A DOUBLE-WEIGHTED REFINEMENT OF JENSEN'S INEQUALITY WITH APPLICATIONS

J. ROOIN¹ AND A. MORASSAEI²

ABSTRACT. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be two probability measure spaces, I an interval of the real line, $f \in L^1(\mu)$, $f(x) \in I$ for each $x \in X$, and φ a real-valued convex function on I. We show that, if ω_0 and ω_1 are two appropriate weight functions on $X \times Y$, then

$$\varphi\left(\int_X f d\mu\right) \leq \int_Y A\left(\varphi; F_0(y), F_1(y)\right) d\lambda(y) \leq \int_X (\varphi \circ f) d\mu,$$

where A denotes the arithmetic mean of φ on the closed interval with end points $F_0(y)$ and $F_1(y)$, and for λ -almost all $y \in Y$'s

$$F_k(y) = \int_X f(x)\omega_k(x,y)d\mu(x) \qquad (k=0,1)$$

Finally, we give nice applications in refining Information inequality and some important inequalities between means.

 1 Department of Mathematics, Institute for Advanced Studies in Basic Sciences, 45195-1159, Zanjan, Iran.

 $E\text{-}mail\ address:\ \texttt{rooinQiasbs.ac.ir}$

 2 Department of Mathematics, Faculty of Sciences, University of Zanjan, 45195-313, and, Education Office of Zanjan, Zanjan, Iran.

E-mail address: morassae@iasbs.ac.ir

²⁰⁰⁰ Mathematics Subject Classification. 26D15, 26A51, 28A35.

Key words and phrases. Jensen's inequality, Weight function, Mean, Information inequality.