

2n
)
]

≤ 1

4|c|
∞∑

j=n+1

2j
[
φ(

cx

a2j
,
−cx

b2j
,
2x

2j
) + φ(

cx

a2j
, 0,

x

2j
) + φ(0,

−cx

b2j
,

x

2j
)
]
,

which tends to zero as n → ∞. So we can conclude that A(x) = T (x) for all x ∈ G.

This proves the uniqueness of A. ¤
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Theorem 2.3. Assume that a mapping f : G → Y with f(0) = 0 satisfies the inequal-

ity (2.5) and that the map φ : G×G×G → [0,∞) satisfies the condition

Φ(x, y, z) :=
∞∑

j=0

1

2j
φ(2jx, 2jy, 2jz) < ∞

for all x, y, z ∈ G. Then there exists a unique Cauchy–Jensen additive mapping A :

G → Y , defined by A(x) := limn→∞ 1
2n f(2nx), such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖,
‖A(x)− f(x)‖ ≤ 1

4|c|
[
Φ(

cx

a
,
−cx

b
, 2x) + Φ(

cx

a
, 0, x) + Φ(0,

−cx

b
, x)

]
(2.12)

for all x, y, z ∈ G.

Proof. We get by (2.10)

‖ 1

2l
f(2lx)− 1

2m
f(2mx)‖ (2.13)

≤
m−1∑

j=l

‖ 1

2j
f(2jx)− 1

2j+1
f(2j+1x)‖

≤ 1

4|c|
m−1∑

j=l

1

2j

[
Φ(

2jcx

a
,
−2jcx

b
, 2j+1x) + Φ(

2jcx

a
, 0, 2jx) + Φ(0,

−2jcx

b
, 2jx)

]

for all nonnegative integers m and l with m > l and all x ∈ G. It means that a

sequence { 1
2m f(2mx)} is Cauchy sequence in Y for all x ∈ G. Since Y is complete,

the sequence { 1
2m f(2mx)} converges. So one can define a mapping A : G → Y by

A(x) := limm→∞ 1
2m f(2mx) for all x ∈ G. Moreover, letting l = 0 and passing the

limit m →∞ in (2.13), we get (2.12).

The remaining proof goes through by the similar argument to Theorem 2.2. ¤

Corollary 2.4. Assume that there exists a nonnegative numbers δ such that a mapping

f : G → Y with f(0) = 0 satisfies the inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖+ δ

for all x, y, z ∈ G.

Then there exists a unique Cauchy–Jensen additive mapping A : G → Y such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖,
‖f(x)− A(x)‖ ≤ 3δ

2|c| (2.14)

for all x, y, z ∈ G.
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We recall that a subadditive function is a function φ : A → B, having a domain

A and a codomain (B,≤) that are both closed under addition, with the following

property:

φ(x + y) ≤ φ(x) + φ(y), ∀x, y ∈ A.

Now we say that a function φ : A → B is contractively subadditive if there exists a

constant L with 0 < L < 1 such that

φ(x + y) ≤ L[φ(x) + φ(y)], ∀x, y ∈ A.

Then φ satisfies the following properties φ(2x) ≤ 2Lφ(x) and so φ(2nx) ≤ (2L)nφ(x).

Similarly, we say that a function φ : A → B is expansively superadditive if there exists

a constant L with 0 < L < 1 such that

φ(x + y) ≥ 1

L
[φ(x) + φ(y)], ∀x, y ∈ A.

Then φ satisfies the following properties φ(x) ≤ L
2
φ(2x) and so φ( x

2n ) ≤ (L
2
)nφ(x).

Theorem 2.5. Assume that a mapping f : G → Y with f(0) = 0 satisfies the inequal-

ity (2.5) and that the map φ : G×G×G → [0,∞) is expansively superadditive with a

constant L. Then there exists a unique Cauchy–Jensen additive mapping A : G → Y ,

defined by A(x) := limn→∞ 2nf( x
2n ), such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖, (2.15)

‖f(x)− A(x)‖ ≤ L

4|c|(1− L)

[
φ(

cx

a
,
−cx

b
, 2x) + φ(

cx

a
, 0, x) + φ(0,

−cx

b
, x)

]

for all x, y, z ∈ G.

Proof. We observe by the contractively superadditive condition that for any x, y, z ∈ G

φ( (x,y,z)
2n ) ≤ (L

2
)nφ(x, y, z). Thus it follows from (2.10) and (2.11) that

‖2lf(
x

2l
)− 2mf(

x

2m
)‖

≤
m∑

j=l+1

‖2jf(
x

2j
)− 2j−1f(

x

2j−1
)‖

≤ 1

4|c|
m∑

j=l+1

2j
[
φ(

cx

a2j
,
−cx

b2j
,
2x

2j
) + φ(

cx

a2j
, 0,

x

2j
) + φ(0,

−cx

b2j
,

x

2j
)
]

≤ 1

4|c|
m∑

j=l+1

Lj
[
φ(

cx

a
,
−cx

b
, 2x) + φ(

cx

a
, 0, x) + φ(0,

−cx

b
, x)

]

for all x ∈ G and for all nonnegative integers m and l with m > l. It means that

a sequence {2mf( x
2m )} is Cauchy sequence for all x ∈ G. Since Y is complete, the

sequence {2mf( x
2m )} converges. So one can define a mapping A : G → Y by A(x) :=

limm→∞ 2mf( x
2m ) for all x ∈ G. Moreover, letting l = 0 and passing the limit m →∞

in the last inequality, we get (2.15).
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The remaining proof goes through by the similar argument to Theorem 2.2. ¤

Corollary 2.6. Assume that there exist a nonnegative numbers θ and a real p > 1

such that a mapping f : G → Y with f(0) = 0 satisfies the inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖+ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ G.

Then there exists a unique Cauchy–Jensen additive mapping A : G → Y such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖,

‖f(x)− A(x)‖ ≤ θ‖x‖p

2|c|(2p − 2)

[
2|c|p
|a|p +

2|c|p
|b|p + 2p + 2

]

for all x, y, z ∈ G.

Theorem 2.7. Assume that a mapping f : G → Y with f(0) = 0 satisfies the inequal-

ity (2.5) and that the map φ : G×G×G → [0,∞) is contractively subadditive with a

constant L. then there exists a unique Cauchy–Jensen additive mapping A : G → Y ,

defined by A(x) := limn→∞ 1
2n f(2nx), such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖, (2.16)

‖f(x)− A(x)‖ ≤ 1

4|c|(1− L)

[
φ(

cx

a
,
−cx

b
, 2x) + φ(

cx

a
, 0, x) + φ(0,

−cx

b
, x)

]

for all x, y, z ∈ G.

Proof. We get by (2.10) and (2.11)

‖ 1

2l
f(2lx)− 1

2m
f(2mx)‖ ≤

m−1∑

j=l

‖ 1

2j
f(2jx)− 1

2j+1
f(2j+1x)‖ (2.17)

≤ 1

2|c|
m−1∑

j=l

1

2j+1

[
φ(

2jcx

a
,
−2jcx

b
, 2j+1x) + φ(

2jcx

a
, 0, 2jx) + φ(0,

−2jcx

b
, 2jx)

]

≤ 1

4|c|
m−1∑

j=l

Lj
[
φ(

cx

a
,
−cx

b
, 2x) + φ(

cx

a
, 0, x) + φ(0,

−cx

b
, x)

]

for all nonnegative integers m and l with m > l and all x ∈ G. It means that

a sequence { 1
2m f(2mx)} is Cauchy sequence for all x ∈ G. Since Y is complete,

the sequence { 1
2m f(2mx)} converges. So one can define a mapping A : G → Y by

A(x) := limm→∞ 1
2m f(2mx) for all x ∈ G. Moreover, letting l = 0 and passing the

limit m →∞ in (2.17), we get (2.16).

The remaining proof goes through by the similar argument to Theorem 2.5. ¤
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Corollary 2.8. Assume that there exist a nonnegative numbers θ, δ and a real p < 1

such that a mapping f : G → Y with f(0) = 0 satisfies the inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖+ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ G.

Then there exists a unique Cauchy–Jensen additive mapping A : G → Y such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖,

‖f(x)− A(x)‖ ≤ θ‖x‖p

2|c|(2− 2p)

[
2|c|p
|a|p +

2|c|p
|b|p + 2p + 2

]

for all x, y, z ∈ G.

The following approximation of f by A has much simpler upper bound than that of

(2.6).

Theorem 2.9. Assume that a mapping f : G → Y with f(0) = 0 satisfies the func-

tional inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖+ φ(x, y, z) (2.18)

and that the map φ : G×G×G → [0,∞) satisfies the condition

Φ(x, y, z) :=
∞∑

j=1

|λ|jφ(
x

λj
,

y

λj
,

z

λj
) < ∞

for all x, y, z ∈ G, where λ := 2(b+ c) 6= 0. Then there exists a unique Cauchy–Jensen

additive mapping A : G → Y, defined by A(x) = limn→∞ λnf( x
λn ), such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖, (2.19)

‖A(x)− f(x)‖ ≤ 1

|λ|Φ
(

b + c

a
x, x, x

)

for all x, y, z ∈ G.

Proof. Replacing (x, y, z) by
(

b+c
a

x, x, x
)

in (2.18), we get

‖f(λx)− λf(x)‖ ≤ φ

(
b + c

a
x, x, x

)
. (2.20)

Now it follows from (2.20) that

‖λlf(
x

λl
)− λmf(

x

λm
)‖ ≤

m−1∑

j=l

‖λjf(
x

λj
)− λj+1f(

x

λj+1
)‖

≤ 1

|λ|
m−1∑

j=l

λj+1φ

(
b + c

a

x

λj+1
,

x

λj+1
,

x

λj+1

)

for all x ∈ G and for all nonnegative integers m and l with m > l.

The rest of proof is similar to the corresponding part of Theorem 2.2. ¤
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Theorem 2.10. Assume that a mapping f : G → Y with f(0) = 0 satisfies the

inequality (2.5) and that the map φ : G×G×G → [0,∞) satisfies the condition

Φ(x, y, z) :=
∞∑

j=0

1

|λ|j φ(λjx, λjy, λjz) < ∞

for all x, y, z ∈ G, where λ := 2(b+ c) 6= 0. Then there exists a unique Cauchy–Jensen

additive mapping A : G → Y , defined by A(x) := limn→∞ 1
λn f(λnx), such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖,

‖A(x)− f(x)‖ ≤ 1

|λ|Φ
(

b + c

a
x, x, x

)

for all x, y, z ∈ G.

Corollary 2.11. Assume that there exists a nonnegative numbers δ such that a map-

ping f : G → Y with f(0) = 0 satisfies the inequality

‖f(ax + by + cz)− 2bf(y)− 2cf(z)‖ ≤ ‖f(ax− by − cz)‖+ δ

for all x, y, z ∈ G, where 0 < |λ := 2(b + c)| 6= 1 Then there exists a unique Cauchy–

Jensen additive mapping A : G → Y such that

‖A(ax + by + cz)− 2bA(y)− 2cA(z)‖ ≤ ‖A(ax− by − cz)‖,
‖f(x)− A(x)‖ ≤ δ∣∣∣∣2|b + c| − 1

∣∣∣∣
(2.21)

for all x, y, z ∈ G.

We observe that the best approximation between (2.14) and (2.21) of f by A is

determined by constants b, c.
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